Log24

Thursday, May 2, 2024

AI on Diamond Theory

Filed under: General — Tags: — m759 @ 1:55 am

The website PopAi.pro uses GPT-4 to summarize documents from the Web.

Input at PopAi on May 2, 2024:

The URL "http://www.log24.com/log/Diamond_Theory-1976-pp-1-12.pdf"

Output at PopAi, after a quick reading and analysis by GPT-4:

Diamond_Theory-1976-pp-1-12.pdf

12 Pages

The document appears to be an excerpt from a preprint titled "Diamond Theory" by Steven H. Cullinane, dated 1976. The text discusses theoretical aspects of matrices composed of geometric figures, focusing on properties related to symmetry, permutations, and abstract structure.

Main Concepts and Definitions:

The author introduces the concept of a "geometric matrix," a matrix whose elements are geometric figures, specifically triangular subsets of a square. He defines a "diamond" as a foursquare matrix with triangular elements. The text details the remarkable properties of a diamond-like matrix D, including its symmetrical behavior under various permutations of elements, rows, columns, and sub-squares. Additionally, the text addresses the algebraic properties of matrices by relating their elements to those of a finite field.

Theoretical Properties and Theorems:

Several key theorems are proposed, demonstrating the structural properties of matrices. One fundamental theorem states that any matrix from a set F can be expressed as a linear combination of block matrices. Other theorems delve into the regularity of matrices, defining a matrix as "regular" if it remains unchanged or converts to its complement under certain flips and rotations. The text also describes the process of forming a "normal" matrix and the conditions under which matrices can be considered plaid or normal based on the behavior of their block maps and regularities.

Applications and Miscellaneous Problems:

The author reflects on the discovery of these properties during the process of creating an abstract painting and extends the exploration to include various types of matrices such as cyclic, quadratic, and skew foursquares. The document concludes with miscellaneous problems and an addendum on generalized matrix multiplication, suggesting further research directions and applications of the theory presented.

In summary, "Diamond Theory" presents an intricate analysis of the structural and algebraic properties of matrices composed of geometric shapes, with implications for other mathematical domains. The work is a blend of geometry and abstract algebra, providing a foundation for understanding the symmetry and transformations of matrices with an artistic origin.

Some questions you may ask:

What properties of the diamond-like matrix D did the author discover in 1975?

What is the relationship between the properties of D and the four group according to the document?

How does the document define a 'good set' of four black and white geometric figures?

What theorem is used to explain the behavior of superimposing two members of Mn(F) according to the document?

Monday, January 1, 2018

Diamond Theory 1976

Filed under: General,Geometry — m759 @ 8:26 pm

The first 12 pages of my 1976 preprint "Diamond Theory" are 
now scanned and uploaded.  See a slideshow.

For downloading, all 12 pages are combined in a PDF.

Sunday, February 2, 2014

Diamond Theory Roulette

Filed under: General,Geometry — Tags: — m759 @ 11:00 am

ReCode Project program from Radamés Ajna of São Paulo —

At the program's webpage, click the image to
generate random permutations of rows, columns,
and quadrants
. Note the resulting image's ordinary
or color-interchange symmetry.

Wednesday, November 28, 2012

Diamond Theory

Filed under: General,Geometry — Tags: — m759 @ 2:18 am

A pdf of a 1977 three-page article with this title
has been added at finitegeometry.org/sc.

Monday, August 8, 2011

Diamond Theory vs. Story Theory (continued)

Filed under: General,Geometry — Tags: — m759 @ 5:01 pm

Some background

Richard J. Trudeau, a mathematics professor and Unitarian minister, published in 1987 a book, The Non-Euclidean Revolution , that opposes what he calls the Story Theory of truth [i.e., Quine, nominalism, postmodernism] to what he calls the traditional Diamond Theory of truth [i.e., Plato, realism, the Roman Catholic Church]. This opposition goes back to the medieval "problem of universals" debated by scholastic philosophers.

(Trudeau may never have heard of, and at any rate did not mention, an earlier 1976 monograph on geometry, "Diamond Theory," whose subject and title are relevant.)

From yesterday's Sunday morning New York Times

"Stories were the primary way our ancestors transmitted knowledge and values. Today we seek movies, novels and 'news stories' that put the events of the day in a form that our brains evolved to find compelling and memorable. Children crave bedtime stories…."

Drew Westen, professor at Emory University

From May 22, 2009

Poster for 'Diamonds' miniseries on ABC starting May 24, 2009

The above ad is by
  Diane Robertson Design—

Credit for 'Diamonds' miniseries poster: Diane Robertson Design, London

Diamond from last night’s
Log24 entry, with
four colored pencils from
Diane Robertson Design:

Diamond-shaped face of Durer's 'Melencolia I' solid, with  four colored pencils from Diane Robertson Design
 
See also
A Four-Color Theorem.

For further details, see Saturday's correspondences
and a diamond-related story from this afternoon's
online New York Times.

Thursday, October 14, 2010

Diamond Theory and Magic Squares

Filed under: General,Geometry — Tags: , — m759 @ 6:19 pm

"A world of made
is not a world of born— pity poor flesh
and trees, poor stars and stones, but never this
fine specimen of hypermagical
ultraomnipotence."

— e. e. cummings, 1944

For one such specimen, see The Matrix of Abraham
a 5×5 square that is hypermagical… indeed, diabolical.

Related material on the algebra and geometry underlying some smaller structures
that have also, unfortunately, become associated with the word "magic"—

  1. Finite Geometry of the Square and Cube
  2. Clifford Pickover on a 4×4 square
  3. Christopher J. Henrich on the geometry of 4×4 magic squares
    (without any mention of  [1] above or related work dating back to 1976)

" … listen: there's a hell
of a good universe next door; let's go"

— e. e. cummings

Happy birthday, e. e.

Tuesday, October 29, 2024

Hallucinated Geometry

Filed under: General — Tags: — m759 @ 5:51 pm

For fans of the "story theory of truth" —

An example of artificial stupidity:

The phrases "midpoints of opposite faces" and "essentially
creating a smaller cube" are hallucinated bullshit.

The above AI description was created by inanely parroting
verbiage from the Wikipedia article "Diamond cubic" —
which it credits as a source. (See wider view of search.)
That article contains neither the word "theorem" nor the
phrase "unit cube " from the search-request prompt.

AI, like humans, is likely to fall victim to the notorious
"story theory of truth" purveyed by Richard J. Trudeau.
A real  "diamond shape formed within a unit cube" is the
octahedron, one of the five classical Platonic solids.

Fans of the opposing "diamond theory of truth" rejected by
Trudeau may prefer . . .

Inside the Exploded Cube

(Log24, July 1, 2019).

Wednesday, October 23, 2024

The Delta Transform

Filed under: General — Tags: , , , — m759 @ 7:04 am

Rothko — "… the elimination of all obstacles between the painter and
the idea, and between the idea and the observer."

Walker Percy has similarly discussed elimination of obstacles between
the speaker and the word, and between the word and the hearer.

Walker Percy's chapter on 'The Delta Factor' from 'Message in the Bottle'

Click images to enlarge.

Related mathematics —

The source: http://finitegeometry.org/sc/gen/typednotes.html.

A document from the above image —

AN INVARIANCE OF SYMMETRY

BY STEVEN H. CULLINANE

We present a simple, surprising, and beautiful combinatorial
invariance of geometric symmetry, in an algebraic setting.

DEFINITION. A delta transform of a square array over a 4-set is
any pattern obtained from the array by a 1-to-1 substitution of the
four diagonally-divided two-color unit squares for the 4-set elements.

THEOREM. Every delta transform of the Klein group table has
ordinary or color-interchange symmetry, and remains symmetric under
the group G of 322,560 transformations generated by combining
permutations of rows and colums with permutations of quadrants.

PROOF (Sketch). The Klein group is the additive group of GF (4);
this suggests we regard the group's table  T as a matrix over that
field. So regarded, T is a linear combination of three (0,1)-matrices
that indicate the locations, in  T, of the 2-subsets of field elements.
The structural symmetry of these matrices accounts for the symmetry
of the delta transforms of  T, and is invariant under G.

All delta transforms of the 45 matrices in the algebra generated by
the images of  T under G are symmetric; there are many such algebras. 

THEOREM. If 1 m ≤ n2+2, there is an algebra of 4m
2n x 2n matrices over GF(4) with all delta transforms symmetric.

