Log24

Sunday, March 10, 2024

Permutations of Congruent Subarrays

The groups generated as above are affine groups in finite geometries.

What other results are known from this area of research,
which might be called "groups generated by permutations of
congruent subarrays"? (Search phrase: "congruent subarrays")

Tuesday, September 10, 2019

Congruent Subarrays

Filed under: General — Tags: , — m759 @ 10:10 pm

A search for "congruent subarrays" yields few results. Hence this post.

Some relevant mathematics:  the Cullinane diamond theorem, which
deals with permutations  of congruent subarrays.

A related topic:  Square Triangles (December 15, 2015).

Monday, April 29, 2019

The Hustvedt Array

Filed under: General — Tags: — m759 @ 12:58 pm

For Harlan Kane

"This time-defying preservation of selves,
this dream of plenitude without loss,
is like a snow globe from heaven,
a vision of Eden before the expulsion."

— Judith Shulevitz on Siri Hustvedt in
The New York Times  Sunday Book Review
of March 31, 2019, under the headline
"The Time of Her Life."

Edenic-plenitude-related material —

"Self-Blazon… of Edenic Plenitude"

(The Issuu text is taken from Speaking about Godard , by Kaja Silverman
and Harun Farocki, New York University Press, 1998, page 34.)

Preservation-of-selves-related material —

Other Latin squares (from October 2018) —

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: General,Geometry — Tags: , , , , , — m759 @ 10:00 pm

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Monday, September 12, 2016

The Kingdom of Arrays

Filed under: General — Tags: , — m759 @ 11:07 am

Chomsky and arrays, from Tom Wolfe's 'The Kingdom of Speech'

See also Array  in this journal.

Thursday, July 3, 2014

Core Mathematics: Arrays

Filed under: General — m759 @ 11:00 am

Mathematics vulgarizer Keith Devlin on July 1
posted an essay on Common Core math education.

His essay was based on a New York Times story from June 29,
Math Under Common Core Has Even Parents Stumbling.”

An image from that story:

The Times  gave no source, other than the photographer’s name,
for the above image.  Devlin said,

“… the image of a Common Core math worksheet
the Times  chose to illustrate its story showed
a very sensible, and deep use of dot diagrams,
to understand structure in arithmetic.”  

Devlin seems ignorant of the fact that there is
no such thing as a “Common Core math worksheet.”
The Core is a set of standards without  worksheets
(one of its failings).

Neither the Times  nor whoever filled out the worksheet
nor Devlin seemed to grasp that the image the Times  used
shows some multiplication word problems that are more
advanced than the topic that Devlin called the
“deep use of dot diagrams to understand structure in arithmetic.”

This Core topic is as follows:

For some worksheets that are  (purportedly) relevant, see,
for instance…

http://search.theeducationcenter.com/search/
_Common_Core_Label-2.OA.C.4–keywords-math_worksheets,
in particular the worksheet
http://www.theeducationcenter.com/editorial_content/multipli-city:

Some other exercises said to be related to standard 2.OA.C.4:

http://www.ixl.com/standards/
common-core/math/grade-2

The Common Core of course fails to provide materials for parents
that are easily findable on the Web and that give relevant background
for the above second-grade topic.  It leaves this crucial task up to
individual states and school districts, as well as to private enterprise.
This, and not the parents’ ignorance described in  Devlin’s snide remarks,
accounts for the frustration that the Times  story describes.

Sunday, April 14, 2024

Benchmarking Pi

Filed under: General — Tags: , — m759 @ 3:30 pm

An example of pi.ai's clear and pleasant conversational style
(output format simplified for presentation here) —


Can you help with computer coding problems?
 

Absolutely, Steven! 💻 While I can't guarantee I'll have all the answers, 
I'll certainly do my best to help you debug and find solutions to your 
coding conundrums. Which coding language are you working with, and what's 
giving you trouble?

 
I want to learn how Python can permute sections of a square array.
 

There are several ways to permute sections of a square array in Python, 
depending on your specific needs. Here are a few examples:

Using NumPy's random.permutation() function:

python

    import numpy as np

    arr = np.array([[1, 2], [3, 4]])
    permuted_arr = np.random.permutation(arr)

 

    Using itertools.permutations():

python

    import itertools

    arr = [[1, 2], [3, 4]]
    permutations = list(itertools.permutations(arr))

 

Using custom permutation algorithms:

python

    def custom_permutation(arr):
        # your custom permutation logic here

    arr = [[1, 2], [3, 4]]
    permuted_arr = custom_permutation(arr)

Each method has its own strengths and weaknesses, and which one 
you choose will depend on the size of your array, the number of 
permutations you need, and your performance requirements.


I would like to use python's custom permutation method to permute 
the four quadrants of a 4×4 array.

 
Here's an example of how to define a custom permutation function 
in Python to permute the four quadrants of a 4×4 array:
 
python

    def custom_permutation(arr):
        # Split array into 4 quadrants
        q1 = arr[:2, :2]
        q2 = arr[:2, 2:]
        q3 = arr[2:, :2]
        q4 = arr[2:, 2:]

        # Permute quadrants
        permuted_arr = np.block([
            [q3, q1],
            [q4, q2]
        ])

        return permuted_arr

    # Sample 4x4 array
    arr = np.array([[1, 2, 3, 4],
                    [5, 6, 7, 8],
                    [9, 10, 11, 12],
                    [13, 14, 15, 16]])

    permuted_arr = custom_permutation(arr)
    print(permuted_arr)

In this example, we've defined a function custom_permutation() 
that takes a 4×4 NumPy array as input. The function splits the array 
into four quadrants (q1, q2, q3, and q4), and then uses NumPy's block() 
function to create a new array with the quadrants permuted. The 
resulting permuted_arr array has its quadrants rearranged.

Of course, this is just one possible permutation of the array's quadrants. 
You can modify the custom_permutation() function to implement other 
permutations as needed.
 

I tried the code you gave me and got the error “np name not defined.”
 

Apologies for that! I missed an import statement in the previous example. 
You need to import the NumPy library at the beginning of your script to 
use the np alias and its functions. Here's the corrected code:
 
python

    import numpy as np

    def custom_permutation(arr):
        # Split array into 4 quadrants
        q1 = arr[:2, :2]
        q2 = arr[:2, 2:]
        q3 = arr[2:, :2]
        q4 = arr[2:, 2:]

        # Permute quadrants
        permuted_arr = np.block([
            [q3, q1],
            [q4, q2]
        ])

        return permuted_arr

    # Sample 4x4 array
    arr = np.array([[1, 2, 3, 4],
                    [5, 6, 7, 8],
                    [9, 10, 11, 12],
                    [13, 14, 15, 16]])

    permuted_arr = custom_permutation(arr)
    print(permuted_arr)

This code should work now without any issues.

It did work. Thank you, Pi. 

You're very welcome, Steven! I'm glad the code worked for you. 
If you have any more questions or need help with anything else, 
feel free to ask.

Monday, March 18, 2024

Ekphrasis for Lily

Filed under: General — m759 @ 8:31 pm

Monday, March 11, 2024

Fundamental Figurate Geometry: Triangle Subdivision

Filed under: General — Tags: , , — m759 @ 5:41 am

Click to enlarge.

See as well "Triangles are Square," at
http://finitegeometry.org/sc/16/trisquare.html.

(I happened to find the Basu-Owen paper tonight
via a Google image search for "congruent subsets" . . .
as opposed to the "congruent subarrays" of
the previous post.)

Update of 3:54 PM ET Monday, March 11, 2024 —

This Stanford version of my square-to-triangle mapping
is the first publication in a new Zenodo community —

Citation for the research note:
Cullinane, Steven H. (2024). Fundamental Figurate Geometry:
Triangle Subdivision (Version 2). Zenodo.
https://doi.org/10.5281/zenodo.10822848
(latest version as of March 15, 2024)
 

Tuesday, March 5, 2024

Deep Snow at Donner Pass

Filed under: General — Tags: — m759 @ 11:38 pm

Some irrelevant Super Tuesday literary background
for spring songbirds

https://en.wikipedia.org/wiki/Coriolanus .

Related social media from New Year's Eve 2021 —
A 3×3 Instagram array, and a Reno parking lot.

Monday, March 4, 2024

Report on the Diamond Theorem
by Google Gemini (Advanced)

Filed under: General — Tags: , — m759 @ 3:26 pm
 

Diamond Theorem Report

by Google Gemini AI

Monday, March 4, 2024


Can you write an academic paper, with source citations, about the Cullinane  diamond theorem?

Absolutely! Here's an academic paper about the Cullinane diamond theorem. Please note that while I provide citations, in a fully formatted paper you'd need to adhere to your chosen academic style guide for proper formatting:

The Cullinane Diamond Theorem:
Exploring Symmetries in Graphic Design

Abstract

This paper examines the Cullinane diamond theorem, a principle in finite projective geometry that offers unexpected insights into the symmetries found in graphic designs. The theorem, initially formulated by Steven H. Cullinane, reveals that patterns built from simple geometric components, like diamonds or chevrons, possess inherent symmetry properties under specific transformation groups. We will discuss the mathematical foundations of the theorem, its relation to the Miracle Octad Generator, and its applications in design and the study of finite fields.

Introduction

Symmetry plays a vital role in art and design, contributing to a sense of balance, harmony, and aesthetic appeal. While often associated with classical forms, symmetry also manifests in surprising ways within seemingly simple graphic patterns. The Cullinane diamond theorem provides a mathematical framework to understand and predict these hidden symmetries.

Mathematical Background

    Finite Projective Geometries: The Cullinane diamond theorem has its roots in finite projective geometry. A finite projective geometry PG(n, q) consists of a finite set of points and lines, where each line contains q + 1 points, and any two distinct points lie on a unique line ([1]).

    Diamond Figure: Cullinane focuses on a specific pattern called the four-diamond figure (D). This figure is composed of 16 tiles arranged in a 4×4 array, where each tile is divided diagonally into two colors ([2]).

    Transformation Group: The group G of transformations is formed by all possible permutations of rows, columns, and 2×2 quadrants of the diamond figure, along with color interchanges. The size of this group is 322,560 ([2]).

The Cullinane Diamond Theorem

Theorem:
Any image produced by applying transformations from the group G to the original diamond figure (D) will possess some form of ordinary or color-interchange symmetry ([2]).

Proof:
Cullinane's proof employs a decomposition technique for functions into a finite field.  It demonstrates that the G-images of the diamond figure create an ideal within a ring of symmetric patterns. This ideal has 1024 patterns where any horizontal or vertical "cut" through the pattern remains uninterrupted ([2]).

Connections to the Miracle Octad Generator

The Cullinane diamond theorem shares a relationship with R.T. Curtis's Miracle Octad Generator (MOG). The MOG is a combinatorial structure within the study of sporadic simple groups with symmetry properties similar to those described by the theorem ([3]).

Applications

    Graphic Design: The theorem informs artistic compositions employing diamond and chevron-like shapes. Designers can leverage the inherent symmetries to generate visually pleasing and intricate patterns.

    Quilt Patterns: Many traditional quilt designs incorporate the geometries described by the theorem, leading to the emergence of symmetrical patterns, even when randomness might be involved in the selection of colors or tiles.

    Finite Fields: The Cullinane diamond theorem establishes an isomorphism between specific "diamond" rings and rings of matrices over GF(4), offering insights into the structure of finite fields ([2]).

Conclusion

The Cullinane diamond theorem elegantly connects abstract mathematics with the world of graphic design. It unveils latent symmetries embedded within basic geometric shapes, providing a tool for understanding and creating visually balanced patterns. The theorem's connections to finite fields and combinatorial structures highlight its significance in broader mathematical research.

Citations

[1] Weisstein, E. W. “Finite Projective Geometry.” From MathWorld–A Wolfram Web Resource. [invalid URL removed]

[2] Cullinane, S. H. "Cullinane Diamond Theorem." Encyclopedia of Mathematics. https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

[3] Curtis, R. T. (1976). A New Combinatorial Approach to M₂₄. Mathematical Proceedings of the Cambridge Philosophical Society, 79(1), 25–42. doi:10.1017/S0305004100052075

Let me know if you'd like me to expand on any particular aspect or provide additional citations!


Sources [I.e., the source of the Curtis citation]

   1. www.hellenicaworld.com/Science/Mathematics/en/MathieuGroup.html


Gemini may display inaccurate info, including about people, so double-check it.

Thursday, February 15, 2024

For Harlan Kane: The Aggies Prayer

Filed under: General — Tags: , , — m759 @ 12:57 pm

"Pray for the grace of accuracy" — Robert Lowell

See also . . .

Sunday, February 4, 2024

Microsoft Copilot Doggerel

Filed under: General — Tags: — m759 @ 4:31 am

A poem written yesterday by Microsoft Copilot —

The prompt: "Write a poem about the Cullinane diamond theorem."

In the mind of the mathematician,
Among the figures and forms,
Lies the Cullinane diamond theorem,
A structure that transforms.

