"Mein Führer… Steiner…"
See Hitler Plans and Quadruple System.
"There is such a thing as a quadruple system."
— Saying adapted from a 1962 young-adult novel
For those who prefer greater clarity than is offered by Stevens . . .
The A section —
The B section —
"A paper from Helsinki in 2005 says there are more than a million
3-(16,4,1) block designs, of which only one has an automorphism
group of order 322,560. This is the affine 4-space over GF(2)."
The exercise in the previous post was suggested by a passage
purporting to "use standard block design theory" that was written
by some anonymous author at Wikipedia on March 1, 2019:
Here "rm OR" apparently means "remove original research."
Before the March 1 revision . . .
The "original research" objected to and removed was the paragraph
beginning "To explain this further." That paragraph was put into the
article earlier on Feb. 28 by yet another anonymous author (not by me).
An account of my own (1976 and later) original research on this subject
is pictured below, in a note from Feb. 20, 1986 —
An image from a Log24 post of March 5, 2019 —
The following paragraph from the above image remains unchanged
as of this morning at Wikipedia:
"A 3-(16,4,1) block design has 140 blocks of size 4 on 16 points,
such that each triplet of points is covered exactly once. Pick any
single point, take only the 35 blocks containing that point, and
delete that point. The 35 blocks of size 3 that remain comprise
a PG(3,2) on the 15 remaining points."
Exercise —
Prove or disprove the above assertion about a general "3-(16,4,1)
block design," a structure also known as a Steiner quadruple system
(as I pointed out in the March 5 post).
Relevant literature —
A paper from Helsinki in 2005* says there are more than a million
3-(16,4,1) block designs, of which only one has an automorphism
group of order 322,560. This is the affine 4-space over GF(2),
from which PG(3,2) can be derived using the well-known process
from finite geometry described in the above Wikipedia paragraph.
* "The Steiner quadruple systems of order 16," by Kaski et al.,
Journal of Combinatorial Theory Series A Volume 113, Issue 8,
November 2006, pages 1764-1770.
A Midrash for Wikipedia
Midrash —
Related material —
________________________________________________________________________________
This post continues a post from yesterday on the square model of
PG(3,2) that apparently first appeared (presented as such*) in . . .
Cullinane, "Symmetry invariance in a diamond ring,"
Notices of the AMS , pp. A193-194, Feb. 1979.
Yesterday's Wikipedia presentation of the square model was today
revised by yet another anonymous author —
Revision history accounting for the above change from yesterday —
The jargon "rm OR" means "remove original research."
The added verbiage about block designs is a smokescreen having
nothing to do with the subject, which is square representation
of the 35 points and lines.
* The 35 squares, each consisting of four 4-element subsets, appeared earlier
in the Miracle Octad Generator (MOG) of R. T. Curtis (published in 1976).
They were not at that time presented as constituting a finite geometry,
either affine (AG(4,2)) or projective (PG(3,2)).
Besides omitting the name Cullinane, the anonymous Wikipedia author
also omitted the step of representing the hypercube by a 4×4 array —
an array called in this journal a Galois tesseract.
"My work is motivated by a hope that there may be a way to recapture the ancient and medieval vision of both Beauty and purpose in a way which is relevant to our own century. I even dare to hope that the two ideas may be related, that Beauty is actually part of the meaning and purpose of life."
"The Reverend T. P. Kirkman knew in 1862 that there exists a group of degree 16 and order 322560 with a normal, elementary abelian, subgroup of order 16 [1, p. 108]. Frobenius identified this group in 1904 as a subgroup of the Mathieu group M24 [4, p. 570]…."
1. Biggs N.L., "T. P. Kirkman, Mathematician," Bulletin of the London Mathematical Society 13, 97–120 (1981).
4. Frobenius G., "Über die Charaktere der mehrfach transitiven Gruppen," Sitzungsber. Königl. Preuss. Akad. Wiss. zu Berlin, 558–571 (1904). Reprinted in Frobenius, Gesammelte Abhandlungen III (J.-P. Serre, editor), pp. 335–348. Springer, Berlin (1968).
Olli Pottonen, "Classification of Steiner Quadruple Systems" (Master's thesis, Helsinki, 2005)–
"The concept of group actions is very useful in the study of isomorphisms of combinatorial structures."
"Simplify, simplify."
— Thoreau
"Beauty is bound up
with symmetry."
— Weyl
Pottonen's thesis is
dated Nov. 16, 2005.
For some remarks on
images and theology,
see Log24 on that date.
Click on the above image
for some further details.
Powered by WordPress