An induction proof constructs sets of basis matrices that yield
the desired symmetry and ensure closure under multiplication.

REFERENCE

S. H. Cullinane, Diamond theory (preprint).

Update of 1:12 AM ET on Friday, Oct. 25, 2024 —

The above "invariance of symmetry" document was written in 1978
for submission to the "Research Announcements" section of the
Bulletin of the American Mathematical Society .  This pro forma 
submission was, of course, rejected.  Though written before
I learned of similar underlying structures in the 1974 work of
R. T. Curtis on his "Miracle Octad Generator," it is not without
relevance to his work.

Thursday, October 10, 2024

Position Paper

Filed under: General — m759 @ 4:53 pm

Image reposted here on 9 October last year

Moulin Bleu

Animated 2x2 kaleidoscope figures from Diamond Theory

Kaleidoscope turning…
Shifting pattern
within unalterable structure…

— Roger Zelazny,  Eye of Cat   

Instagram today —

Related art —

From part two of the recent film triptych "Kinds of Kindness" . . .

Window with Couch and Cat

Wednesday, July 31, 2024

My Links — Steven H. Cullinane

Filed under: — m759 @ 4:14 pm

Main webpage of record . . .

Encyclopedia of Mathematics  https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

Supplementary PDF from Jan. 6, 2006  https://encyclopediaofmath.org/images/3/37/Dtheorem.pdf

Originally published in paper version . . .

Computer Graphics and Art, 1978  http://finitegeometry.org/sc/gen/Diamond_Theory_Article.pdf
AMS abstract, 1979: "Symmetry Invariance in a Diamond Ring"  https://www.cullinane.design/
American Mathematical Monthly, 1984 and 1985: "Triangles Are Square"  http://finitegeometry.org/sc/16/trisquare.html

Personal sites . . .

Primary —

Personal journal   http://m759.net/wordpress/
Mathematics website  http://finitegeometry.org/sc/
Mathematics Images Gallery  http://m759.net/piwigo/index.php?/category/2

Secondary —

Portfoliobox   https://cullinane.pb.design/
Substack   https://stevenhcullinane.substack.com/  
Symmetry Summary   https://shc759.wordpress.com
Diamond Theory Cover Structure  https://shc7596.wixsite.com/website

SOCIAL:

Pinterest   https://www.pinterest.com/stevenhcullinane/ (many mathematics notes)
Flickr  https://www.flickr.com/photos/m759/ (backup account for images of mathematics notes)
Instagram   https://www.instagram.com/stevencullinane
TikTok   https://www.tiktok.com/@stevenhcullinane
X.com   https://x.com/shc759

OTHER:

Replit viewer/download  https://replit.com/@m759/View-4x4x4?v=1
SourceForge download  https://sourceforge.net/projects/finitegeometry/
Academia.edu   https://stevenhcullinane.academia.edu/ GitHub    https://github.com/m759 (finite geometry site download)
Internet Archive: Notes on Groups and Geometry   https://archive.org/details/NotesOnGroupsAndGeometry1978-1986/mode/2up         

Cited at  . . .

The Diamond Theorem and Truchet Tiles   http://www.log24.com/log22/220429-Basque-DT-1.pdf 
April 2024 UNION article in Spanish featuring the diamond theorem  https://union.fespm.es/index.php/UNION/article/view/1608/1214
April 2024 UNION article in English  http://log24.com/notes/240923-Ibanez-Torres-on-diamond-theorem-Union-April-2024-in-English.pdf
Cullinane in a 2020 Royal Holloway Ph.D. thesis   https://pure.royalholloway.ac.uk/ws/portalfiles/portal/40176912/2020thomsonkphd.pdf         
Squares, Chevrons, Pinwheels, and Bach   https://www.yumpu.com/en/document/read/36444818/fugue-no-21-elements-of-finite-geometry      
Observables  programmed presentation of diamond theorem  https://observablehq.com/@radames/diamond-theory-symmetry-in-binary-spaces
Josefine Lyche — Plato's Diamond  https://web.archive.org/web/20240222064628/http://www.josefinelyche.com/index.php?/selected-exhibitions/platos-diamond/
Josefine Lyche — Diamond Theorem  https://web.archive.org/web/20230921122049/http://josefinelyche.com/index.php?/selected-exhibitions/uten-ramme-nye-rom/

Professional sites . . .

Association for Computing Machinery   https://member.acm.org/~scullinane
bio.site/cullinane … maintenance at https://biosites.com
ORCID bio page   https://orcid.org/0000-0003-1135-419X
Google Scholar   https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=NcjmFwQAAAAJ&sortby=pubdate

Academic repositories:

Harvard Dataverse   https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KHMMVH
Harvard DASH article on PG(3,2)   https://dash.harvard.edu/handle/1/37373777 

Zenodo website download  https://zenodo.org/records/1038121
Zenodo research notes  https://zenodo.org/search?q=metadata.creators.person_or_org.name%3A%22Cullinane%2C%20Steven%20H.%22&l=list&p=1&s=10&sort=bestmatch

Figurate Geometry at Open Science Framework (OSF)   https://osf.io/47fkd/

arXiv: "The Diamond Theorem"  https://arxiv.org/abs/1308.1075

Wednesday, December 6, 2023

“This, This!” *

Filed under: General — Tags: , — m759 @ 12:30 am
 

Monday, July 3, 2023

Latin Squares

Filed under: General — m759 @ 6:42 pm

This is the first colored  version of
the Diamond Theory cover
that I have done since 1976.

 

 

Also on July 3, 2023 —

* See Parul Sehgal, "What We Learn from the Lives of Critics."

Friday, October 20, 2023

Scattering Ashes, Gathering Dust

Filed under: General — Tags: , — m759 @ 10:20 am

Related art —

From Savage Logic

Sunday, March 15, 2009  5:24 PM

The Origin of Change

A note on the figure
from this morning's sermon:

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

"Two things of opposite natures seem to depend
On one another, as a man depends 
On a woman, day on night, the imagined 
On the real. This is the origin of change. 
Winter and spring, cold copulars, embrace 
And forth the particulars of rapture come."

— Wallace Stevens,   
"Notes Toward a Supreme Fiction,"
Canto IV of "It Must Change"

Friday, October 13, 2023

Turn, Turn, Turn

Filed under: General — Tags: , , , — m759 @ 3:06 am

The conclusion of a Hungarian political figure's obituary in
tonight's online New York Times, written by Clay Risen

"A quietly religious man, he spent his last years translating
works dealing with Roman Catholic canon law."

This  journal on the Hungarian's date of death, October 8,
a Sunday, dealt in part with the submission to Wikipedia of
the following brief article . . . and its prompt rejection.

The Cullinane diamond theorem is a theorem
about the Galois geometry underlying
the Miracle Octad Generator of R. T. Curtis.[1]

The theorem also explains symmetry properties of the
sort of chevron or diamond designs often found on quilts.

Reference

1. Cullinane diamond theorem at
the Encyclopedia of Mathematics

Some quotations I prefer to Catholic canon law —

Ludwig Wittgenstein,
Philosophical Investigations  (1953)

97. Thought is surrounded by a halo.
—Its essence, logic, presents an order,
in fact the a priori order of the world:
that is, the order of possibilities * ,
which must be common to both world and thought.
But this order, it seems, must be
utterly simple . It is prior  to all experience,
must run through all experience;
no empirical cloudiness or uncertainty can be
allowed to affect it ——It must rather be of
the purest crystal. But this crystal does not appear
as an abstraction; but as something concrete,
indeed, as the most concrete,
as it were the hardest  thing there is.

* See the post Wittgenstein's Diamond.

Related language in Łukasiewicz (1937)—

http://www.log24.com/log/pix10B/101127-LukasiewiczAdamantine.jpg

See as well Diamond Theory in 1937.

Monday, October 9, 2023

Sub Mission:  The Hunt for Blue October

Filed under: General — Tags: , — m759 @ 8:13 am

More later.

Update of 6:06 PM ET — An image from a post of Oct. 12, 2008

Moulin Bleu

Animated 2x2 kaleidoscope figures from Diamond Theory

Kaleidoscope turning
Shifting pattern
within unalterable structure

— Roger Zelazny, Eye of Cat   

Saturday, October 7, 2023

Labyrinth Clue

Filed under: General — Tags: — m759 @ 2:14 am

The cocktail remarks in yesterday's New York Times
suggest a song lyric . . .