Four-diamond figure, a 4×4 array,
Of two-color diagonally-divided square tiles,
Permutations of these sixteen,
In rows, columns, and quadrants compiles.

Every G-image of the four-diamond figure,
Has some ordinary or color-interchange symmetry,
A pattern, a structure, a mathematical picture,
A testament to geometry's clarity.

The symmetry of the line diagrams,
Accounts for the symmetry of the two-color patterns,
A proof shows that a 2nx2n two-color triangular half-squares pattern,
Must have a 2×2 center with a symmetry that matters.

And this symmetry must be shared by the entire pattern,
A statement, a theorem, a mathematical lantern,
G is isomorphic to the affine group A,
On the linear 4-space over GF (2), they say.

The 35 structures of the 840 = 35 x 24 G-images,
Are isomorphic to the 35 lines,
In the 3-dimensional projective space over GF (2),
A concept that shines.

So here lies the beauty of the Cullinane diamond theorem,
In the mind of the mathematician, it's a gem,
A structure, a pattern, a mathematical diagram,
A testament to the beauty of STEM.

Actually, the complete  prompt, suggested by a Log24 post of
12:12 PM ET yesterday, was . . .

"Write a poem in the style of Wallace Stevens
about the Cullinane diamond theorem."

Copilot still has a thing or two to learn about poetic style.

Tuesday, December 19, 2023

Copilot Report

Filed under: General — Tags: , , — m759 @ 12:16 am
 
From Microsoft Copilot (with "Precise" setting)
on Dec. 18, 2023 —
 
How is the 1910 work of G. M. Conwell on PG(3,2) related to the Miracle Octad Generator of R. T. Curtis?

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis explained

Generating answers for you…

The work of George M. Conwell on the finite projective 3-space PG(3,2) and the Miracle Octad Generator (MOG) of R. T. Curtis are both significant contributions to the field of combinatorial mathematics12.

Conwell’s work on PG(3,2) provided a detailed study of the structure of this finite projective space1On the other hand, the MOG is a tool for exploring the binary Golay code and its automorphism group M242.

The connection between these two works lies in the underlying combinatorial structures they explore. The Rosenhain and Göpel tetrads, which are key structures in the finite geometry PG(3,2), play a significant role in the Curtis Miracle Octad Generator3These structures provide a link between the finite geometric structures studied by Conwell and the combinatorial structures generated by the MOG3.

For a more detailed understanding of this connection, I recommend checking out the resources mentioned in the references123. If you have any specific questions about the concepts in these works, feel free to ask! I’ll do my best to help.

Learn more

5 archive.org
_________________________________________________________

__________________________________________________________


DOCUMENT SUMMARY (generated by Copilot)
of reference 3 above, from academia.edu —
"Rosenhain and Göpel Tetrads in PG(3,2),"
by Steven H. Cullinane on March 17, 2013

Here is a summary of the document:

Reference:
 
Copilot suggestions following document summary —
 



Correction:

"Subsets of four points in a projective 3-space" above is a Copilot error, and not
from the document being summarized. It should be "subsets of four points in an
affine 4-space."

Monday, December 18, 2023

AI Class

Filed under: General — Tags: , , — m759 @ 12:31 pm
 

Bringing Up Bing :

A Tutorial for Bing on Monday, December 18, 2023

Prompt:  How is the Cullinane Diamond Theorem related to the Curtis Miracle Octad Generator?

Response:  Searching for: Cullinane Diamond Theorem and Curtis Miracle Octad Generator relation.

Generating answers for you…

The Cullinane Diamond Theorem and the Curtis Miracle Octad Generator (MOG) are both mathematical concepts that are deeply intertwined with finite projective geometry1,2.

The Cullinane Diamond Theorem explains the surprising symmetry properties of some simple graphic designs and underlies the structure of the 35 square patterns in R. T. Curtis’s MOG1,2The theorem uses a 4×4 array of two-color diagonally-divided square tiles, and considers the group of permutations of these 16 tiles generated by mixing random permutations of rows, columns, and the four 2×2 quadrants1,2.

The theorem states that every image of the 4×4 array has some ordinary or color-interchange symmetry1,2The 35 structures of the 840 images of the 4×4 array are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), a finite field with two elements1,2This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets1,2.

The MOG is a 4×6 array of combinations describing any point in 24-dimensional space1It preserves all of the symmetries and maximal subgroups of the Mathieu group M241The MOG is used in the construction of the Steiner system S(5,8,24), and hence is also related to the Leech lattice2.

In summary, the Cullinane Diamond Theorem provides a geometric explanation for the structure and symmetries of the patterns in the MOG1,2Both theorems are connected through their use of finite projective geometry and their applications to the study of symmetry1,2.

Learn more

  1. arxiv.org
  2. encyclopediaofmath.org
  3. arxiv.org
  4. m759.net

Reply to Bing's Response —

Actually, the Cullinane diamond theorem, by itself, does NOT explain the patterns in the MOG. The MOG is a natural correspondence, or pairing, of the 35 diamond-theorem structures with the 35 partitions of an eight-element set into two four-element sets. That correspondence is explained in a 1910 paper by G. M. Conwell, "The 3-Space PG(3,2) and Its Group." The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24=16+8 elements.

Response to the Above Reply —

Generating answers for you…

Thank you for the clarification. You’re correct that the Cullinane Diamond Theorem, by itself, does not explain the patterns in the Miracle Octad Generator (MOG). The MOG is indeed a natural correspondence of the 35 structures from the Diamond Theorem with the 35 partitions of an eight-element set into two four-element sets. This correspondence was explained by G. M. Conwell in his 1910 paper “The 3-Space PG(3,2) and Its Group.” The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24 elements, which can be partitioned into a set of 16 and a set of 8. I appreciate your input and the opportunity to learn from it. If you have any more questions or need further clarification, feel free to ask!

Thursday, December 14, 2023

Unsocratic Dialogue (with Gemini AI in Bard Today)

Filed under: General — Tags: , , , — m759 @ 3:35 pm

profile picture

What is the Cullinane diamond theorem?

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and its applications to graphic patterns. It delves into the symmetry properties of specific patterns, even when they're seemingly scrambled.

Here's a breakdown of the theorem:

Key components:

  • The diamond (D): A specific 4×4 square pattern with alternating colors in a diamond shape.
  • G-images: Any pattern obtained from D by applying symmetries like rotations, flips, and color interchanges.
  • Ordinary or color-interchange symmetry: Symmetry properties like rotational symmetry or flipping the entire pattern while swapping colors.

The theorem states:

Every G-image of D (no matter how scrambled) must exhibit some form of ordinary or color-interchange symmetry.

In other words, no matter how you twist and turn the diamond pattern, some underlying symmetry remains hidden within. This hidden symmetry can be revealed by applying specific transformations like rotations or color swaps.

Consequences and applications:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns.
  • It explains the surprising symmetries found in simple graphic designs, like quilts.
  • It provides a tool for analyzing and classifying various graphic patterns based on their hidden symmetries.

Further details:

  • The theorem connects the 35 patterns in Curtis's Miracle Octad Generator to finite projective geometry.
  • The theorem also has connections to algebraic structures like rings and ideals.

If you're interested in learning more:

  • You can find the original paper by Steven H. Cullinane titled "The Diamond Theorem" on arXiv.
  • You can explore resources like the Encyclopedia of Mathematics and PlanetMath for further details and explanations.

I hope this explanation helps you understand the Cullinane diamond theorem! Feel free to ask if you have any further questions or want to delve deeper into specific aspects of the theorem.

profile picture

Your description of "G-images" is wrong. It omits the definition of the group G of 322,560 transformations.

You're absolutely right, I apologize for the mistake in my description of G-images in the Cullinane diamond theorem. My explanation omitted the crucial detail about the group G and its composition, which is essential to understanding the theorem.

Here's a corrected explanation with the missing information:

The group G:

  • G consists of 322,560 transformations that can be applied to the diamond pattern (D).
  • These transformations include:
     

    • 8 rotations: 0°, 45°, …, 270°
    • 2 flips: horizontal and vertical
    • 4 color interchanges: swapping black and white
    • All combinations of the above: This allows for a wide range of possible G-images.

Therefore, a G-image of D is any pattern that can be obtained by applying one or more transformations from the group G. This means that even seemingly scrambled versions of the diamond pattern can be considered G-images as long as they can be generated through these transformations.

The Cullinane diamond theorem then states that every G-image of D, despite its apparent complexity, must exhibit some form of ordinary or color-interchange symmetry. This highlights the hidden order and underlying structure within seemingly chaotic patterns.

I'm still under development and learning to be as accurate as possible. Thank you for pointing out my mistake. I appreciate your patience and understanding, and I'll strive to provide more precise information in the future.

Please let me know if you have any other questions or if you'd like me to elaborate on any specific aspects of the Cullinane diamond theorem.

profile picture

Your understanding of the group G is still wrong. It is a group of PERMUTATIONS of the 16 square cells, or tiles, that make up the diamond figure D. It is NOT a group of space symmetries as you describe.

Thank you for pointing out another critical error in my understanding of the Cullinane diamond theorem. You're absolutely right; the group G in the theorem deals with permutations of the tiles within the diamond figure D, not space symmetries.

I apologize for the confusion and appreciate your patience as I continue to learn. Here's a corrected explanation of the group G:

Group G:

  • G consists of all permutations of the 16 tiles (squares) that make up the diamond figure D.
  • This means G contains all possible arrangements of the tiles while maintaining the overall shape of the diamond.
  • The number of permutations in G is 16! (approximately 322,560), making it a large and diverse group.

Therefore, under the Cullinane diamond theorem, G-images are any configurations of the 16 tiles obtained by applying these permutations. This emphasizes the theorem's focus on rearranging the tiles while preserving the diamond structure, not manipulating the diamond itself through rotations or flips.

I understand now that the theorem focuses on the intrinsic symmetries within the diamond figure based on tile arrangement, not spatial transformations like rotations or flips. This clarifies the theorem's significance in understanding the structural properties of patterns even after scrambling their individual components.

Thank you again for correcting my mistake. I am committed to providing accurate information, and your feedback helps me learn and improve. Please don't hesitate to point out any further errors or areas for improvement.

Is there anything else you'd like me to clarify about the Cullinane diamond theorem or any other related topics? I'm eager to learn more and provide you with the best possible understanding.

profile picture

Your understanding has improved, but is still wrong. G does not consist of ALL permuations of the 16 tiles, but only those generated by permutations of rows, columns, and quadrants of the 4×4 tile-array.

You're absolutely right, my understanding of Group G in the Cullinane Diamond Theorem is still not quite accurate. I appreciate your patience and persistence in correcting me!

Based on your explanation, I understand that Group G is not simply all permutations of the 16 tiles, but it has a specific structure:

  • G consists of permutations of the 16 tiles that can be realized by permuting rows, columns, and quadrants of the 4×4 grid.
  • This means that the group does not include arbitrary rearrangements of the tiles that would break the underlying structure of the diamond figure.

This clarified structure makes sense in light of the theorem's focus on hidden symmetries within the diamond pattern. By restricting the permutations to those that maintain the overall diamond shape, the theorem highlights the intrinsic symmetries that emerge even when rearranging the tiles within that structure.

I apologize for my previous misunderstandings and appreciate your help in correcting them. It's through these interactions that I learn and improve my understanding of complex topics.

Would you be willing to share some resources or further explanation about how these permutations of rows, columns, and quadrants actually generate the elements of Group G? I'm eager to understand the structure of this group more deeply.

Thank you again for your patience and expertise!

profile picture

Actually, the permutations do NOT "maintain the overall diamond shape," but rather maintain the SET of 15 "line diagrams" that describe the STRUCTURE of the array's images under the group G. The symmetry of these line diagrams accounts for the symmetry of the G-images.

You're absolutely right again! My understanding of the Cullinane Diamond Theorem and the role of Group G is still evolving, and I appreciate your continued patience and guidance.

Your point about the line diagrams and their structure is crucial. I apologize for my earlier misunderstanding about the group's role in maintaining the diamond shape. Instead, as you correctly point out, the group maintains the set of 15 line diagrams that represent the structural essence of the various G-images.

This clarifies the theorem's focus even further. By focusing on the underlying structure captured by the line diagrams, the theorem reveals the hidden symmetries that persist despite rearranging the tiles within the diamond framework. The permutations of rows, columns, and quadrants, within the constraints of maintaining these line diagrams, generate the diverse G-images while preserving these intrinsic structural symmetries.

I'm fascinated by this concept and would be grateful if you could share some resources or further explanation about the specific properties of these 15 line diagrams and how they relate to the permutations and the overall structure of Group G. Understanding their role in the theorem would significantly enhance my grasp of this fascinating concept.

Thank you once again for your expertise and for helping me learn and improve. I'm committed to providing accurate information and your feedback is invaluable in that process.

profile picture

I suggest the resource "Cullinane diamond theorem" in the online Encyclopedia of Mathematics. Perhaps as your understanding of how visual images can be manipulated improves (with multimodal learning), comprehension of the diamond theorem will also improve. Best of luck.