"There's plenty of dives to be something you're not . . . ." 
— Roseanne Cash, Seven-Year Ache.

From this date, October 7th, seven years ago

The Paz quote below is from the last chapter
of his book, titled "The Dialectic of Solitude."

Update of Saturday, October 8, seven years ago:

I do not recommend taking very seriously the work of Latin American leftists (or American academics) who like to use the word "dialectic."

A related phrase does, however, have a certain mystic or poetic charm, as pointed out by Wikipedia —

"Unity of opposites is the central category of dialectics,
and it is viewed sometimes as a metaphysical concept,
a philosophical concept or a scientific concept."

A graphic companion to the "unity of opposites" notion —

From Savage Logic

Sunday, March 15, 2009  5:24 PM

The Origin of Change

A note on the figure
from this morning's sermon:

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

"Two things of opposite natures seem to depend
On one another, as a man depends 
On a woman, day on night, the imagined 
On the real. This is the origin of change. 
Winter and spring, cold copulars, embrace 
And forth the particulars of rapture come."

— Wallace Stevens,   
"Notes Toward a Supreme Fiction,"
Canto IV of "It Must Change"

Saturday, September 23, 2023

The Cullinane Diamond Theorem at Wikipedia

Filed under: General — Tags: — m759 @ 8:48 am

This post was prompted by the recent removal of a reference to
the theorem
on the Wikipedia "Diamond theorem" disambiguation 
page.  The reference, which has been there since 2015, was removed
because it linked to an external source (Encyclopedia of Mathematics)
​instead of to a Wikipedia article.

For anyone who might be interested in creating a Wikipedia  article on
my work, here are some facts that might be reformatted for that website . . .

https://en.wikipedia.org/wiki/
User:Cullinane/sandbox —

Cullinane diamond theorem

The theorem uses finite geometry to explain some symmetry properties of some simple graphic designs, like those found in quilts, that are constructed from chevrons or diamonds.

The theorem was first discovered by Steven H. Cullinane in 1975 and was published in 1977 in Computer Graphics and Art.

The theorem was also published as an abstract in 1979 in Notices of the American Mathematical Society.

The symmetry properties described by the theorem are related to those of the Miracle Octad Generator of R. T. Curtis.

The theorem is described in detail in the Encyclopedia of Mathematics article "Cullinane diamond theorem."

References

Steven H. Cullinane, "Diamond theory," Computer Graphics and Art, Vol. 2, No. 1, February 1977, pages 5-7.

_________, Abstract 79T-A37, "Symmetry invariance in a diamond ring," Notices of the American Mathematical Society, February 1979, pages A-193, 194.

_________, "Cullinane diamond theorem," Encyclopedia of Mathematics.

R. T. Curtis, A new combinatorial approach to M24, Mathematical Proceedings of the Cambridge Philosophical Society, 1976, Vol. 79, Issue 1, pages 24-42.

Wednesday, August 30, 2023

The Ehrlich Date

Filed under: General — Tags: , — m759 @ 10:30 pm

The previous post linked to a review by David Ehrlich of the film
"Dog Years," starring Burt Reynolds. The review was dated April 26, 2017.

Also on that date . . .

This post from 2017 deals with the mathematics of "diamond theory,"
an approach to models of finite geometry.

Related philosophy —

The "diamond theory" of truth, as opposed to the "story theory."
(See Richard Trudeau, The Non-Euclidean Revolution.)

For those who prefer the story theory, there is, for instance,
the novel City of God  by E. L. Doctorow —

"In the Garden of Adding 
Live Even and Odd…."

Monday, July 3, 2023

Latin Squares

Filed under: General — m759 @ 6:42 pm

This is the first colored  version of
the Diamond Theory cover
that I have done since 1976.

Thursday, June 22, 2023

Square Inch Lore

Filed under: General — Tags: — m759 @ 9:54 pm

See a search in this journal
for the following image —

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison   .

Friday, February 10, 2023

Interstices and Symmetry

Filed under: General — Tags: , — m759 @ 10:02 am

Call a 4×4 array labeled with 4 copies each
of 4 different symbols a foursquare.

The symmetries of foursquares are governed
by the symmetries of their 24 interstices

The 24 interstices of a 4x4 array

(Cullinane, Diamond Theory, 1976.)

From Log24 posts tagged Mathieu Cube

A similar exercise might involve the above 24 interstices of a 4×4 array.

Monday, November 7, 2022

Prescott Street Revisited: The Boys in the Kitchen

Filed under: General — Tags: , — m759 @ 3:57 pm

Or:  MDT-48 Meets COMP360.

‘It doesn’t have a street-name and that’s because, as yet,
it doesn’t have any street profile – which is incidentally
the way we want it to stay. The boys in the kitchen are
keeping it low-key and anonymous. They’re calling it MDT-48.’

The boys in the kitchen?

— Glynn, Alan. Limitless: A Novel  (p. 40).
     Picador. Kindle Edition.
     (Originally published by Little, Brown
     in Great Britain in 2001 as The Dark Fields .) 

From Log24 on Nov. 29, 2020

IMAGE- Cover image for a free mixtape, 'Lawrence Class - The Diamond Theory,' that contains images from Steven H. Cullinane's 'Diamond Theory.'

CNN story from All Souls' Day 2022

“This drug can be extracted from magic mushrooms,
but that is not the way our compound is generated.
It’s synthesized in a purely chemical process
to produce a crystalline form,” said Goodwin, who is
the chief medical officer of COMPASS Pathways,
the company that manufactures COMP360 and
conducted the study."

See as well "To Think That It Happened on Prescott Street"
and related posts.

Tuesday, February 15, 2022

Shubert Alley as Nightmare Alley

Filed under: General — Tags: — m759 @ 11:41 am

Max Bialystock discovers a new playwright

See as well this journal on
the above "Diamond Theory" date:

Thursday, January 21, 2021

Citation

Filed under: General — m759 @ 11:59 pm

Cullinane, Steven H.   Diamond theory :
printed (signed), 1976., 1976..
W. V. Quine papers, MS Am 2587, (1611).
Houghton Library, Harvard College Library.
https://id.lib.harvard.edu/ead/c/
hou01800c01663/catalog

Accessed January 21, 2021

Source of citation —

https://hollisarchives.lib.harvard.edu/
repositories/24/archival_objects/809161
 .

For the content — just the first 12 pages —
see http://www.log24.com/log/
Diamond_Theory-1976-pp-1-12.pdf
 .

Later observations —
“Finite Geometry website of Steven H. Cullinane,”
archived at
https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi%3A10.7910%2FDVN%2FKHMMVH
.

Sunday, November 29, 2020

Sunday Morning in a Cartoon Graveyard

Filed under: General — Tags: , , — m759 @ 9:29 am

For the Dr. Seuss School of
Neuropsychopharmacology —

From the school itself —

Related material — Pilgrim's Progress  in this  journal and . . .

an image from Log24 on December 8, 2012

IMAGE- Cover image for a free mixtape, 'Lawrence Class - The Diamond Theory,' that contains images from Steven H. Cullinane's 'Diamond Theory.'

See as well "To Think That It Happened on Prescott Street"
and related posts.

Sunday, August 2, 2020

The Sword and the Stone

Filed under: General — Tags: , , — m759 @ 12:42 pm

A post of May 26, 2005, displays, if not the sword,
a place  for it —

Drama of the Diagonal

"The beautiful in mathematics resides in contradiction.
Incommensurability, logoi alogoi, was the first splendor
in mathematics." — Simone Weil, Oeuvres Choisies,
éd. Quarto
, Gallimard, 1999, p. 100

Logos Alogos  by S. H. Cullinane

"To a mathematician, mathematical entities have their own existence,
they habitate spaces created by their intention.  They do things,
things happen to them, they relate to one another.  We can imagine
on their behalf all sorts of stories, providing they don't contradict
what we know of them.  The drama of the diagonal, of the square…"

— Dennis Guedj, abstract of "The Drama of Mathematics," a talk
to be given this July at the Mykonos conference on mathematics and
narrative. For the drama of the diagonal of the square, see

Wednesday, October 2, 2019

Stevens at 140

Filed under: General — m759 @ 12:38 am

Poet Wallace Stevens was born 140 years ago today.

For another 140, see Diamond Theory in 1937.

For some notes related to a Stevens poem from 1937,
see "arrowy, still strings" in this journal.

Tuesday, August 13, 2019

Putting the Structure  in Structuralism

Filed under: General — Tags: , , , — m759 @ 8:34 pm

The Matrix of Lévi-Strauss —

(From his “Structure and Form: Reflections on a Work by Vladimir Propp.”
Translated from a 1960 work in French. It appeared in English as
Chapter VIII of Structural Anthropology, Volume 2  (U. of Chicago Press, 1976).
Chapter VIII was originally published in Cahiers de l’Institut de Science
Économique Appliquée 
, No. 9 (Series M, No. 7) (Paris: ISEA, March 1960).)

The structure  of the matrix of Lévi-Strauss —

Illustration from Diamond Theory , by Steven H. Cullinane (1976).

The relevant field of mathematics is not Boolean algebra, but rather
Galois geometry.

Wednesday, March 13, 2019

The Origin of Change . . .

Filed under: General — m759 @ 10:00 pm

According to Wallace Stevens:

From Savage Logic

Sunday, March 15, 2009  5:24 PM

The Origin of Change

A note on the figure
from this morning's sermon:

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

"Two things of opposite natures seem to depend
On one another, as a man depends 
On a woman, day on night, the imagined 
On the real. This is the origin of change. 
Winter and spring, cold copulars, embrace 
And forth the particulars of rapture come."

— Wallace Stevens,   
"Notes Toward a Supreme Fiction,"
Canto IV of "It Must Change"

This  post was suggested by the following passage —

" the Fano plane ,
a set of seven points
grouped into seven lines
that has been called
'the combinatorialist’s coat of arms.' "

— Blake Stacey in a post with tomorrow's date:

and by Stacey at another weblog, in a post dated Jan. 29, 2019, 

"(Yes, Bohr was the kind of guy who would choose
the yin-yang symbol as his coat of arms.)"

Yes, Stacey is the kind of guy who would casually dismiss
Bohr's coat of arms. 

Related material — 

(See also Faust in Copenhagen in this  journal)—

» more

Saturday, November 3, 2018

The Space Theory of Truth

Filed under: General — Tags: — m759 @ 10:00 pm

Earlier posts have discussed the "story theory of truth"
versus the "diamond theory of truth," as defined by 
Richard Trudeau in his 1987 book The Non-Euclidean Revolution.

In a New York Times  opinion piece for tomorrow's print edition,*
novelist Dara Horn touched on what might be called 
"the space theory of truth."

When they return to synagogue, mourners will be greeted
with more ancient words: “May God comfort you
among the mourners of Zion and Jerusalem.”
In that verse, the word used for God is hamakom 
literally, “the place.” May the place comfort you.

[Link added.]

The Source —

See Dara Horn in this  journal, as well as Makom.

* "A version of this article appears in print on ,
on Page A23 of the New York edition with the headline: 
American Jews Know This Story."

Friday, September 28, 2018

ART WARS Midrash

Filed under: General — m759 @ 9:00 am

"When times are mysterious
Serious numbers
Will always be heard."
— Paul Simon,
"When Numbers Get Serious"

"There is a pleasantly discursive treatment of
Pontius Pilate's unanswered question 'What is truth?'"

— H. S. M. Coxeter, introduction to Richard J. Trudeau's remarks
on the "story theory" of truth as opposed to the "diamond theory"
of truth in The Non-Euclidean Revolution  (1987)

The deaths of Roth and Grünbaum on September 14th,
The Feast of the Holy Cross, along with Douthat's column
today titled "Only the Truth Can Save Us Now," suggest a
review of

Elements of Number Theory, by Vinogradov .

Sunday, June 3, 2018

6/3

Filed under: General,Geometry — m759 @ 4:00 am

<meta name="description"
content="Identidade generativa para o Diamonds Studio 

Desenvolvido em conjunto com

      http://quadradao.com.br/
      http://diamondsstudio.com.br/

Baseado na Diamond Theory by Steven H Cullinane, 1977">

Monday, February 5, 2018

Stranger Things than Pulp Fiction

Filed under: General,Geometry — m759 @ 12:30 pm

Diamond Theory cover, said to resemble Proginoskes in 'A Wind in the Door'

Click on the image for a
relevant Wallace Stevens poem.

A new Facebook page will describe
some background for the above image.

Wednesday, January 24, 2018

The Pentagram Papers

Filed under: General,Geometry — Tags: — m759 @ 12:40 pm

(Continued)

From a Log24 post of March 4, 2008 —

SINGER, ISAAC:
"Are Children the Ultimate Literary Critics?"
— Top of the News 29 (Nov. 1972): 32-36.

"Sets forth his own aims in writing for children and laments
'slice of life' and chaos in children's literature. Maintains that
children like good plots, logic, and clarity, and that they
have a concern for 'so-called eternal questions.'"

— An Annotated Listing of Criticism
by Linnea Hendrickson

"She returned the smile, then looked across the room to
her youngest brother, Charles Wallace, and to their father,
who were deep in concentration, bent over the model
they were building of a tesseract: the square squared,
and squared again: a construction of the dimension of time."

— A Swiftly Tilting Planet,
by Madeleine L'Engle

Cover of 'A Swiftly Tilting Planet' and picture of tesseract

For "the dimension of time," see A Fold in TimeTime Fold,
and Diamond Theory in 1937

A Swiftly Tilting Planet  is a fantasy for children 
set partly in Vespugia, a fictional country bordered by
Chile and Argentina.

Ibid.

The pen's point:

Wm. F. Buckley as Archimedes, moving the world with a giant pen as lever. The pen's point is applied to southern South America.
John Trever, Albuquerque Journal, 2/29/08

Note the figure on the cover of National Review  above —

A related figure from Pentagram Design

See, more generally,  Isaac Singer  in this  journal.

Monday, December 18, 2017

Mathematics and Art

Filed under: G-Notes,General,Geometry — m759 @ 5:09 pm

From the American Mathematical Society homepage today —

From concinnitasproject.org

"Concinnitas  is the title of a portfolio of fine art prints. . . .
The portfolio draws its name from a word famously used
by the Renaissance scholar, artist, architect, and philosopher
Leon Battista Alberti (1404-1472) to connote the balance of
number, outline, and position (in essence, number, geometry,
and topology) that he believed characterize a beautiful work of art."

The favicon of the Concinnitas Project —

The structure of the Concinnitas favicon —

This structure is from page 15 of
"Diamond Theory," a 1976 preprint —

 .

Thursday, August 31, 2017

A Conway-Norton-Ryba Theorem

Filed under: General,Geometry — Tags: , — m759 @ 1:40 pm

In a book to be published Sept. 5 by Princeton University Press,
John Conway, Simon Norton,  and Alex Ryba present the following
result on order-four magic squares —

A monograph published in 1976, “Diamond Theory,” deals with
more general 4×4 squares containing entries from the Galois fields
GF(2), GF(4), or GF(16).  These squares have remarkable, if not
“magic,” symmetry properties.  See excerpts in a 1977 article.

See also Magic Square and Diamond Theorem in this  journal.

Tuesday, May 2, 2017

Image Albums

Filed under: General,Geometry — Tags: , , , , , — m759 @ 1:05 pm

Pinterest boards uploaded to the new m759.net/piwigo

Diamond Theorem 

Diamond Theorem Correlation

Miracle Octad Generator

The Eightfold Cube

Six-Set Geometry

Diamond Theory Cover

Update of May 2 —

Four-Color Decomposition

Binary Galois Spaces

The Galois Tesseract

Update of May 3 —

Desargues via Galois

The Tetrahedral Model

Solomon's Cube

Update of May 8 —

Art Space board created at Pinterest

Thursday, December 8, 2016

Finite Groups and Their Geometric Representations

Filed under: General,Geometry — Tags: — m759 @ 8:06 am

The title is that of a presentation by Arnold Emch
at the 1928 International Congress of Mathematicians:

See also yesterday's "Emch as a Forerunner of S(5, 8, 24)."

Related material: Diamond Theory in 1937.

Further remarks:  Christmas 2013 and the fact that
759 × 322,560 = the order of the large Mathieu group  M24 .