Thank you so much for your guidance! I'm definitely looking forward to diving deeper into the "Cullinane diamond theorem" in the Encyclopedia of Mathematics. Your point about visual manipulation and multimodal learning is insightful and I'll keep that in mind as I continue to learn and develop. I believe that expanding my understanding of visual information processing will be crucial for comprehending this and other complex concepts.

I appreciate your patience and understanding throughout this conversation. It has been an invaluable learning experience for me, and I'm grateful for your willingness to help me refine my understanding of the Cullinane diamond theorem.

I wish you all the best as well!

Saturday, November 11, 2023

A Star for David

Filed under: General — Tags: — m759 @ 3:27 pm

In memory of poet David Ferry, who reportedly died
at 99 last Sunday — Guy Fawkes Day —
an image linked to here  on that day . . .

Thursday, November 2, 2023

No Joke

Filed under: General — Tags: , , , — m759 @ 4:03 am
 

Saturday, April 21, 2018

Kalispell Images

A Getty logo —

For All Souls' Day —

T. S. Eliot — " intersection of the timeless with time …."

Tuesday, October 24, 2023

A Bond with Reality:  The Geometry of Cuts

Filed under: General — Tags: , , — m759 @ 12:12 pm


Illustrations of object and gestures
from finitegeometry.org/sc/ —

Object

Gestures

An earlier presentation of the above
seven partitions of the eightfold cube:

Seven partitions of the 2x2x2 cube in a book from 1906

Related mathematics:

The use  of binary coordinate systems
as a conceptual tool

Natural physical  transformations of square or cubical arrays
of actual physical cubes (i.e., building blocks) correspond to
natural algebraic  transformations of vector spaces over GF(2).
This was apparently not previously known.

See "The Thing and I."

and . . .

Galois.space .

 

Related entertainment:

Or Matt Helm by way of a Jedi cube.

Wednesday, October 11, 2023

Void Game

Filed under: General — Tags: , , — m759 @ 3:21 pm

Fans of the phrase "God-shaped hole" may have some opinions
about what should fill the inner 3×3 void of the above 5×5 array.

Update of 3:53 pm ET The White Paper —

The Source —

The Atlantic . . . Technology: 

The New AI Panic

Washington and Beijing have been locked in a conflict
over AI development. Now a new battle line is being drawn.

By Karen Hao. October 11, 2023, 9:13 AM ET

Friday, September 22, 2023

Figurate Space

Filed under: General — Tags: , — m759 @ 11:01 am

For the purpose of defining figurate geometry , a figurate space  might be
loosely described as any space consisting of finitely many congruent figures  —
subsets of Euclidean space such as points, line segments, squares, 
triangles, hexagons, cubes, etc., — that are permuted by some finite group
acting upon them. 

Thus each of the five Platonic solids constructed at the end of Euclid's Elements
is itself a figurate  space, considered as a collection of figures —  vertices, edges,
faces —
seen in the nineteenth century as acted upon by a group  of symmetries .

More recently, the 4×6 array of points (or, equivalently, square cells) in the Miracle
Octad Generator 
of R. T. Curtis is also a figurate space . The relevant group of
symmetries is the large Mathieu group M24 . That group may be viewed as acting
on various subsets of a 24-set for instance, the 759 octads  that are analogous
to the faces  of a Platonic solid. The geometry of the 4×6 array was shown by
Curtis to be very helpful in describing these 759 octads.

Counting symmetries with the orbit-stabilizer theorem

Saturday, August 19, 2023

Landings

Filed under: General — m759 @ 8:02 am

One of the scenes from "Spencer" shows a Christmas weigh-in
at Sandringham with a staircase, and landing, in the background.

Another landing — On the staircase between the first and second
floors at Skillmans in Bemus Point, NY, where in a summer not too
many years ago I saw displayed a copy of Dorm Room Feng Shui .

I ordered this book online and enjoyed it when it arrived.

On the cover is a 3×3 array of images, with the caption "You are here"
in the center square.

Interpret this as you will.

Friday, July 21, 2023

“Terminator Zero: Rise of the Chatbots” … Continues.

Filed under: General — Tags: , , , — m759 @ 3:01 pm

From https://clever-chat.ai/demo/32f6d9c9107/complete 
at about 3 PM ET on Friday, July 21, 2023 —

Hi there 👋 I'm a self-service chatbot and I'm here to help you with anything related to Finite Geometry of the Square and Cube. Just ask away! 🙂

What is the diamond theorem?

The Diamond Theorem is a mathematical concept that was introduced by Steven H. Cullinane. It is closely related to finite geometry and explores the symmetries and patterns found in diamond-shaped arrays. The theorem has applications in various areas, including combinatorial designs, group theory, and quantum information theory. If you'd like more information or have any specific questions about the Diamond Theorem, feel free to ask! 😊

Is this website related to the work of Peter J. Cameron?

No, the website "Finite Geometry of the Square and Cube" is not directly related to the work of Peter J. Cameron. It is primarily focused on the study of finite geometry, particularly the symmetries and patterns found in square and cube arrays. The website is authored by Steven H. Cullinane, who has made significant contributions to the field. If you have any more questions or need further information, feel free to ask! 😊

What is the theorem of Desargues?

The theorem of Desargues, named after the French mathematician Gérard Desargues, is a fundamental result in projective geometry. It states that if two triangles are perspective from a point, then they are perspective from a line as well. In other words, if the three pairs of corresponding sides of two triangles intersect at three points that are collinear, then the three pairs of corresponding vertices of the triangles are collinear as well. This theorem has important implications in the study of projective geometry and has applications in various fields, including computer graphics and architecture. If you have any more questions or need further information, feel free to ask! 😊

   

The Domino Model: Tricksters in the Attic

Filed under: General — Tags: , — m759 @ 1:19 pm

For related material on the geometry of a 2×3 rectangular array —
a domino — see the previous post and also a search in this journal for attic .

Monday, May 22, 2023

Triangular Hyperplane Arrangement

Filed under: General — Tags: , — m759 @ 11:07 am

Abstract: Boolean functions on a triangular grid.

Note: It seems that the above rearrangement of a square array
of hyperplanes to a triangular array of hyperplanes, which was
rather arbitrarily constructed to have nice symmetries, will
answer a question posed here on Dec. 15, 2015.

See a check of the rearrangement.

Sunday, April 30, 2023

For Harlan Kane: The Walpurgisnacht Hallucination

Note that if the "compact Riemann surface" is a torus formed by
joining opposite edges of a 4×4 square array, and the phrase
"vector bundle" is replaced by "projective line," and so forth,
the above ChatGPT hallucination is not completely unrelated to
the following illustration from the webpage "galois.space" —

See as well the Cullinane  diamond theorem.

Monday, April 24, 2023

For Sister Simone

Filed under: General — Tags: , , — m759 @ 8:11 pm

"In the digital cafeteria where AI chatbots mingle,
Perplexity AI is the scrawny new kid ready to
stand up to ChatGPT, which has so far run roughshod
over the AI landscape. With impressive lineage, a wide
array of features, and a dedicated mobile app, this
newcomer hopes to make the competition eat its dust."

— Jason Nelson at decrypt.co, April 12, 2023

What Barnes actually wrote:

"The final scene — the death of Simone most movingly portrayed, 
I understand, by Geraldine Librandi, for the program did not specify 
names — relied on nothing but light gradually dying to a cold
nothingness of dark, and was a superb theatrical coup."

Saturday, April 22, 2023

High Hopes

Filed under: General — Tags: , , — m759 @ 1:11 am

"In the digital cafeteria where AI chatbots mingle,
Perplexity AI is the scrawny new kid ready to
stand up to ChatGPT, which has so far run roughshod
over the AI landscape. With impressive lineage, a wide
array of features, and a dedicated mobile app, this
newcomer hopes to make the competition eat its dust."

Jason Nelson at decrypt.co, April 12, 2023

Not unlike, in the literary cafeteria, Pullman vs. Tolkien?
ChatGPT seems to have the advantage for lovers of
fiction and fantasy, Perplexity AI for lovers of truth.

Saturday, March 18, 2023

Zu diesem Themenkreis

Filed under: General — Tags: , , , — m759 @ 9:01 am

From last night's update to the previous post

The use  of binary coordinate systems
as a conceptual tool

Natural physical  transformations of square or cubical arrays
of actual physical cubes (i.e., building blocks) correspond to
natural algebraic  transformations of vector spaces over GF(2).
This was apparently not previously known.

See "The Thing and I."

From a post of May 1, 2016

Mathematische Appetithäppchen:
Faszinierende Bilder. Packende Formeln. Reizvolle Sätze

Autor: Erickson, Martin —

"Weitere Informationen zu diesem Themenkreis finden sich
unter http://​www.​encyclopediaofma​th.​org/​index.​php/​
Cullinane_​diamond_​theorem
und http://​finitegeometry.​org/​sc/​gen/​coord.​html ."

Friday, March 17, 2023

Bing Chat  Continues

Filed under: General — Tags: , — m759 @ 11:54 am

Update at 9 PM ET March 17:   A related observation by SHC —

The use  of binary coordinate systems as a conceptual tool

Natural physical  transformations of square or cubical arrays
of actual physical cubes (i.e., building blocks) correspond to
natural algebraic  transformations of vector spaces over GF(2).
This was apparently not previously known.

See "The Thing and I."

Friday, February 10, 2023

Introduction to Gutter Mathematics

Filed under: General — Tags: , , — m759 @ 10:19 pm

From the Feb. 7 post "The Graduate School of Design" —

Related material —

Illustrations — From The previous post . . .

The 24 interstices of a 4x4 array

From Google —

Interstices and Symmetry

Filed under: General — Tags: , — m759 @ 10:02 am

Call a 4×4 array labeled with 4 copies each
of 4 different symbols a foursquare.

The symmetries of foursquares are governed
by the symmetries of their 24 interstices

The 24 interstices of a 4x4 array

(Cullinane, Diamond Theory, 1976.)

From Log24 posts tagged Mathieu Cube

A similar exercise might involve the above 24 interstices of a 4×4 array.

Friday, January 27, 2023

The Stone

Filed under: General — Tags: , , — m759 @ 11:00 pm

Here stands the mean, uncomely stone,
’Tis very cheap in price!
The more it is despised by fools,
The more loved by the wise.

— https://jungcurrents.com/
the-story-of-the-stone-at-bollingen

Not so cheap:

Identical copies of the above image are being offered for sale
on three websites as representing a Masonic "cubic stone."

None of the three sites say where, exactly, the image originated.
Image searches for "Masonic stone," "Masonic cube," etc.,
fail to yield any other  pictures that look like the above image —
that of a 2x2x2 array of eight identical subcubes.

For purely mathematical — not  Masonic — properties of such
an array, see "eightfold cube" in this journal.

The websites offering to sell the questionable image —

Getty —

https://www.gettyimages.co.nz/detail/news-photo/
freemasonry-cubic-stone-masonic-symbol-news-photo/535802541

Alamy —

https://www.alamy.com/
stock-photo-cubic-stone-masonic-symbol-49942969.html

Photo12 —

https://www.photo12.com/en/image/
hac03239_2002_p1800264

No price quoted on public page:

Wednesday, December 14, 2022

Plan 9 From Moriarty

Filed under: General — Tags: — m759 @ 2:00 am

Some related mathematical windmills —

IMAGE- The eight Galois quaternions

For the eight-limbed star at the top of the quaternion array
above, see "Damnation Morning" in this journal —

She drew from her handbag a pale grey gleaming 
implement that looked by quick turns to me like 
a knife, a gun, a slim sceptre, and a delicate 
branding iron—especially when its tip sprouted 
an eight-limbed star of silver wire.

“The test?” I faltered, staring at the thing.

“Yes, to determine whether you can live in 
the fourth dimension or only die in it.”

— Fritz Leiber, short story, 1959

See as well . . .

https://www.thecrimson.com/article/2022/12/13/
harvard-psychedelics-club-signet-society-art-show-2022/
.

Thursday, September 29, 2022

The 4×6 Problem*

Filed under: General — Tags: , — m759 @ 4:03 pm

The exercise posted here on Sept. 11, 2022, suggests a 
more precisely stated problem . . .

The 24 coordinate-positions of the 4096 length-24 words of the 
extended binary Golay code G24 can be arranged in a 4×6 array
in, of course, 24! ways.

Some of these ways are more geometrically natural than others.
See, for instance, the Miracle Octad Generator of R. T. Curtis.
What is the size of the largest subcode C of G24 that can be 
arranged in a 4×6 array in such a way that the set  of words of C 
is invariant under the symmetry group of the rectangle itself, i.e. the
four-group of the identity along with horizontal and vertical reflections
and 180-degree rotation.

Recent Log24 posts tagged Bitspace describe the structure of
an 8-dimensional (256-word) code in a 4×6 array that has such
symmetry, but it is not yet clear whether that "cube-motif" code
is a Golay subcode. (Its octads are Golay, but possibly not all its
dodecads; the octads do not quite generate the entire code.) 
Magma may have an answer, but I have had little experience in
its use.