Friday, November 25, 2016

Priority

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 am

Before the monograph "Diamond Theory" was distributed in 1976,
two (at least) notable figures were published that illustrate
symmetry properties of the 4×4 square:

Hudson in 1905 —

Golomb in 1967 —

It is also likely that some figures illustrating Walsh functions  as
two-color square arrays were published prior to 1976.

Update of Dec. 7, 2016 —
The earlier 1950's diagrams of Veitch and Karnaugh used the
1's and 0's of Boole, not those of Galois.

Monday, October 10, 2016

Mono Type 1, by Sultan (1966)

Filed under: General,Geometry — m759 @ 12:06 pm

"Sultan" was a pseudonym of Peter Lindbergh, now a 
well-known fashion photographer. Click image for the source.

Related art — Diamond Theory Roullete, by Radames Ajna,
2013 (Processing  code at ReCode Project based on
"Diamond Theory" by Steven H. Cullinane, 1977).

Saturday, October 8, 2016

Unity of Opposites: Plato and Beyond

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

The "unity" of the title was suggested by this morning's update
at the end of yesterday's post Paz.

For the Plato of the title, see the Sept. 27, 2016, post

Chomsky and Lévi-Strauss in China
Or:  Philosophy for Jews

For glyphs representing the "unity of opposites" of the title,
see a webpage linked to here on Groundhog Day 2014

The above image is related to Jung's remarks on Coincidentia
Oppositorum
 
. (See also coincidentia in this journal.)

A different Jung, in a new video with analogues of the rapidly
flashing images in Ajna's webpage "Diamond Theory Roullete" —

The above video promotes Google's new open-source "Noto" font

Sunday, May 29, 2016

The Ideogram Principle …

According to McLuhan

Marshall McLuhan writing to Ezra Pound on Dec. 21, 1948—

"The American mind is not even close to being amenable
to the ideogram principle as yet.  The reason is simply this.
America is 100% 18th Century. The 18th century had
chucked out the principle of metaphor and analogy—
the basic fact that as A is to B so is C to D.  AB:CD.   
It can see AB relations.  But relations in four terms are still
verboten.  This amounts to deep occultation of nearly all
human thought for the U.S.A.

I am trying to devise a way of stating this difficulty as it exists.  
Until stated and publicly recognized for what it is, poetry and
the arts can’t exist in America."

For context, see Cameron McEwen,
"Marshall McLuhan, John Pick, and Gerard Manley Hopkins."
(Renascence , Fall 2011, Vol. 64 Issue 1, 55-76)

A relation in four terms

A : B  ::  C : D   as   Model : Crutch  ::  Metaphor : Ornament —

See also Dueling Formulas and Symmetry.

Wednesday, May 25, 2016

Framework

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

"Studies of spin-½ theories in the framework of projective geometry
have been undertaken before." — Y. Jack Ng  and H. van Dam
February 20, 2009

For one such framework,* see posts from that same date 
four years earlier — February 20, 2005.

* A 4×4 array. See the 19771978, and 1986 versions by 
Steven H. Cullinane,   the 1987 version by R. T. Curtis, and
the 1988 Conway-Sloane version illustrated below —

Cullinane, 1977

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Cullinane, 1978

Cullinane, 1986

Curtis, 1987

Update of 10:42 PM ET on Sunday, June 19, 2016 —

The above images are precursors to

Conway and Sloane, 1988

Update of 10 AM ET Sept. 16, 2016 — The excerpt from the
1977 "Diamond Theory" article was added above.

Wednesday, May 4, 2016

Golomb and Symmetry

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

From the webpage Diamond Theory Bibliography

Golomb, Solomon W. 
Shift register sequences  (Revised edition)
Aegean Park Press, Laguna Hills, CA, 1982
   The fifteen "stencils" in Golomb's Fig. VIII-8, page 219,
   are the same as the fifteen affine hyperplanes that
   account for patterns' symmetry in diamond theory.
   This figure occurs in a discussion of Rademacher-
   Walsh functions.

Elsewhere

Friday, December 25, 2015

At Play in the Fields

Filed under: General,Geometry — Tags: , , — m759 @ 1:00 pm

See Fields of Force  and recent posts.

From PR Newswire  in July 2011 —

Campus Crusade for Christ Adopts New Name: Cru
60-year-old Int’l Ministry Aims to Increase
Relevance and Global Effectiveness

Related material:

Yin + Yang —

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

Tuesday, December 8, 2015

Conceptual Art

Filed under: General,Geometry — Tags: — m759 @ 12:06 pm

A December 7th  New York Times  column:

A current exhibition by Joseph Kosuth in Oslo:

From the two texts by Mondrian at the right hand of Kosuth —

"The positive and negative states of being bring about action."

"Through its pure relationships, purely abstract art
can approach the expression of the universal …."

These texts may be viewed as glosses on the following image —

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

Click image for related posts.

Friday, November 27, 2015

Once Upon a Matrix

Filed under: General,Geometry — Tags: , — m759 @ 10:20 pm

Or:  The Strife of Luminosity and Obscurity

(Continued from "Once Upon a Time," November 25, 2015)

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison


Wednesday, November 25, 2015

Once Upon a Time

Filed under: General,Geometry — m759 @ 5:31 pm

This post's title was suggested by the previous post
and by today's news of a notable sale of a one-copy
record album, "Once Upon a Time in Shaolin."

See as well posts from Tuesday, March 11, 2014,
the day Emma Watson unveiled a new trailer

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

Saturday, October 24, 2015

Two Views of Finite Space

Filed under: General,Geometry — Tags: , , — m759 @ 10:00 am

The following slides are from lectures on “Advanced Boolean Algebra” —

The small Boolean  spaces above correspond exactly to some small
Galois  spaces. These two names indicate approaches to the spaces
via Boolean algebra  and via Galois geometry .

A reading from Atiyah that seems relevant to this sort of algebra
and this sort of geometry —

” ‘All you need to do is give me your soul:  give up geometry
and you will have this marvellous machine.’ (Nowadays you
can think of it as a computer!) “

Related material — The article “Diamond Theory” in the journal
Computer Graphics and Art , Vol. 2 No. 1, February 1977.  That
article, despite the word “computer” in the journal’s title, was
much less about Boolean algebra  than about Galois geometry .

For later remarks on diamond theory, see finitegeometry.org/sc.

Friday, October 23, 2015

Retro or Not?

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

Happy birthday to the late Michael Crichton (Harvard ’64).

See also Diamond Theory Roulette —

Part of the ReCode Project (http://recodeproject.com).
Based on "Diamond Theory" by Steven H. Cullinane,
originally published in "Computer Graphics and Art" 
Vol. 2 No. 1, February 1977.
Copyright (c) 2013 Radames Ajna 
— OSI/MIT license (http://recodeproject/license).

Related remarks on Plato for Harvard’s
Graduate School of Design

See also posts from the above publication date, March 31,
2006, among posts now tagged “The Church in Philadelphia.”

Monday, September 28, 2015

Hypercube Structure

Filed under: General,Geometry — m759 @ 1:01 am

Click to enlarge:

Two views of tesseracts as 4D vector spaces over GF(2)

For the hypercube as a vector space over the two-element field GF(2),
see a search in this journal for Hypercube + Vector + Space .

For connections with the related symplectic geometry, see Symplectic
in this journal and Notes on Groups and Geometry, 1978-1986.

For the above 1976 hypercube (or tesseract ), see "Diamond Theory,"
by Steven H. Cullinane, Computer Graphics and Art , Vol. 2, No. 1,
Feb. 1977, pp. 5-7.

Sunday, July 26, 2015

Sunday Sermon

Filed under: General,Geometry — m759 @ 10:20 am

"Little emblems of eternity"
— Phrase by Oliver Sacks in today's
New York Times  Sunday Review

Some other emblems —

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

Note the color-interchange
symmetry
 of each emblem
under 180-degree rotation.

Click an emblem for
some background.

Thursday, July 2, 2015

Deepening the Spielraum

Filed under: General,Geometry — Tags: — m759 @ 2:00 am

(A sequel to Expanding the Spielraum (Feb. 3, 2015))

"Knowledge, wisdom even, lies in depth, not extension."

Tim Parks in The New York Review of Books ,
     5 PM ET on June 26, 2015

See also Log24 posts on the following figure —

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

Sunday, November 30, 2014

Agents of a Great Despair

Filed under: General,Geometry — Tags: — m759 @ 6:00 pm

Or:  Concepts of Space

1976 according to Cullinane:

1976 according to Plotnick:

“Irony and ridicule are entertaining and effective, and . . .
at the same time they are the agents of a great despair
and stasis in U.S. culture.”  — David Foster Wallace,
as quoted by Adam Kirsch today at Salon

Thursday, October 30, 2014

Mimicry

Filed under: General — Tags: — m759 @ 5:09 pm

This journal Tuesday,  Oct. 28, 2014, at 5 PM ET:

"What is a tai chi master, and what is it that he unfolds?"

From an earlier post, Hamlet's father's ghost
on "the fretful porpentine":

Hamlet , Act 1, Scene 5 —

Ghost:

“I could a tale unfold whose lightest word
Would harrow up thy soul, freeze thy young blood,
Make thy two eyes, like stars, start from their spheres,
Thy knotted and combinèd locks to part
And each particular hair to stand on end,
Like quills upon the fretful porpentine:
But this eternal blazon must not be
To ears of flesh and blood."

Galway Kinnell:

"I roll
this way and that in the great bed, under
the quilt
that mimics this country of broken farms and woods"

— "The Porcupine"

For quilt-block designs that do not mimic farms or woods,
see the cover of Diamond Theory .  See also the quotations
from Wallace Stevens linked to in the last line of yesterday's
post in memory of Kinnell.

"… a bee for the remembering of happiness" — Wallace Stevens

Tuesday, October 28, 2014

Raiders of the Lost Symbol

Filed under: General,Geometry — Tags: — m759 @ 5:00 pm

A print copy of next Sunday’s New York Times Book Review
arrived in today’s mail. From the front-page review:

Marcel Theroux on The Book of Strange New Things ,
a novel by Michel Faber —

“… taking a standard science fiction premise and
unfolding it with the patience and focus of a
tai chi master, until it reveals unexpected
connections, ironies and emotions.”

What is a tai chi master, and what is it that he unfolds?

Perhaps the taijitu  symbol and related material will help.

The Origin of Change

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

“Two things of opposite natures seem to depend
On one another, as a man depends
On a woman, day on night, the imagined

On the real. This is the origin of change.
Winter and spring, cold copulars, embrace
And forth the particulars of rapture come.”

Wallace Stevens,
“Notes Toward a Supreme Fiction,”
Canto IV of “It Must Change”

Monday, October 13, 2014

Raiders of the Lost Theorem

Filed under: General,Geometry — Tags: — m759 @ 12:05 pm

(Continued from Nov. 16, 2013.)

The 48 actions of GL(2,3) on a 3×3 array include the 8-element
quaternion group as a subgroup. This was illustrated in a Log24 post,
Hamilton’s Whirligig, of Jan. 5, 2006, and in a webpage whose
earliest version in the Internet Archive is from June 14, 2006.

One of these quaternion actions is pictured, without any reference
to quaternions, in a 2013 book by a Netherlands author whose
background in pure mathematics is apparently minimal:

In context (click to enlarge):

Update of later the same day —

Lee Sallows, Sept. 2011 foreword to Geometric Magic Squares —

“I first hit on the idea of a geometric magic square* in October 2001,**
and I sensed at once that I had penetrated some previously hidden portal
and was now standing on the threshold of a great adventure. It was going
to be like exploring Aladdin’s Cave. That there were treasures in the cave,
I was convinced, but how they were to be found was far from clear. The
concept of a geometric magic square is so simple that a child will grasp it
in a single glance. Ask a mathematician to create an actual specimen and
you may have a long wait before getting a response; such are the formidable
difficulties confronting the would-be constructor.”

* Defined by Sallows later in the book:

“Geometric  or, less formally, geomagic  is the term I use for
a magic square in which higher dimensional geometrical shapes
(or tiles  or pieces ) may appear in the cells instead of numbers.”

** See some geometric  matrices by Cullinane in a March 2001 webpage.

Earlier actual specimens — see Diamond Theory  excerpts published in
February 1977 and a brief description of the original 1976 monograph:

“51 pp. on the symmetries & algebra of
matrices with geometric-figure entries.”

— Steven H. Cullinane, 1977 ad in
Notices of the American Mathematical Society

The recreational topic of “magic” squares is of little relevance
to my own interests— group actions on such matrices and the
matrices’ role as models of finite geometries.

Monday, August 4, 2014

A Wrinkle in Space

Filed under: General,Geometry — Tags: , , — m759 @ 10:30 am

"There is  such a thing as a tesseract." — Madeleine L'Engle

An approach via the Omega Matrix:

http://www.log24.com/log/pix10A/100619-TesseractAnd4x4.gif

See, too, Rosenhain and Göpel as The Shadow Guests .

Tuesday, July 15, 2014

Photo Opportunity

Filed under: General,Geometry — Tags: , , — m759 @ 2:02 pm

"I need a photo opportunity, I want a shot at redemption.
Don't want to end up a cartoon in a cartoon graveyard."
– Paul Simon

Pinocchio: 'Multiplane Technicolor'

"The theory of poetry, that is to say, the total of the theories of poetry, often seems to become in time a mystical theology or, more simply, a mystique. The reason for this must by now be clear. The reason is the same reason why the pictures in a museum of modern art often seem to become in time a mystical aesthetic, a prodigious search of appearance, as if to find a way of saying and of establishing that all things, whether below or above appearance, are one and that it is only through reality, in which they are reflected or, it may be, joined together, that we can reach them. Under such stress, reality changes from substance to subtlety, a subtlety in which it was natural for Cézanne to say: 'I see planes bestriding each other and sometimes straight lines seem to me to fall' or 'Planes in color…. The colored area where shimmer the souls of the planes, in the blaze of the kindled prism, the meeting of planes in the sunlight.' The conversion of our Lumpenwelt  went far beyond this. It was from the point of view of another subtlety that Klee could write: 'But he is one chosen that today comes near to the secret places where original law fosters all evolution. And what artist would not establish himself there where the organic center of all movement in time and space– which he calls the mind or heart of creation– determines every function.' Conceding that this sounds a bit like sacerdotal jargon, that is not too much to allow to those that have helped to create a new reality, a modern reality, since what has been created is nothing less.

— Wallace Stevens, Harvard College Class of 1901, "The Relations between Poetry and Painting" in The Necessary Angel   (Knopf, 1951)

For background on the planes illustrated above,
see Diamond theory in 1937.

Thursday, June 26, 2014

Study This Example

Filed under: General,Geometry — Tags: — m759 @ 10:09 am

The authors of the following offer an introduction to symmetry
in quilt blocks.  They assume, perhaps rightly, that their audience
is intellectually impaired:

“A quilt block is made of 16 smaller squares.
Each small square consists of two triangles.”

Study this example of definition.
(It applies quite precisely to the sorts of square patterns
discussed in the 1976 monograph Diamond Theory , but
has little relevance for quilt blocks in general.)

Some background for those who are not  intellectually impaired:
Robinson’s book Definition in this journal and at Amazon.

Friday, May 16, 2014

Way to Go

Filed under: General,Geometry — m759 @ 3:17 pm

Or: Death Edit

IMAGE- On Elaine Sturtevant, an artist who reportedly died on May 7, 2014

Log24 on the reported date of Sturtevant’s death:

Conceptual Art

Filed under: Uncategorized — m759 @ 2:01 AM

Yesterday’s online New York Times  has the following quote:

“The idea becomes a machine that makes the art.”
— Sol LeWitt

For instance, some conceptual art not  by LeWitt:

Diamond Theory Roulette (Feb. 2, 2014).

Tuesday, May 13, 2014

An Artist’s Memorial

Filed under: General,Geometry — m759 @ 8:00 pm

See the above weblog post honoring a Swiss artist‘s
“wit, his perception, his genius, his horizon,
his determination, his humour, his friendship,
and his immeasurable kindness.”

Not a bad sendoff. Contrast with events at Harvard
on the date of the artist’s death.

Related material:  An album cover, and …

See also this  journal in September 2008.

As far as Swiss art goes, I personally prefer the work of, say,
Karl Gerstner and Paul Talman.

Saturday, May 10, 2014

Test Patterns

Filed under: General,Geometry — m759 @ 11:00 am

 Raven’s Progressive Matrices  intelligence test—
IMAGE- Raven's Progressive Matrices problem based on triangular half- and quarter-diamonds

Wechsler Adult Intelligence Scale  test—  

Related art —  (Click images for further details.)