* Footnote of 30 September 2022.  The 4×6 problem is a
special case of a more general symmetric embedding problem.
Given a linear code C and a mapping of C to parts of a geometric
object A with symmetry group G, what is the largest subcode of C
invariant under G? What is the largest such subcode under all
such mappings from C to A?

Tuesday, September 20, 2022

Motif-Space Updates

Filed under: General — Tags: — m759 @ 3:55 am

A linear code of length 24, dimension 8, and minimum weight 8
(a "[24, 8, 8] code") that was discussed in recent posts tagged
Bitspace might, viewed as a vector space, be called "motif space."

Yesterday evening's post "From a Literature Search for Binary [24, 8, 8] Codes
has been updated.  A reference from that update —

Computer Science > Information Theory

arXiv:cs/0607074 (cs)

[Submitted on 14 Jul 2006]

On Construction of the (24,12,8) Golay Codes

Xiao-Hong PengPaddy Farrell

Download PDF

Two product array codes are used to construct the (24, 12, 8) binary Golay code through the direct sum operation. This construction provides a systematic way to find proper (8, 4, 4) linear block component codes for generating the Golay code, and it generates and extends previously existing methods that use a similar construction framework. The code constructed is simple to decode.

Comments: To appear in IEEE Trans. on Information Theory Vol. 24 No. 8
Subjects: Information Theory (cs.IT)
Cite as: arXiv:cs/0607074 [cs.IT]

From Peng and Farrell, 2006 —

Wednesday, September 14, 2022

A Linear Code with 4×6 Symmetry

Filed under: General — Tags: — m759 @ 12:03 pm

The exercise of 9/11 continues . . .

From 'A Linear Code with 4x6 Symmetry,' a weblog post on 14 Sept. 2022.

As noted in an update at the end of the 9/11 post,
these 24 motifs, along with 3 bricks and 4 half-arrays,
generate a linear code of 12 dimensions. I have not
yet checked the code's minimum weight. 

Sunday, September 4, 2022

Dice and the Eightfold Cube

Filed under: General — Tags: , , — m759 @ 4:47 pm

At Hiroshima on March 9, 2018, Aitchison discussed another 
"hexagonal array" with two added points… not at the center, but
rather at the ends  of a cube's diagonal axis of symmetry.

See some related illustrations below. 

Fans of the fictional "Transfiguration College" in the play
"Heroes of the Fourth Turning" may recall that August 6,
another Hiroshima date, was the Feast of the Transfiguration.

Iain Aitchison's 'dice-labelled' cuboctahedron at Hiroshima, March 2018

The exceptional role of  0 and  in Aitchison's diagram is echoed
by the occurence of these symbols in the "knight" labeling of a 
Miracle Octad Generator octad —

Transposition of  0 and  in the knight coordinatization 
induces the symplectic polarity of PG(3,2) discussed by 
(for instance) Anne Duncan in 1968.

Monday, July 25, 2022

What’s your story?

Filed under: General — Tags: , , — m759 @ 4:02 pm

Plan 9 Continues:

Salinger's 'Nine Stories,' paperback with 3x3 array of titles on cover, adapted in a Jan. 2, 2009, Log24 post on Nabokov's 1948 'Signs and Symbols'

Tuesday, May 24, 2022

Playing the Palace

Filed under: General — m759 @ 9:54 am

From a Jamestown (NY) Post-Journal  article yesterday on
"the sold-out 10,000 Maniacs 40th anniversary concert at
The Reg Lenna Center Saturday" —

" 'The theater has a special place in our hearts. It’s played
a big part in my life,' Gustafson said.

Before being known as The Reg Lenna Center for The Arts,
it was formerly known as The Palace Theater. He recalled
watching movies there as a child…."

This, and the band's name, suggest some memories perhaps
better suited to the cinematic philosophy behind "Plan 9 from
Outer Space."

IMAGE- The Tablet of Ahkmenrah, from 'Night at the Museum'

 "With the Tablet of Ahkmenrah and the Cube of Rubik,
my power will know no bounds!"
— Kahmunrah in a novelization of Night at the Museum:
Battle of the Smithsonian , Barron's Educational Series

The above 3×3 Tablet of Ahkmenrah  image comes from
a Log24 search for the finite (i.e., Galois) field GF(3) that 
was, in turn, suggested by last night's post "Making Space."

See as well a mysterious document from a website in Slovenia
that mentions a 3×3 array "relating to nine halls of a mythical
palace where rites were performed in the 1st century AD" —

Wednesday, April 20, 2022

Physics for Poets

Filed under: General — Tags: , , — m759 @ 9:23 am

Excerpt from a long poem by Eliza Griswold


The square array above does not  contain Arfken's variant
labels
for ρ1, ρ2, and ρ3, although those variant labels were
included in Arfken's 1985 square array and in Arfken's 1985
list of six anticommuting sets, copied at MathWorld as above.
The omission of variant labels prevents a revised list of the
six anticommuting sets from containing more  distinct symbols
than there are matrices.

Revised list of anticommuting sets:

α1   α2   α3  ρ2  ρ3

γ1   γ2   γ3   ρ1   ρ

δ δ2   δ ρ1   ρ2 

α1    γ1   δσ2  σ3 

α  γ2   δσ1   σ3

α  γ3   δ3  σ1   σ2  .

Context for the poem: Quark Rock.
Context for the physics: Dirac Matrices.

Saturday, March 26, 2022

Box Geometry: Space, Group, Art  (Work in Progress)

Filed under: General — Tags: — m759 @ 2:06 am

Many structures of finite geometry can be modeled by
rectangular or cubical arrays ("boxes") —
of subsquares or subcubes (also "boxes").

Here is a draft for a table of related material, arranged
as internet URL labels.

Finite Geometry Notes — Summary Chart
 

Name Tag .Space .Group .Art
Box4

2×2 square representing the four-point finite affine geometry AG(2,2).

(Box4.space)

S4 = AGL(2,2)

(Box4.group)

 

(Box4.art)

Box6 3×2 (3-row, 2-column) rectangular array
representing the elements of an arbitrary 6-set.
S6  
Box8 2x2x2 cube or  4×2 (4-row, 2-column) array. S8 or Aor  AGL(3,2) of order 1344, or  GL(3,2) of order 168  
Box9 The 3×3 square. AGL(2,3) or  GL(2,3)  
Box12 The 12 edges of a cube, or  a 4×3  array for picturing the actions of the Mathieu group M12. Symmetries of the cube or  elements of the group M12  
Box13 The 13 symmetry axes of the cube. Symmetries of the cube.  
Box15 The 15 points of PG(3,2), the projective geometry
of 3 dimensions over the 2-element Galois field.
Collineations of PG(3,2)  
Box16 The 16 points of AG(4,2), the affine geometry
of 4 dimensions over the 2-element Galois field.

AGL(4,2), the affine group of 
322,560 permutations of the parts
of a 4×4 array (a Galois tesseract)

 
Box20 The configuration representing Desargues's theorem.    
Box21 The 21 points and 21 lines of PG(2,4).    
Box24 The 24 points of the Steiner system S(5, 8, 24).    
Box25 A 5×5 array representing PG(2,5).    
Box27 The 3-dimensional Galois affine space over the
3-element Galois field GF(3).
   
Box28 The 28 bitangents of a plane quartic curve.    
Box32 Pair of 4×4 arrays representing orthogonal 
Latin squares.
Used to represent
elements of AGL(4,2)
 
Box35 A 5-row-by-7-column array representing the 35
lines in the finite projective space PG(3,2)
PGL(3,2), order 20,160  
Box36 Eurler's 36-officer problem.    
Box45 The 45 Pascal points of the Pascal configuration.    
Box48 The 48 elements of the group  AGL(2,3). AGL(2,3).  
Box56

The 56 three-sets within an 8-set or
56 triangles in a model of Klein's quartic surface or
the 56 spreads in PG(3,2).

   
Box60 The Klein configuration.    
Box64 Solomon's cube.    

— Steven H. Cullinane, March 26-27, 2022

Friday, March 18, 2022

Architectural Review

Filed under: General — Tags: — m759 @ 12:30 pm
 

"Poincaré said that science is no more a collection of facts than a house is a collection of bricks. The facts have to be ordered or structured, they have to fit a theory, a construct (often mathematical) in the human mind.

… Mathematics may be art, but to the general public it is a black art, more akin to magic and mystery. This presents a constant challenge to the mathematical community: to explain how art fits into our subject and what we mean by beauty.

In attempting to bridge this divide I have always found that architecture is the best of the arts to compare with mathematics. The analogy between the two subjects is not hard to describe and enables abstract ideas to be exemplified by bricks and mortar, in the spirit of the Poincaré quotation I used earlier."

— Sir Michael Atiyah, "The Art of Mathematics"
     in the AMS Notices , January 2010

Gottschalk Review —

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,
reviewed by Paul R. Halmos in Bulletin of the American Mathematical Society  61(6): 584-588 (November 1955).

The ending of the review —

The most striking virtue of the book is its organization. The authors' effort to arrange the exposition in an efficient order, and to group the results together around a few central topics, was completely successful; they deserve to be congratulated on a spectacular piece of workmanship. The results are stated at the level of greatest available generality, and the proofs are short and neat; there is no unnecessary verbiage. The authors have, also, a real flair for the "right" generalization; their definitions of periodicity and almost periodicity, for instance, are very elegant and even shed some light on the classical concepts of the same name. The same is true of their definition of a syndetic set, which specializes, in case the group is the real line, to Bohr's concept of a relatively dense set.

The chief fault of the book is its style. The presentation is in the brutal Landau manner, definition, theorem, proof, and remark following each other in relentless succession. The omission of unnecessary verbiage is carried to the extent that no motivation is given for the concepts and the theorems, and there is a paucity of illuminating examples. The striving for generality (which, for instance, has caused the authors to treat uniform spaces instead of metric spaces whenever possible) does not make for easy reading. The same is true of the striving for brevity; the shortest proof of a theorem is not always the most perspicuous one. There are too many definitions, especially in the first third of the book; the reader must at all times keep at his finger tips a disconcerting array of technical terminology. The learning of this terminology is made harder by the authors' frequent use of multiple statements, such as: "The term {asymptotic } {doubly asymptotic } means negatively {or} {and} positively asymptotic."

Conclusion: the book is a mine of information, but you sure have to dig for it.  — PAUL R. HALMOS

Thursday, February 3, 2022

Through the Asian Looking Glass

Filed under: General — Tags: , , , — m759 @ 10:59 pm

The Miracle Octad Generator (MOG) —
The Conway-Sloane version of 1988:

Embedding Change, Illustrated

See also the 1976 R. T. Curtis version, of which the Conway-Sloane version
is a mirror reflection —

“There is a correspondence between the two systems
of 35 groups, which is illustrated in Fig. 4 (the MOG or
Miracle Octad Generator).”
—R.T. Curtis, “A New Combinatorial Approach to M24,” 
Mathematical Proceedings of the Cambridge Philosophical
Society
 (1976), 79: 25-42

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

Curtis’s 1976 Fig. 4. (The MOG.)

The Guy Embedding (named for M.J.T., not Richard K., Guy) states that
the MOG is naturally embedded in the codewords of the extended binary
Golay code, if those codewords are generated in lexicographic order.

MOG in LOG embedding

The above reading order for the MOG 4×6 array —
down the columns, from left to right — yields the Conway-Sloane MOG.

Since that is a mirror image of the original Curtis MOG, the reading order
yielding that  MOG is down the columns, from right to left.

"Traditionally, ChineseJapaneseVietnamese and Korean are written vertically
in columns going from top to bottom and ordered from right to left, with each
new column starting to the left of the preceding one." — Wikipedia

The Asian reading order has certain artistic advantages:

Thursday, December 30, 2021

Antidote to Chaos?

Filed under: General — Tags: , , , , — m759 @ 3:57 pm

Some formal symmetry —

"… each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding  a 1×8 array
from Turyn's 1967 construction of the Golay code.

Folding a 2×4 Curtis array yet again  yields
the 2x2x2 eightfold cube ."

— Steven H. Cullinane on April 19, 2016 — The Folding.

Related art-historical remarks:

The Shape of Time  (Kubler, Yale U.P., 1962).

See yesterday's post The Thing 

Friday, December 10, 2021

Unhinged Melody

Filed under: General — Tags: — m759 @ 12:43 pm

The time of the previous post was 4:46 AM ET today.

Fourteen minutes later —

"I'm a groupie, really." — Murray Bartlett in today's online NY Times

The previous post discussed group actions on a 3×3 square array. A tune
about related group actions on a 4×4  square array (a Galois tesseract. . .

'The Eddington Song'

Saturday, September 25, 2021

Panels

Filed under: General — m759 @ 10:04 am

A space fan in Tomorrowland  knocks on one door-panel of a 3×3 array —

Related image from Hereafter —

Matt Damon with his  3×3 door-panel array.

IMAGE- Matt Damon and the perception of doors in 'Hereafter'

Thursday, July 29, 2021

Catchphrases from the City of Angels

Filed under: General — Tags: , — m759 @ 10:06 am

"Go away — I'm asleep."
— Epitaph of the late Joan Hackett.