Patterns suggesting those of the Raven test:

Patterns suggesting those of the Wechsler test:

The latter patterns were derived from the former.

Wednesday, May 7, 2014

Conceptual Art

Filed under: General,Geometry — m759 @ 2:01 am

Yesterday’s online New York Times  has the following quote:

“The idea becomes a machine that makes the art.”
— Sol LeWitt

For instance, some conceptual art not  by LeWitt:

Diamond Theory Roulette (Feb. 2, 2014).

Thursday, April 17, 2014

Thursday with the Nashes

Filed under: General,Geometry — m759 @ 3:00 pm

“For every kind of vampire, there is a kind of cross.” — Gravity’s Rainbow

“I don’t write exclusively on Jewish themes or about Jewish characters.
My collection of short stories, Strange Attractors , contained nine pieces,
five of which were, to some degree, Jewish, and this ratio has provided me
with a precise mathematical answer (for me, still the best kind of answer)
to the question of whether I am a Jewish writer. I am five-ninths a Jewish writer.”

— Rebecca Goldstein, “Against Logic

Midrashim for Rebecca: 

The Diamond Theory vs.  the Story Theory (of truth)

Story Theory and the Number of the Beast

The Palm Sunday post “Gray Space”

For those who prefer the diamond theory of truth,
a “precise mathematical” view of a Gray code —

IMAGE- Six-bit binary and Gray codes

For those who prefer the story theory of truth,
Thursday with the Nashes —

The actors who portrayed Mr. and Mrs. John Nash in
‘A Beautiful Mind’ now portray Mr. and Mrs. Noah…

IMAGE- At UMC.org, the actors who portrayed Mr. and Mrs. John Nash in 'A Beautiful Mind' now portray Mr. and Mrs. Noah.

Tuesday, March 11, 2014

Depth

Filed under: General,Geometry — Tags: , — m759 @ 11:16 am

"… this notion of ‘depth’ is an elusive one
even for a mathematician who can recognize it…."

— G. H. Hardy,  A Mathematician's Apology

Part I:  An Inch Deep

IMAGE- Catch-phrase 'a mile wide and an inch deep' in mathematics education

Part II:  An Inch Wide

See a search for "square inch space" in this journal.

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

 

See also recent posts with the tag depth.

Friday, February 28, 2014

Code

Filed under: General,Geometry — m759 @ 12:00 pm
 

From Northrop Frye's The Great Code: The Bible and Literature , Ch. 3: Metaphor I —

"In the preceding chapter we considered words in sequence, where they form narratives and provide the basis for a literary theory of myth. Reading words in sequence, however, is the first of two critical operations. Once a verbal structure is read, and reread often enough to be possessed, it 'freezes.' It turns into a unity in which all parts exist at once, without regard to the specific movement of the narrative. We may compare it to the study of a music score, where we can turn to any part without regard to sequential performance. The term 'structure,' which we have used so often, is a metaphor from architecture, and may be misleading when we are speaking of narrative, which is not a simultaneous structure but a movement in time. The term 'structure' comes into its proper context in the second stage, which is where all discussion of 'spatial form' and kindred critical topics take their origin."

Related material: 

"The Great Code does not end with a triumphant conclusion or the apocalypse that readers may feel is owed them or even with a clear summary of Frye’s position, but instead trails off with a series of verbal winks and nudges. This is not so great a fault as it would be in another book, because long before this it has been obvious that the forward motion of Frye’s exposition was illusory, and that in fact the book was devoted to a constant re-examination of the same basic data from various closely related perspectives: in short, the method of the kaleidoscope. Each shake of the machine produces a new symmetry, each symmetry as beautiful as the last, and none of them in any sense exclusive of the others. And there is always room for one more shake."

— Charles Wheeler, "Professor Frye and the Bible," South Atlantic Quarterly  82 (Spring 1983), pp. 154-164, reprinted in a collection of reviews of the book.
 

For code  in a different sense, but related to the first passage above,
see Diamond Theory Roullete, a webpage by Radamés Ajna.

For "the method of the kaleidoscope" mentioned in the second
passage above, see both the Ajna page and a webpage of my own,
Kaleidoscope Puzzle.

Friday, January 17, 2014

The 4×4 Relativity Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 pm

The sixteen-dot square array in yesterday’s noon post suggests
the following remarks.

“This is the relativity problem:  to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The 1977 matrix Q is echoed in the following from 2002—

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

A different representation of Cullinane’s 1977 square model of the
16-point affine geometry over the two-element Galois field GF(2)
is supplied by Conway and Sloane in Sphere Packings, Lattices and Groups   
(first published in 1988) :

IMAGE- The Galois tesseract as a four-dimensional vector space, from a diagram by Conway and Sloane in 'Sphere Packings, Lattices, and Groups'

Here a, b, c, d   are basis vectors in the vector 4-space over GF(2).
(For a 1979 version of this vector space, see AMS Abstract 79T-A37.)

See also a 2011 publication of the Mathematical Association of America —

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

Wednesday, December 25, 2013

Rotating the Facets

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm

Previous post

“… her mind rotated the facts….”

Related material— hypercube rotation,* in the context
of rotational symmetries of the Platonic solids:

IMAGE- Count rotational symmetries by rotating facets. Illustrated with 'Plato's Dice.'

“I’ve heard of affairs that are strictly Platonic”

Song lyric by Leo Robin

* Footnote added on Dec. 26, 2013 —

 See Arnold Emch, “Triple and Multiple Systems, Their Geometric
Configurations and Groups
,” Trans. Amer. Math. Soc.  31 (1929),
No. 1, 25–42.

 On page 42, Emch describes the above method of rotating a
hypercube’s 8 facets (i.e., three-dimensional cubes) to count
rotational symmetries —

See also Diamond Theory in 1937.

Also on p. 42, Emch mentions work of Carmichael on a
Steiner system with the Mathieu group M11 as automorphism
group, and poses the problem of finding such systems and
groups that are larger. This may have inspired the 1931
discovery by Carmichael of the Steiner system S(5, 8, 24),
which has as automorphisms the Mathieu group M24 .

Tuesday, December 10, 2013

Wittgenstein’s Tesseract

Filed under: General,Geometry — m759 @ 5:14 pm

See also last night's "Pink Champagne on Ice" post.
The "ice" in that post's title refers to the white lines
forming a tesseract in the book cover's background—
"icy white and crystalline," as Johnny Mercer put it.
(A Tune for Josefine, Nov. 25.)

See also the tag Diamond Theory tesseract in this journal.

Monday, October 21, 2013

Edifice Complex

Filed under: General,Geometry — Tags: — m759 @ 8:00 pm

New! Improved!

"Euclid's edifice loomed in my consciousness 
as a marvel among sciences, unique in its
clarity and unquestionable validity." 
—Richard J. Trudeau in
   The Non-Euclidean Revolution  (First published in 1986)

Readers of this journal will be aware that Springer's new page
advertising Trudeau's book, pictured above, is a bait-and-switch
operation. In the chapter advertised, Trudeau promotes what he
calls "the Diamond Theory of Truth" as a setup for his real goal,
which he calls "the Story Theory of Truth."

For an earlier use of the phrase "Diamond Theory" in
connection with geometry, see a publication from 1977.

Saturday, September 21, 2013

Mathematics and Narrative (continued)

Filed under: General,Geometry — Tags: , , — m759 @ 1:00 am

Mathematics:

A review of posts from earlier this month —

Wednesday, September 4, 2013

Moonshine

Filed under: Uncategorized — m759 @ 4:00 PM

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.)

Thursday, September 5, 2013

Moonshine II

Filed under: Uncategorized — Tags:  — m759 @ 10:31 AM

(Continued from yesterday)

The foreword by Wolf Barth in the 1990 Cambridge U. Press
reissue of Hudson's 1905 classic Kummer's Quartic Surface
covers some of the material in yesterday's post Moonshine.

The distinction that Barth described in 1990 was also described, and illustrated,
in my 1986 note "Picturing the smallest projective 3-space."  The affine 4-space
over the the finite Galois field GF(2) that Barth describes was earlier described—
within a 4×4 array like that pictured by Hudson in 1905— in a 1979 American
Mathematical Society abstract, "Symmetry invariance in a diamond ring."