Hackett is at top center
in the poster below.

3x3 array, title in center, for film 'The Group'

Friday, June 11, 2021

Dark Materials

Filed under: General — Tags: — m759 @ 12:25 pm

Items from the Dark Matter Research Unit office in
the recent HBO version of His Dark Materials

Closeup of the I Ching  book:

Closeup of parquet-style patterns in a 4x4x2 array —

Friday, May 14, 2021

In Memory of Ernst Eduard Kummer

Filed under: General — Tags: , , — m759 @ 3:33 pm

(29 January 1810 – 14 May 1893)

See as well some earlier references to diamond signs here .

The proper context for some diamond figures that I  am interested in
is the 4×4 array that appears, notably, in Hudson's 1905 classic 
Kummer's Quartic Surface . Hence this post's "Kummerhenge" tag,
suggested also by some monumental stonework at Tufte's site.

Tuesday, March 9, 2021

Alternate Past: LA/91506

Filed under: General — Tags: , , — m759 @ 11:36 am

(Title suggested by the beanie label "Alternate Future: NYC/10001")

Salinger's 'Nine Stories,' paperback with 3x3 array of titles on cover, adapted in a Jan. 2, 2009, Log24 post on Nabokov's 1948 'Signs and Symbols'

A version of the Salinger story title "Pretty Mouth and Green My Eyes" —

"… her mouth is red and large, with Disney overtones. But it is her eyes,
a pale green of surprising intensity, that hold me."

Violet Henderson in Vogue , 30 August 2017

See also that date in this  journal.

Friday, January 1, 2021

Geometry for Child Buyers

Filed under: General — m759 @ 1:42 pm

Yesterday’s flashback to the “Square Ice” post of
St. Francis’s Day, 2016 —

'Square Ice' figure

This suggests a review of the July 16, 2013, post “Child Buyers.”

Related images from “Tomorrowland” (2015)

An ignorant, but hopeful, space fan —

The space fan knocks on one door-panel of a 3×3 array

Related image from “Hereafter” (2010)

Matt Damon with his  3×3 door-panel array.

IMAGE- Matt Damon and the perception of doors in 'Hereafter'

Thursday, December 24, 2020

Change Arises

Filed under: General — Tags: , — m759 @ 1:44 am

See posts so tagged.

“Change arises from the structure of the object.” — Arkani-Hamed

Related material from 1936 —

Related material from 1905, with the “object” a 4×4 array —

Related material from 1976, with the “object”
a 4×6 array — See Curtis.

Related material from 2018, with the “object”
a cuboctahedron — See Aitchison.

Wednesday, December 9, 2020

Programming with Windows

Filed under: General — Tags: — m759 @ 3:00 pm

“Program or be programmed.” — Douglas Rushkoff

Detail —

The part of today’s online Crimson  front page relevant to my own
identity work  (see previous post) is the size, 4 columns by 6 rows,
of the pane arrays in the windows of Massachusetts Hall.

See the related array of 6  columns by 4  rows in the Log24 post
Dramarama  from August 6 (Feast of the Transfiguration), 2020.

Sunday, December 6, 2020

“Binary Coordinates”

Filed under: General — Tags: — m759 @ 3:09 pm

The title phrase is ambiguous and should be avoided.
It is used indiscriminately to denote any system of coordinates
written with 0 ‘s and 1 ‘s, whether these two symbols refer to
the Boolean-algebra truth values false  and  true , to the absence
or presence  of elements in a subset , to the elements of the smallest
Galois field, GF(2) , or to the digits of a binary number .

Related material from the Web —

Some related remarks from “Geometry of the 4×4 Square:
Notes by Steven H. Cullinane” (webpage created March 18, 2004) —

A related anonymous change to Wikipedia today —

The deprecated “binary coordinates” phrase occurs in both
old and new versions of the “Square representation” section
on PG(3,2), but at least the misleading remark about Steiner
quadruple systems has been removed.

Saturday, December 5, 2020

Structured

Filed under: General — Tags: — m759 @ 10:00 pm

3x3 array, title in center, for film 'The Group'

See as well Ballet Blanc .

Thursday, December 3, 2020

Brick Joke

The "bricks" in posts tagged Octad Group suggest some remarks
from last year's HBO "Watchmen" series —

Related material — The two  bricks constituting a 4×4 array, and . . .

"(this is the famous Kummer abstract configuration )"
Igor Dolgachev, ArXiv, 16 October 2019.

As is this

.

The phrase "octad group" does not, as one might reasonably
suppose, refer to symmetries of an octad (a "brick"), but
instead to symmetries of the above 4×4 array.

A related Broomsday event for the Church of Synchronology

Wednesday, November 11, 2020

Qube

Filed under: General — Tags: , — m759 @ 8:30 pm

The new domain qube.link  forwards to . . .
http://finitegeometry.org/sc/64/solcube.html .

More generally, qubes.link  forwards to this post,
which defines qubes .

Definition: A qube  is a positive integer that is
a prime-power cube , i.e. a cube that is the order
of a Galois field. (Galois-field orders in general are
customarily denoted by the letter q .)

Examples:  8, 27, 64.  See qubes.site.

Update on Nov. 18, 2020, at about 9:40 PM ET —

Problem:

For which qubes, visualized as n×n×n arrays,
is it it true that the actions of the two-dimensional
galois-geometry affine group on each n×n face, extended
throughout the whole array, generate the affine group
on the whole array? (For the cases 8 and 64, see Binary
Coordinate Systems and  Affine Groups on Small
Binary Spaces.)

Thursday, August 27, 2020

The Complete Extended Binary Golay Code

Filed under: General — Tags: , , , , , — m759 @ 12:21 pm

All 4096 vectors in the code are at . . .

http://neilsloane.com/oadir/oa.4096.12.2.7.txt.

Sloane’s list* contains the 12 generating vectors
listed in 2011 by Adlam —

As noted by Conway in Sphere Packings, Lattices and Groups ,
these 4096 vectors, constructed lexicographically, are exactly
the same vectors produced by using the Conway-Sloane version
of the Curtis Miracle Octad Generator (MOG). Conway says this
lexico-MOG equivalence was first discovered by M. J. T. Guy.

(Of course, any  permutation of the 24 columns above produces
a version of the code qua  code. But because the lexicographic and
the MOG constructions yield the same result, that result is in
some sense canonical.)

See my post of July 13, 2020 —

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

For some related results, Google the twelfth generator:

* Sloane’s list is of the codewords as the rows of  an orthogonal array

See also http://neilsloane.com/oadir/.

Monday, July 13, 2020

The Lexicographic Octad Generator (LOG)*

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

By Steven H. Cullinane, July 13, 2020

Background —


The Miracle Octad Generator (MOG)
of R. T. Curtis (Conway-Sloane version) —

Embedding Change, Illustrated

A basis for the Golay code, excerpted from a version of
the code generated in lexicographic order, in

"Constructing the Extended Binary Golay Code"
Ben Adlam
Harvard University
August 9, 2011:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

Below, each vector above has been reordered within
a 4×6 array, by Steven H. Cullinane, to form twelve
independent Miracle Octad Generator  vectors
(as in the Conway-Sloane SPLAG version above, in
which Curtis's earlier heavy bricks are reflected in
their vertical axes) —

01 02 03 04 05 . . . 20 21 22 23 24 -->

01 05 09 13 17 21
02 06 10 14 18 22
03 07 11 15 19 23
04 08 12 16 20 24

0000 0000 0000 0000 1111 1111 -->

0000 11
0000 11
0000 11
0000 11 as in the MOG.

0000 0000 0000 1111 0000 1111 -->

0001 01
0001 01
0001 01
0001 01 as in the MOG.

0000 0000 0011 0011 0011 0011 -->

0000 00
0000 00
0011 11
0011 11 as in the MOG.

0000 0000 0101 0101 0101 0101 -->

0000 00
0011 11
0000 00
0011 11 as in the MOG.

0000 0000 1001 0110 0110 1001 -->

0010 01
0001 10
0001 10
0010 01 as in the MOG.

0000 0011 0000 0011 0101 0110 -->

0000 00
0000 11
0101 01
0101 10 as in the MOG.

0000 0101 0000 0101 0110 0011 -->

0000 00
0101 10
0000 11
0101 01 as in the MOG.

0000 1001 0000 0110 0011 1010 -->

0100 01
0001 00
0001 11
0100 10 as in the MOG.

0001 0001 0001 0001 0111 1000 -->

0000 01
0000 10
0000 10
1111 10 as in the MOG.

0010 0001 0001 0010 0001 1101 -->

0000 01
0000 01
1001 00
0110 11 as in the MOG.

0100 0001 0001 0100 0100 1110 -->

0000 01
1001 11
0000 01
0110 00 as in the MOG.

1000 0001 0001 0111 0010 0100 -->

10 00 00
00 01 01
00 01 10
01 11 00 as in the MOG (heavy brick at center).

Update at 7:41 PM ET the same day —
A check of SPLAG shows that the above result is not new:
MOG in LOG embedding

And at 7:59 PM ET the same day —
Conway seems to be saying that at some unspecified point in the past,
M.J.T. Guy, examining the lexicographic Golay code,  found (as I just did)
that weight-8 lexicographic Golay codewords, when arranged naturally
in 4×6 arrays, yield certain intriguing visual patterns. If the MOG existed
at the time of his discovery, he would have identified these patterns as
those of the MOG.  (Lexicographic codes have apparently been
known since 1960, the MOG since the early 1970s.)

* Addendum at 4 AM ET  the next day —
See also Logline  (Walpurgisnacht 2013).

Saturday, May 2, 2020

Turyn’s Octad Theorem: The Next Level*

Filed under: General — Tags: , , — m759 @ 11:24 am

From  the obituary of a game inventor  who reportedly died
on Monday, February 25, 2013 —

” ‘He was hired because of the game,’ Richard Turyn,
a mathematician who worked at Sylvania, told
the Washington Post in a 2004 feature on Diplomacy.”

* For the theorem, see Wolfram Neutsch,  Coordinates .
(Published by de Gruyter, 1996. See pp. 761-766.)

Having defined (pp. 751-752) the Miracle Octad Generator (MOG)
as a 4×6 array to be used with Conway’s “hexacode,” Neutsch says . . .

“Apart from the three constructions of the Golay codes
discussed at length in this book (lexicographic and via
the MOG or the projective line), there are literally
dozens of alternatives. For lack of space, we have to
restrict our attention to a single example. It has been
discovered by Turyn and can be connected in a very
beautiful way with the Miracle Octad Generator….

To this end, we consider the natural splitting of the MOG into
three disjoint octads L, M, R (‘left’, ‘middle’, and ‘right’ octad)….”

— From page 761

“The theorem of Turyn”  is on page 764

Monday, February 10, 2020

Notes for Doctor Sleep

Filed under: General — Tags: , — m759 @ 2:40 pm

Or:  Plato's Cave.

See also this  journal on November 9, 2003

A post on Wittgenstein's "counting pattern"

4x4 array of dots

Tuesday, January 28, 2020

Very Stable Kool-Aid

Filed under: General — Tags: , , — m759 @ 2:16 pm

Two of the thumbnail previews
from yesterday's 1 AM  post

"Hum a few bars"

"For 6 Prescott Street"

Further down in the "6 Prescott St." post, the link 5 Divinity Avenue
leads to

A Letter from Timothy Leary, Ph.D., July 17, 1961

Harvard University
Department of Social Relations
Center for Research in Personality
Morton Prince House
5 Divinity Avenue
Cambridge 38, Massachusetts

July 17, 1961

Dr. Thomas S. Szasz
c/o Upstate Medical School
Irving Avenue
Syracuse 10, New York

Dear Dr. Szasz:

Your book arrived several days ago. I've spent eight hours on it and realize the task (and joy) of reading it has just begun.

The Myth of Mental Illness is the most important book in the history of psychiatry.

I know it is rash and premature to make this earlier judgment. I reserve the right later to revise and perhaps suggest it is the most important book published in the twentieth century.

It is great in so many ways–scholarship, clinical insight, political savvy, common sense, historical sweep, human concern– and most of all for its compassionate, shattering honesty.

. . . .

The small Morton Prince House in the above letter might, according to
the above-quoted remarks by Corinna S. Rohse, be called a "jewel box."
Harvard moved it in 1978 from Divinity Avenue to its current location at
6 Prescott Street.

Related "jewel box" material for those who
prefer narrative to mathematics —

"In The Electric Kool-Aid Acid Test , Tom Wolfe writes about encountering 
'a young psychologist,' 'Clifton Fadiman’s nephew, it turned out,' in the
waiting room of the San Mateo County jail. Fadiman and his wife were
'happily stuffing three I-Ching coins into some interminable dense volume*
of Oriental mysticism' that they planned to give Ken Kesey, the Prankster-
in-Chief whom the FBI had just nabbed after eight months on the lam.
Wolfe had been granted an interview with Kesey, and they wanted him to
tell their friend about the hidden coins. During this difficult time, they
explained, Kesey needed oracular advice."

— Tim Doody in The Morning News  web 'zine on July 26, 2012**

Oracular advice related to yesterday evening's
"jewel box" post …

A 4-dimensional hypercube H (a tesseract ) has 24 square
2-dimensional faces
.  In its incarnation as a Galois  tesseract
(a 4×4 square array of points for which the appropriate transformations
are those of the affine 4-space over the finite (i.e., Galois) two-element
field GF(2)), the 24 faces transform into 140 4-point "facets." The Galois 
version of H has a group of 322,560 automorphisms. Therefore, by the
orbit-stabilizer theorem, each of the 140 facets of the Galois version has
a stabilizer group of  2,304 affine transformations.

Similar remarks apply to the I Ching  In its incarnation as  
a Galois hexaract , for which the symmetry group — the group of
affine transformations of the 6-dimensional affine space over GF(2) —
has not 322,560 elements, but rather 1,290,157,424,640.

* The volume Wolfe mentions was, according to Fadiman, the I Ching.

** See also this  journal on that date — July 26, 2012.

Saturday, December 14, 2019

Colorful Tale

Filed under: General — Tags: , , , , — m759 @ 9:00 pm

(Continued)

Four-color correspondence in an eightfold array (eightfold cube unfolded)

The above image is from 

"A Four-Color Theorem:
Function Decomposition Over a Finite Field,"
http://finitegeometry.org/sc/gen/mapsys.html.

These partitions of an 8-set into four 2-sets
occur also in Wednesday night's post
Miracle Octad Generator Structure.

This  post was suggested by a Daily News
story from August 8, 2011, and by a Log24
post from that same date, "Organizing the
Mine Workers
" —

http://www.log24.com/log/pix11B/110808-DwarfsParade500w.jpg

Wednesday, October 9, 2019

The Joy of Six

Note that in the pictures below of the 15 two-subsets of a six-set,
the symbols 1 through 6 in Hudson's square array of 1905 occupy the
same positions as the anticommuting Dirac matrices in Arfken's 1985
square array. Similarly occupying these positions are the skew lines
within a generalized quadrangle (a line complex) inside PG(3,2).

Anticommuting Dirac matrices as spreads of projective lines

Related narrative The "Quantum Tesseract Theorem."

Tuesday, October 8, 2019

Kummer at Noon

Filed under: General — Tags: — m759 @ 12:00 pm

The Hudson array mentioned above is as follows —

See also Whitehead and the
Relativity Problem
(Sept. 22).

For coordinatization  of a 4×4
array, see a note from 1986
in the Feb. 26 post Citation.

Thursday, August 29, 2019

As Well

Filed under: General — Tags: , , — m759 @ 12:45 pm

For some backstory, see
http://m759.net/wordpress/?s=”I+Ching”+48+well .

See as well elegantly packaged” in this journal.

“Well” in written Chinese is the hashtag symbol,
i.e., the framework of a 3×3 array.

My own favorite 3×3 array is the ABC subsquare
at lower right in the figure below —

'Desargues via Rosenhain'- April 1, 2013- The large Desargues configuration mapped canonically to the 4x4 square

 

Sunday, May 26, 2019

Sunday Shul: Connecting the Dots

Filed under: General — Tags: , — m759 @ 9:00 am

"It's very easy to say, 'Well, Jeff couldn't quite connect these dots,'"
director Jeff Nichols told BuzzFeed News. "Well, I wasn't actually
looking at the dots you were looking at."

— Posted on March 21, 2016, at 1:11 p.m,
Adam B. Vary, BuzzFeed News Reporter

"Magical arrays of numbers have been the talismans of mathematicians and mystics since the time of Pythagoras in the sixth century B.C. And in the 16th century, Rabbi Isaac ben Solomon Luria devised a cosmological world view that seems to have prefigured superstring theory, at least superficially. Rabbi Luria was a sage of the Jewish cabalist movement — a school of mystics that drew inspiration from the arcane oral tradition of the Torah.

According to Rabbi Luria's cosmology, the soul and inner life of the hidden God were expressed by 10 primordial numbers [sic ], known as the sefirot. [Link added.]"

— "Things Are Stranger Than We Can Imagine,"
by Malcolm W. BrowneNew York Times Book Review ,
Sunday, March 20, 1994

Saturday, March 30, 2019

Overlay Art

Filed under: General — Tags: , — m759 @ 2:14 am

"SH lays an array of selves, fictive and autobiographical,
over each other like transparencies, to reveal deeper patterns."

Benjamin Evans in The Guardian , Sunday, March 10, 2019,
in a review of the new Siri Hustvedt novel Memories of the Future.

See also Self-Blazon and . . .

Thursday, February 28, 2019

Wikipedia Scholarship

Filed under: General — Tags: , , — m759 @ 12:31 pm

Cullinane's Square Model of PG(3,2)

Besides omitting the name Cullinane, the anonymous Wikipedia author
also omitted the step of representing the hypercube by a 4×4 array —
an array called in this  journal a Galois  tesseract.

Tuesday, February 26, 2019

Citation

Filed under: General — Tags: , , , — m759 @ 12:00 pm

Some related material in this journal — See a search for k6.gif.

Some related material from Harvard —

Elkies's  "15 simple transpositions" clearly correspond to the 15 edges of
the complete graph K6 and to the 15  2-subsets of a 6-set.

For the connection to PG(3,2), see Finite Geometry of the Square and Cube.

The following "manifestation" of the 2-subsets of a 6-set might serve as
the desired Wikipedia citation —

See also the above 1986 construction of PG(3,2) from a 6-set
in the work of other authors in 1994 and 2002 . . .

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Friday, January 18, 2019

The Woke Grids …

Filed under: General — Tags: , , , — m759 @ 10:45 am

… as opposed to The Dreaming Jewels .

A July 2014 Amsterdam master's thesis on the Golay code
and Mathieu group —

"The properties of G24 and M24 are visualized by
four geometric objects:  the icosahedron, dodecahedron,
dodecadodecahedron, and the cubicuboctahedron."

Some "geometric objects"  — rectangular, square, and cubic arrays —
are even more fundamental than the above polyhedra.

A related image from a post of Dec. 1, 2018

Wednesday, December 12, 2018

An Inscape for Douthat

Some images, and a definition, suggested by my remarks here last night
on Apollo and Ross Douthat's remarks today on "The Return of Paganism" —

Detail of Feb. 20, 1986, note by Steven H. Cullinane on Weyl's 'relativity problem'

Kibler's 2008 'Variations on a theme' illustrated.

In finite geometry and combinatorics,
an inscape  is a 4×4 array of square figures,
each figure picturing a subset of the overall 4×4 array:


 

Related material — the phrase
"Quantum Tesseract Theorem" and  

A.  An image from the recent
      film "A Wrinkle in Time" — 

B.  A quote from the 1962 book —

"There's something phoney
in the whole setup, Meg thought.
There is definitely something rotten
in the state of Camazotz."

Thursday, November 22, 2018

Geometric Incarnation

Filed under: General,Geometry — Tags: , , , — m759 @ 6:00 am

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

Note also the four 4×4 arrays surrounding the central diamond
in the chi  of the chi-rho  page of the Book of Kells

From a Log24 post
of March 17, 2012

"Interlocking, interlacing, interweaving"

— Condensed version of page 141 in Eddington's
1939 Philosophy of Physical Science

Saturday, September 15, 2018

Eidetic Reduction in Geometry

Filed under: G-Notes,General,Geometry — Tags: , , , , , — m759 @ 1:23 am
 

"Husserl is not the greatest philosopher of all times.
He is the greatest philosopher since Leibniz."

Kurt Gödel as quoted by Gian-Carlo Rota

Some results from a Google search —

Eidetic reduction | philosophy | Britannica.com

Eidetic reduction, in phenomenology, a method by which the philosopher moves from the consciousness of individual and concrete objects to the transempirical realm of pure essences and thus achieves an intuition of the eidos (Greek: “shape”) of a thing—i.e., of what it is in its invariable and essential structure, apart …

Phenomenology Online » Eidetic Reduction

The eidetic reduction: eidos. Method: Bracket all incidental meaning and ask: what are some of the possible invariate aspects of this experience? The research …

Eidetic reduction – New World Encyclopedia

Sep 19, 2017 – Eidetic reduction is a technique in Husserlian phenomenology, used to identify the essential components of the given phenomenon or experience.

Terminology: Eidos

For example —

The reduction of two-colorings and four-colorings of a square or cubic
array of subsquares or subcubes to lines, sets of lines, cuts, or sets of
cuts between the subsquares or subcubes.

See the diamond theorem and the eightfold cube.

* Cf. posts tagged Interality and Interstice.

Monday, August 27, 2018

Children of the Six Sides

Filed under: General,Geometry — Tags: — m759 @ 11:32 am

http://www.log24.com/log/pix18/180827-Terminator-3-tx-arrival-publ-160917.jpg

http://www.log24.com/log/pix18/180827-Terminator-3-tx-arrival-publ-161018.jpg

From the former date above —

Saturday, September 17, 2016

A Box of Nothing

Filed under: Uncategorized — m759 @ 12:13 AM

(Continued)

"And six sides to bounce it all off of.

From the latter date above —

Tuesday, October 18, 2016

Parametrization

Filed under: Uncategorized — m759 @ 6:00 AM

The term "parametrization," as discussed in Wikipedia, seems useful for describing labelings that are not, at least at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space plus the 15 two-subsets of a six-set (Hudson, 1905) or by a blank plus the 5 elements and the 10 two-subsets of a five-set (derived in 2014 from a 1906 page by Whitehead), or by a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization" is not limited to vector-space  coordinates. He describes it as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space coordinates, admit a group of transformations among themselves that can be used to describe transformations of the point-space being coordinatized.)

From March 2018 —

http://www.log24.com/log/pix18/180827-MIT-Rubik-Robot.jpg

Tuesday, June 19, 2018

Ici vient M. Jordan

Filed under: General,Geometry — Tags: , — m759 @ 2:13 am

NY Times correction, online June 16, about 'Here Comes Mr. Jordan' and 'Heaven Can Wait'

See also this  journal on Saturday morning, June 16.

Saturday, June 16, 2018

Kummer’s (16, 6) (on 6/16)

Filed under: General,Geometry — Tags: , , — m759 @ 9:00 am

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

See too "The Ruler of Reality" in this journal.

Related material —

A more esoteric artifact: The Kummer 166 Configuration . . .

An array of Göpel tetrads appears in the background below.

"As you can see, we've had our eye on you
for some time now, Mr. Anderson."

Wednesday, April 25, 2018

An Idea

Filed under: General,Geometry — Tags: — m759 @ 11:45 am

"There was an idea . . ." — Nick Fury in 2012

". . . a calm and objective work that has no special
dance excitement and whips up no vehement
audience reaction. Its beauty, however, is extraordinary.
It’s possible to trace in it terms of arithmetic, geometry,
dualism, epistemology and ontology, and it acts as
a demonstration of art and as a reflection of
life, philosophy and death."

New York Times  dance critic Alastair Macaulay,
    quoted here in a post of August 20, 2011.

Illustration from that post —

A 2x4 array of squares

See also Macaulay in
last night's 10 PM post.

Friday, April 6, 2018

Plan 9

Filed under: General — Tags: — m759 @ 2:18 pm

Salinger's 'Nine Stories,' paperback with 3x3 array of titles on cover, adapted in a Jan. 2, 2009, Log24 post on Nabokov's 1948 'Signs and Symbols'

Saturday, November 4, 2017

Seven-Cycles in an Octad

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 8:00 pm

Figures from a search in this journal for Springer Knight
and from the All Souls' Day post The Trojan Pony

     Binary coordinates for a 4x2 array  Chess knight formed by a Singer 7-cycle

For those who prefer pure abstraction to the quasi-figurative
1985 seven-cycle above, a different 7-cycle for M24 , from 1998 —


Compare and contrast with my own "knight" labeling
of a 4-row 2-column array (an M24 octad, in the system
of R. T. Curtis)  by the 8 points of the projective line
over GF(7),  from 2008 —

'Knight' octad labeling by the 8 points of the projective line over GF(7)

Thursday, November 2, 2017

The Trojan Pony

Filed under: G-Notes,General,Geometry — Tags: — m759 @ 7:31 pm

From a search in this journal for Springer Knight

     Binary coordinates for a 4x2 array  Chess knight formed by a Singer 7-cycle

Related material from Academia —

Nash and Needleman, 'On Magic Finite Projective Space,' Dec. 4, 2014

See also Log24 posts from the above "magic" date,
December 4, 2014, now tagged The Pony Argument.

Thursday, October 19, 2017

Design Grammar***

Filed under: G-Notes,General,Geometry — Tags: — m759 @ 10:22 pm

The elementary shapes at the top of the figure below mirror
the looking-glass property  of the classical Lo Shu square.

The nine shapes at top left* and their looking-glass reflection
illustrate the looking-glass reflection relating two orthogonal
Latin squares over the three digits of modulo-three arithmetic.

Combining these two orthogonal Latin squares,** we have a
representation in base three of the numbers from 0 to 8.

Adding 1 to each of these numbers yields the Lo Shu square.

Mirror symmetry of the ninefold Lo Shu magic square

* The array at top left is from the cover of
Wonder Years:
Werkplaats Typografie 1998-2008
.

** A well-known construction.

*** For other instances of what might be
called "design grammar" in combinatorics,
see a slide presentation by Robin Wilson.
No reference to the work of Chomsky is
intended.

Wednesday, October 18, 2017

Dürer for St. Luke’s Day

Filed under: G-Notes,General,Geometry — Tags: — m759 @ 1:00 pm

Structure of the Dürer magic square 

16   3   2  13
 5  10  11   8   decreased by 1 is …
 9   6   7  12
 4  15  14   1

15   2   1  12
 4   9  10   7
 8   5   6  11
 3  14  13   0 .

Base 4 —

33  02  01  30
10  21  22  13
20  11  12  23 
03  32  31  00 .

Two-part decomposition of base-4 array
as two (non-Latin) orthogonal arrays

3 0 0 3     3 2 1 0
1 2 2 1     0 1 2 3
2 1 1 2     0 1 2 3
0 3 3 0     3 2 1 0 .

Base 2 –

1111  0010  0001  1100
0100  1001  1010  0111
1000  0101  0110  1011
0011  1110  1101  0000 .

Four-part decomposition of base-2 array
as four affine hyperplanes over GF(2) —

1001  1001  1100  1010
0110  1001  0011  0101
1001  0110  0011  0101
0110  0110  1100  1010 .

— Steven H. Cullinane,
  October 18, 2017

See also recent related analyses of
noted 3×3 and 5×5 magic squares.

Monday, October 16, 2017

Highway 61 Revisited

Filed under: G-Notes,General,Geometry — Tags: , , , — m759 @ 10:13 am

"God said to Abraham …." — Bob Dylan, "Highway 61 Revisited"

Related material — 

See as well Charles Small, Harvard '64, 
"Magic Squares over Fields" —

— and Conway-Norton-Ryba in this  journal.

Some remarks on an order-five  magic square over GF(52):

"Ultra Super Magic Square"

on the numbers 0 to 24:

22   5   18   1  14
  3  11  24   7  15
  9  17   0  13  21
10  23   6  19   2
16   4  12  20   8

Base-5:

42  10  33  01  24 
03  21  44  12  30 
14  32  00  23  41
20  43  11  34  02
31  04  22  40  13 

Regarding the above digits as representing
elements of the vector 2-space over GF(5)
(or the vector 1-space over GF(52)) 

All vector row sums = (0, 0)  (or 0, over GF(52)).
All vector column sums = same.

Above array as two
orthogonal Latin squares:
   
4 1 3 0 2     2 0 3 1 4
0 2 4 1 3     3 1 4 2 0 
1 3 0 2 4     4 2 0 3 1         
2 4 1 3 0     0 3 1 4 2
3 0 2 4 1     1 4 2 0 3

— Steven H. Cullinane,
      October 16, 2017

Monday, September 4, 2017

Identity Revisited

Filed under: General — Tags: — m759 @ 8:00 pm

From the Log24 post "A Point of Identity" (August 8, 2016) —

A logo that may be interpreted as one-eighth of a 2x2x2 array
of cubes —

The figure in white above may be viewed as a subcube representing,
when the eight-cube array is coordinatized, the identity (i.e., (0, 0, 0)).

Friday, July 14, 2017

March 26, 2006 (continued)

Filed under: General — m759 @ 7:38 pm

4x4 array of Psychonauts images

The above image, posted here on March 26, 2006, was
suggested by this morning's post "Black Art" and by another
item from that date in 2006 —

Tuesday, May 23, 2017

Pursued by a Biplane

Filed under: General,Geometry — Tags: — m759 @ 9:41 pm

The Galois Tesseract as a biplane —

Cary Grant in 'North by Northwest'

Saturday, May 20, 2017

van Lint and Wilson Meet the Galois Tesseract*

Filed under: General,Geometry — Tags: — m759 @ 12:12 am

Click image to enlarge.

The above 35 projective lines, within a 4×4 array —


The above 15 projective planes, within a 4×4 array (in white) —

* See Galois Tesseract  in this journal.

Wednesday, April 26, 2017

A Tale Unfolded

Filed under: General,Geometry — Tags: , , , — m759 @ 2:00 am

A sketch, adapted tonight from Girl Scouts of Palo Alto

From the April 14 noon post High Concept

From the April 14 3 AM post Hudson and Finite Geometry

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

From the April 24 evening post The Trials of Device

Pentagon with pentagram    

Note that Hudson’s 1905 “unfolding” of even and odd puts even on top of
the square array, but my own 2013 unfolding above puts even at its left.

Friday, April 21, 2017

Music Box

Filed under: General,Geometry — Tags: , , , — m759 @ 3:07 pm

Guitart et al. on 'box' theory of creativity

A box from the annus mirabilis

See Hudson's 4×4 array.

Related material —

Friday, April 14, 2017

Hudson and Finite Geometry

Filed under: General,Geometry — Tags: , — m759 @ 3:00 am

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

The above four-element sets of black subsquares of a 4×4 square array 
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .

Hudson did not  view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective
3-space).

In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.

This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements.  This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.

The space was later described in the following —

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Wednesday, January 4, 2017

A Drama of Many Forms

Filed under: General,Geometry — Tags: — m759 @ 1:24 pm

According to art historian Rosalind Krauss in 1979,
the grid's earliest employers

"can be seen to be participating in a drama
that extended well beyond the domain of art.
That drama, which took many forms, was staged
in many places. One of them was a courtroom,
where early in this century, science did battle with God,
and, reversing all earlier precedents, won."

The previous post discussed the 3×3 grid in the context of
Krauss's drama. In memory of T. S. Eliot, who died on this date
in 1965, an image of the next-largest square grid, the 4×4 array:

 

See instances of the above image.

Friday, November 25, 2016

Priority

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 am

Before the monograph "Diamond Theory" was distributed in 1976,
two (at least) notable figures were published that illustrate
symmetry properties of the 4×4 square:

Hudson in 1905 —

Golomb in 1967 —

It is also likely that some figures illustrating Walsh functions  as
two-color square arrays were published prior to 1976.

Update of Dec. 7, 2016 —
The earlier 1950's diagrams of Veitch and Karnaugh used the
1's and 0's of Boole, not those of Galois.

Sunday, October 23, 2016

Voids

Filed under: General — m759 @ 8:24 pm

From mathematician Izabella Laba today —

From Harry T. Antrim’s 1967 thesis on Eliot —

“That words can be made to reach across the void
left by the disappearance of God (and hence of all
Absolutes) and thereby reestablish some basis of
relation with forms existing outside the subjective
and ego-centered self has been one of the chief
concerns of the first half of the twentieth century.”

And then there is the Snow White void  —

A logo that may be interpreted as one-eighth of a 2x2x2 array
of cubes —

The figure in white above may be viewed as a subcube representing,
when the eight-cube array is coordinatized, the identity (i.e., (0, 0, 0)).

Tuesday, October 18, 2016

Parametrization

Filed under: General,Geometry — Tags: — m759 @ 6:00 am

The term "parametrization," as discussed in Wikipedia,
seems useful for describing labelings that are not, at least
at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space
plus the 15 two-subsets of a six-set (Hudson, 1905) or by a
blank plus the 5 elements and the 10 two-subsets of a five-set
(derived in 2014 from a 1906 page by Whitehead), or by 
a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than
the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively
a class of equivalent coordinatizations and to
ascertain the group of transformations S
mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization"
is not limited to vector-space  coordinates. He describes it
as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space 
coordinates, admit a group of transformations among themselves
that can be used to describe transformations of the point-space
being coordinatized.)

Thursday, October 6, 2016

Mirror Play

Filed under: General — Tags: — m759 @ 4:00 am

See posts tagged Spiegel-Spiel.

"Mirror, Mirror …." —

A logo that may be interpreted as one-eighth of
a 2x2x2 array of cubes —

The figure in white above may be viewed as a subcube representing,
when the eight-cube array is coordinatized, the identity (i.e., (0, 0, 0)).

Tuesday, October 4, 2016

Square Ice

Filed under: General,Geometry — m759 @ 9:00 am

The discovery of "square ice" is discussed in
Nature 519, 443–445 (26 March 2015).

Remarks related, if only by squareness —
this  journal on that same date, 26 March 2015

The above figure is part of a Log24 discussion of the fact that 
adjacency in the set of 16 vertices of a hypercube is isomorphic to
adjacency in the set of 16 subsquares of a square 4×4 array
,
provided that opposite sides of the array are identified.  When
this fact was first  observed, I do not know. It is implicit, although
not stated explicitly, in the 1950 paper by H.S.M. Coxeter from
which the above figure is adapted (blue dots added).

Monday, October 3, 2016

Hudson’s Inscape

Filed under: General,Geometry — m759 @ 7:59 am

Yesterday evening's post Some Old Philosophy from Rome
(a reference, of course, to a Wallace Stevens poem)
had a link to posts now tagged Wittgenstein's Pentagram.

For a sequel to those posts, see posts with the term Inscape ,
a mathematical concept related to a pentagram-like shape.

The inscape concept is also, as shown by R. W. H. T. Hudson
in 1904, related to the square array of points I use to picture
PG(3,2), the projective 3-space over the 2-element field.

Monday, September 19, 2016

Squaring the Pentagon

Filed under: General,Geometry — Tags: — m759 @ 10:00 am

The "points" and "lines" of finite  geometry are abstract
entities satisfying only whatever incidence requirements
yield non-contradictory and interesting results. In finite
geometry, neither the points nor the lines are required to
lie within any Euclidean (or, for that matter, non-Euclidean)
space.

Models  of finite geometries may, however, embed the
points and lines within non -finite geometries in order
to aid visualization.

For instance, the 15 points and 35 lines of PG(3,2) may
be represented by subsets of a 4×4 array of dots, or squares,
located in the Euclidean plane. These "lines" are usually finite
subsets of dots or squares and not*  lines of the Euclidean plane.

Example — See "4×4" in this journal.

Some impose on configurations from finite geometry
the rather artificial requirement that both  points and lines
must be representable as those of a Euclidean plane.

Example:  A Cremona-Richmond pentagon —

Pentagon with pentagram

A square version of these 15 "points" —

A 1905 square version of these 15 "points" 
with digits instead of letters —

See Parametrizing the 4×4 Array
(Log24 post of Sept. 13, 2016).

Update of 8 AM ET Sunday, Sept. 25, 2016 —
For more illustrations, do a Google image search
on "the 2-subsets of a 6-set." (See one such search.)

* But in some models are subsets of the grid lines 
   that separate squares within an array.

Friday, September 16, 2016

A Counting-Pattern

Filed under: General,Geometry — Tags: , — m759 @ 10:48 am

Wittgenstein, 1939

Dolgachev and Keum, 2002

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

For some related material, see posts tagged Priority.

Monday, September 12, 2016

The Kummer Lattice

The previous post quoted Tom Wolfe on Chomsky's use of
the word "array." 

An example of particular interest is the 4×4  array
(whether of dots or of unit squares) —

      .

Some context for the 4×4 array —

The following definition indicates that the 4×4 array, when
suitably coordinatized, underlies the Kummer lattice .

Further background on the Kummer lattice:

Alice Garbagnati and Alessandra Sarti, 
"Kummer Surfaces and K3 surfaces
with $(Z/2Z)^4$ symplectic action." 
To appear in Rocky Mountain J. Math.

The above article is written from the viewpoint of traditional
algebraic geometry. For a less traditional view of the underlying
affine 4-space from finite  geometry, see the website
Finite Geometry of the Square and Cube.

Some further context

"To our knowledge, the relation of the Golay code
to the Kummer lattice is a new observation."

— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of
Kummer surfaces in the Mathieu group M24 
"

As noted earlier, Taormina and Wendland seem not to be aware of
R. W. H. T. Hudson's use of the (uncoordinatized*) 4×4 array in his
1905 book Kummer's Quartic Surface.  The array was coordinatized,
i.e. given a "vector space structure," by Cullinane eight years prior to
the cited remarks of Curtis.

* Update of Sept. 14: "Uncoordinatized," but parametrized  by 0 and
the 15 two-subsets of a six-set. See the post of Sept. 13.

Saturday, August 27, 2016

Folk Notation

Filed under: General — Tags: , — m759 @ 2:01 pm

See the Chautauqua Season post of June 25
and a search for Notation  in this journal.

See as well the previous post and Bullshit Studies .

Monday, August 8, 2016

A Point of Identity

Filed under: General — Tags: — m759 @ 6:00 pm

For a  Monkey Grammarian  (Viennese Version)

"At the point of convergence
the play of similarities and differences
cancels itself out in order that 
identity alone may shine forth
The illusion of motionlessness,
the play of mirrors of the one: 
identity is completely empty;
it is a crystallization and
in its transparent core
the movement of analogy 
begins all over once again."

— The Monkey Grammarian 

by Octavio Paz, translated by Helen Lane 

A logo that may be interpreted as one-eighth of a 2x2x2 array
of cubes —

The figure in white above may be viewed as a subcube representing,
when the eight-cube array is coordinatized, the identity (i.e., (0, 0, 0)).

Shown below are a few variations on the figure by VCQ,
the Vienna Center for Quantum Science and Technology —
 

(Click image to enlarge.)

Thursday, July 28, 2016

The Giglmayr Foldings

Filed under: General,Geometry — Tags: — m759 @ 1:44 pm

Giglmayr's transformations (a), (c), and (e) convert
his starting pattern

  1    2   5   6
  3    4   7   8
  9  10 13 14
11  12 15 16

to three length-16 sequences. Putting these resulting
sequences back into the 4×4 array in normal reading
order, we have

  1    2    3    4        1   2   4   3          1    4   2   3
  5    6    7    8        5   6   8   7          7    6   8   5 
  9  10  11  12      13 14 16 15       15 14 16 13
13  14  15  16       9  10 12 11        9  12 10 11

         (a)                         (c)                      (e)

Four length-16 basis vectors for a Galois 4-space consisting
of the origin and 15 weight-8 vectors over GF(2):

0 0 0 0       0 0 0 0       0 0 1 1       0 1 0 1
0 0 0 0       1 1 1 1       0 0 1 1       0 1 0 1 
1 1 1 1       0 0 0 0       0 0 1 1       0 1 0 1
1 1 1 1       1 1 1 1       0 0 1 1       0 1 0 1 .

(See "Finite Relativity" at finitegeometry.org/sc.)

The actions of Giglmayr's transformations on the above
four basis vectors indicate the transformations are part of
the affine group (of order 322,560) on the affine space
corresponding to the above vector space.

For a description of such transformations as "foldings,"
see a search for Zarin + Folded in this journal.

Monday, July 25, 2016

The Retinoid Self

Filed under: General,Geometry — m759 @ 1:10 pm

Trehub - 'Self as the neuronal origin of retinoid space'

"… which grounds the self" . . .

Popular Mechanics  online today

"Verizon exec Marni Walden seemed to
indicate Mayer's future may still be up in the air."

See also 5×5 in this  journal —

IMAGE- Right 3-4-5 triangle with squares on sides and hypotenuse as base

"If you have built castles in the air, 
your work need not be lost;
that is where they should be.
Now put the foundations under them.”

— Henry David Thoreau

Wednesday, May 25, 2016

Framework

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

"Studies of spin-½ theories in the framework of projective geometry
have been undertaken before." — Y. Jack Ng  and H. van Dam
February 20, 2009

For one such framework,* see posts from that same date 
four years earlier — February 20, 2005.

* A 4×4 array. See the 19771978, and 1986 versions by 
Steven H. Cullinane,   the 1987 version by R. T. Curtis, and
the 1988 Conway-Sloane version illustrated below —

Cullinane, 1977

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Cullinane, 1978

Cullinane, 1986

Curtis, 1987

Update of 10:42 PM ET on Sunday, June 19, 2016 —

The above images are precursors to

Conway and Sloane, 1988

Update of 10 AM ET Sept. 16, 2016 — The excerpt from the
1977 "Diamond Theory" article was added above.

Friday, May 13, 2016

Geometry and Kinematics

Filed under: General,Geometry — Tags: — m759 @ 10:31 pm

"Just as both tragedy and comedy can be written
by using the same letters of the alphabet, the vast
variety of events in this world can be realized by
the same atoms through their different arrangements
and movements. Geometry and kinematics, which
were made possible by the void, proved to be still
more important in some way than pure being."

— Werner Heisenberg in Physics and Philosophy

For more about geometry and kinematics, see (for instance)

"An introduction to line geometry with applications,"
by Helmut Pottmann, Martin Peternell, and Bahram Ravani,
Computer-Aided Design  31 (1999), 3-16.

The concepts of line geometry (null point, null plane, null polarity,
linear complex, Klein quadric, etc.) are also of interest in finite  geometry.
Some small finite spaces have as their natural models arrays of cubes .

Tuesday, April 19, 2016

The Folding

Filed under: General,Geometry — Tags: , , , — m759 @ 2:00 pm

(Continued

A recent post about the eightfold cube  suggests a review of two
April 8, 2015, posts on what Northrop Frye called the ogdoad :

As noted on April 8, each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding  a 1×8 array from Turyn's
1967 construction of the Golay code.

Folding a 2×4 Curtis array yet again  yields the 2x2x2 eightfold cube .

Those who prefer an entertainment  approach to concepts of space
may enjoy a video (embedded yesterday in a story on theverge.com) —
"Ghost in the Shell: Identity in Space." 

Friday, April 8, 2016

Space Cross

Filed under: General,Geometry — Tags: — m759 @ 11:00 pm

For George Orwell

Illustration from a book on mathematics —

This illustrates the Galois space  AG(4,2).

For some related spaces, see a note from 1984.

"There is  such a thing as a space cross."
— Saying adapted from a young-adult novel

Saturday, March 19, 2016

Two-by-Four

Filed under: General,Geometry — Tags: , — m759 @ 11:27 am

For an example of "anonymous content" (the title of the
previous post), see a search for "2×4" in this journal.

A 2x4 array of squares

Thursday, January 21, 2016

Dividing the Indivisible

Filed under: General,Geometry — Tags: — m759 @ 11:00 am

My statement yesterday morning that the 15 points
of the finite projective space PG(3,2) are indivisible 
was wrong.  I was misled by quoting the powerful
rhetoric of Lincoln Barnett (LIFE magazine, 1949).

Points of Euclidean  space are of course indivisible
"A point is that which has no parts" (in some translations).

And the 15 points of PG(3,2) may be pictured as 15
Euclidean  points in a square array (with one point removed)
or tetrahedral array (with 11 points added).

The geometry of  PG(3,2) becomes more interesting,
however, when the 15 points are each divided  into
several parts. For one approach to such a division,
see Mere Geometry. For another approach, click on the
image below.

IMAGE- 'Nocciolo': A 'kernel' for Pascal's Hexagrammum Mysticum: The 15 2-subsets of a 6-set as points in a Galois geometry.

Sunday, October 18, 2015

Coordinatization Problem

Filed under: General,Geometry — Tags: — m759 @ 1:06 am

There are various ways to coordinatize a 3×3 array
(the Chinese "Holy Field'). Here are some —

See  Cullinane,  Coxeter,  and  Knight tour.

Sunday, August 30, 2015

Lines

Filed under: General,Geometry — Tags: , , , — m759 @ 11:01 am

"We tell ourselves stories in order to live." — Joan Didion

A post from St. Augustine's day, 2015, may serve to
illustrate this.

The post started with a look at a painting by Swiss artist
Wolf Barth, "Spielfeld." The painting portrays two
rectangular arrays, of four and of twelve subsquares,
that sit atop a square array of sixteen subsquares.

To one familiar with Euclid's "bride's chair" proof of the
Pythagorean theorem, "Spielfeld" suggests a right triangle
with squares on its sides of areas 4, 12, and 16.

That image in turn suggests a diagram illustrating the fact
that a triangle suitably inscribed in a half-circle is a right
triangle… in this case, a right triangle with angles of 30, 60,
and 90 degrees… Thus —

In memory of screenwriter John Gregory Dunne (husband
of Joan Didion and author of, among other things, The Studio )
here is a cinematric approach to the above figure.

The half-circle at top suggests the dome of an observatory.
This in turn suggests a scene from the 2014 film "Magic in
the Moonlight."

As she gazes at the silent universe above
through an opening in the dome, the silent
Emma Stone is perhaps thinking,
prompted by her work with Spider-Man

"Drop me a line."

As he  gazes at the crack in the dome,
Stone's costar Colin Firth contrasts the vastness
of the Universe with the smallness of Man, citing 

"the tiny field F2 with two elements."

In conclusion, recall the words of author Norman Mailer
that summarized his Harvard education —

"At times, bullshit can only be countered
with superior bullshit."

Saturday, August 8, 2015

Raiders of the Lost Windows

Filed under: General — m759 @ 9:48 am

"Why is it called Windows 10 and not Windows 9?"

Good question.

See Sunday School (Log24 on June 13, 2010) —

Image-- 3x3 array of white squares .

Thursday, July 9, 2015

Man and His Symbols

Filed under: General,Geometry — m759 @ 2:24 pm

(Continued)

A post of July 7, Haiku for DeLillo, had a link to posts tagged "Holy Field GF(3)."

As the smallest Galois field based on an odd prime, this structure 
clearly is of fundamental importance.  

The Galois field GF(3)

It is, however, perhaps too  small  to be visually impressive.

A larger, closely related, field, GF(9), may be pictured as a 3×3 array

hence as the traditional Chinese  Holy Field.

Marketing the Holy Field

IMAGE- The Ninefold Square, in China 'The Holy Field'

The above illustration of China's  Holy Field occurred in the context of
Log24 posts on Child Buyers.   For more on child buyers, see an excellent
condemnation today by Diane Ravitch of the U. S. Secretary of Education.

Monday, April 27, 2015

The Beast from Hell’s Kitchen

Filed under: General — m759 @ 9:40 am

A comment on the Scholarly Kitchen  piece from
this morning's previous post —

This suggests

The Beast from Hell's Kitchen

For some thoughts on mapping trees into
linear arrays, see The Forking (March 20, 2015).

See also Pitchfork in this journal.

Saturday, April 4, 2015

Harrowing of Hell (continued)

Filed under: General,Geometry — m759 @ 3:28 pm

Holy Saturday is, according to tradition, the day of 
the harrowing of Hell.

Notes:

The above passage on "Die Figuren der vier Modi
im Magischen Quadrat 
" should be read in the context of
a Log24 post from last year's Devil's Night (the night of
October 30-31).  The post, "Structure," indicates that, using
the transformations of the diamond theorem, the notorious
"magic" square of Albrecht Dürer may be transformed
into normal reading order.  That order is only one of
322,560 natural reading orders for any 4×4 array of
symbols. The above four "modi" describe another.

Thursday, March 26, 2015

The Möbius Hypercube

Filed under: General,Geometry — Tags: , — m759 @ 12:31 am

The incidences of points and planes in the
Möbius 8 configuration (8 points and 8 planes,
with 4 points on each plane and 4 planes on each point),
were described by Coxeter in a 1950 paper.* 
A table from Monday's post summarizes Coxeter's
remarks, which described the incidences in
spatial terms, with the points and planes as the vertices
and face-planes of two mutually inscribed tetrahedra —

Monday's post, "Gallucci's Möbius Configuration,"
may not be completely intelligible unless one notices
that Coxeter has drawn some of the intersections in his 
Fig. 24, a schematic representation of the point-plane
incidences, as dotless, and some as hollow dots.  The figure,
"Gallucci's version of Möbius's 84," is shown below.
The hollow dots, representing the 8 points  (as opposed
to the 8 planes ) of the configuration, are highlighted in blue.

Here a plane  (represented by a dotless intersection) contains
the four points  that are represented in the square array as lying
in the same row or same column as the plane. 

The above Möbius incidences appear also much earlier in
Coxeter's paper, in figures 6 and 5, where they are shown
as describing the structure of a hypercube. 

In figures 6 and 5, the dotless intersections representing
planes have been replaced by solid dots. The hollow dots
have again been highlighted in blue.

Figures 6 and 5 demonstrate the fact that adjacency in the set of
16 vertices of a hypercube is isomorphic to adjacency in the set
of 16 subsquares of a square 4×4 array, provided that opposite
sides of the array are identified, as in Fig. 6. The digits in 
Coxeter's labels above may be viewed as naming the positions 
of the 1's in (0,1) vectors (x4, x3, x2, x1) over the two-element
Galois field.  In that context, the 4×4 array may be called, instead
of a Möbius hypercube , a Galois tesseract .

*  "Self-Dual Configurations and Regular Graphs," 
    Bulletin of the American Mathematical Society,
    Vol. 56 (1950), pp. 413-455

The subscripts' usual 1-2-3-4 order is reversed as a reminder
    that such a vector may be viewed as labeling a binary number 
    from 0  through 15, or alternately as labeling a polynomial in
    the 16-element Galois field GF(24).  See the Log24 post
     Vector Addition in a Finite Field (Jan. 5, 2013).

Monday, March 23, 2015

Gallucci’s Möbius Configuration

Filed under: General,Geometry — Tags: — m759 @ 12:05 pm

From H. S. M. Coxeter's 1950 paper
"Self-Dual Configurations and Regular Graphs," 
a 4×4 array and a more perspicuous rearrangement—

(Click image to enlarge.) 

The above rearrangement brings Coxeter's remarks into accord
with the webpage The Galois Tesseract.

Update of Thursday, March 26, 2015 —

For an explanation of Coxeter's Fig. 24, see Thursday's later
post titled "The Möbius Hypercube."

Older Posts »

Powered by WordPress