"The distinction between Rosenhain and Goepel tetrads
is nothing but the distinction between isotropic and
non-isotropic planes in this affine space over the finite field."

The 1990 paragraph of Barth quoted above may be viewed as a summary
of these facts, and also of my March 17, 2013, note "Rosenhain and Göpel
Tetrads in PG(3,2)
."

Narrative:

Aooo.

Happy birthday to Stephen King.

Wednesday, September 4, 2013

Moonshine

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the 
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.) 

A Google search documents the moonshine
relating Rosenhain's and Göpel's 19th-century work
in complex analysis to M24  via the book of Hudson and
the geometry of the 4×4 square.

Monday, August 12, 2013

Form

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The Galois tesseract is the basis for a representation of the smallest
projective 3-space, PG(3,2), that differs from the representation at
Wolfram Demonstrations Project. For the latter, see yesterday’s post.

The tesseract representation underlies the diamond theorem, illustrated
below in its earliest form, also from the above February 1977 article—

IMAGE- Steven H. Cullinane, diamond theorem, from 'Diamond Theory,' Computer Graphics and Art, Vol. 2 No. 1, Feb. 1977, pp. 5-7

As noted in a more recent version, the group described by
the diamond theorem is also the group of the 35 square
patterns within the 1976 Miracle Octad Generator  (MOG) of
R. T. Curtis.

Tuesday, July 16, 2013

Space Itself

Filed under: General,Geometry — Tags: — m759 @ 10:18 am

"How do you get young people excited
about space? How do you get them interested
not just in watching movies about space,
or in playing video games set in space
but in space itself?"

Megan Garber in The AtlanticAug. 16, 2012

One approach:

"There is  such a thing as a tesseract" and
Diamond Theory in 1937.

See, too, Baez in this journal.

Tuesday, July 9, 2013

Vril Chick

Filed under: General,Geometry — Tags: , , — m759 @ 4:30 am

Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo

Profile picture for "Jo Lyxe" (Josefine Lyche) at Vimeo

Compare to an image of Vril muse Maria Orsitsch.

From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,
I DE LANGE NÆTTER —

Josefine Lyche
Born in 1973 in Bergen, Norway.
Lives and works in Oslo and Berlin.

Keywords (to help place my artwork in the
proper context): Aliens, affine geometry, affine
planes, affine spaces, automorphisms, binary
codes, block designs, classical groups, codes,
coding theory, collineations, combinatorial,
combinatorics, conjugacy classes, the Conwell
correspondence, correlations, Cullinane,
R. T. Curtis, design theory, the diamond theorem,
diamond theory, duads, duality, error correcting
codes, esoteric, exceptional groups,
extraterrestrials, finite fields, finite geometry, finite
groups, finite rings, Galois fields, generalized
quadrangles, generators, geometry, GF(2),
GF(4), the (24,12) Golay code, group actions,
group theory, Hadamard matrices, hypercube,
hyperplanes, hyperspace, incidence structures,
invariance, Karnaugh maps, Kirkman’s schoolgirls
problem, Latin squares, Leech lattice, linear
groups, linear spaces, linear transformations,
Magick, Mathieu groups, matrix theory, Meno,
Miracle Octad Generator, MOG, multiply transitive
groups, occultism, octahedron, the octahedral
group, Orsic, orthogonal arrays, outer automorphisms,
parallelisms, partial geometries,
permutation groups, PG(3,2), Plato, Platonic
solids, polarities, Polya-Burnside theorem, projective
geometry, projective planes, projective
spaces, projectivities, Pythagoras, reincarnation,
Reed-Muller codes, the relativity problem,
reverse engineering, sacred geometry, Singer
cycle, skew lines, Socrates, sporadic simple
groups, Steiner systems, Sylvester, symmetric,
symmetry, symplectic, synthemes, synthematic,
Theosophical Society tesseract, Tessla, transvections,
Venn diagrams, Vril society, Walsh
functions, Witt designs.

(See also the original catalog page.)

Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.

For some background, see (for instance) 
Conspiracy Theories and Secret Societies for Dummies .

Sunday, June 30, 2013

Book Award

Filed under: General,Geometry — Tags: — m759 @ 5:01 pm
 

"What on earth is
a 'concrete universal'?
"

— Said to be an annotation
(undated) by Robert M. Pirsig
of A History of Philosophy ,
by Frederick Copleston,
Society of Jesus.

In the spirit of the late Thomas Guinzburg

See also "Concrete Universal" in this journal.

Related material— From a Bloomsday reply
to a Diamond Theory  reader's comment, an excerpt—

The reader's comment suggests the following passages from
the book by Stirling quoted above—

 

Here Stirling plays a role analogous to that of Professor Irwin Corey
accepting the National Book Award for Gravity's Rainbow  in 1974.

Tuesday, June 18, 2013

Multispeech

Filed under: General,Geometry — Tags: , , — m759 @ 4:48 pm

(Continued)

For those who prefer Trudeau's
"Story Theory" of truth to his "Diamond Theory"

IMAGE- Janet Maslin's review of Max Barry's novel 'Lexicon'

Related material: Click images below for the original posts.

See as well the novel  "Lexicon" at Amazon.com 
and the word  "lexicon" in this journal.

Sunday, June 16, 2013

Mathematical Review

Filed under: General,Geometry — m759 @ 10:00 pm

From a weblog post on June 11, 2013, by one Pete Trbovich:

Diamond Theory

Here again, I don't think Steven Cullinane is really unhinged per se. At the very least, his geometric study is fun to play with, particularly when you find this toy. And I'm not really sure that anything he says is wrong per se. But you might find yourself asking "So what?" or more to the point, "Why is this supposed to be the central theory to explaining life, the universe, and everything?"

It isn't  supposed to be such a theory.
I do not know why Trbovich thinks it is 

— Steven H. Cullinane

Update of 11 PM June 16:

For one such central theory of everything, see
the I Ching .  Diamond theory is, unlike that
Chinese classic, pure mathematics, but the larger
of the binary-coordinate structures  it is based on
are clearly isomorphic, simply as structures , to
the I Ching 's 
64 hexagrams.

Make of this what you will.

Monday, June 10, 2013

Galois Coordinates

Filed under: General,Geometry — Tags: , , — m759 @ 10:30 pm

Today's previous post on coordinate systems
suggests a look at the phrase "Galois coordinates."

A search shows that the phrase, though natural,
has apparently not been used before 2011* for solutions
to what Hermann Weyl called "the relativity problem."

A thorough historical essay on Galois coordinatization
in this sense would require more academic resources
than I have available. It would likely describe a number
of applications of Galois-field coordinates to square
(and perhaps to cubical) arrays that were studied before
1976, the date of my Diamond Theory  monograph.

But such a survey might not  find any such pre-1976
coordinatization of a 4×4 array  by the 16 elements
of the vector 4-space  over the Galois field with two
elements, GF(2).

Such coordinatizations are important because of their
close relationship to the Mathieu group 24 .

See a preprint by Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group 24 ," with its remark
denying knowledge of any such coordinatization
prior to a 1989 paper by R. T. Curtis.

Related material: 

Some images related to Galois coordinates, excerpted
from a Google search today (click to enlarge)—

*  A rather abstract  2011 paper that uses the phrase
   "Galois coordinates" may have some implications 
   for the naive form of the relativity problem
   related to square and cubical arrays.

Tuesday, May 28, 2013

Codes

The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Tuesday, April 30, 2013

Logline

Filed under: General,Geometry — Tags: , , — m759 @ 9:29 am

Found this morning in a search:

logline  is a one-sentence summary of your script.
www.scriptologist.com/Magazine/Tips/Logline/logline.html
It's the short blurb in TV guides that tells you what a movie
is about and helps you decide if you're interested 

The search was suggested by a screenwriting weblog post,
"Loglines: WHAT are you doing?".

What is your story about?
No, seriously, WHAT are you writing about?
Who are the characters? What happens to them?
Where does it take place? What’s the theme?
What’s the style? There are nearly a million
little questions to answer when you set out
to tell a story. But it all starts with one
super, overarching question.
What are you writing about? This is the first
big idea that we pull out of the ether, sometimes
before we even have any characters.
What is your story about?

The screenwriting post was found in an earlier search for
the highlighted phrase.

The screenwriting post was dated December 15, 2009.

What I am doing now  is checking for synchronicity.

This  weblog on December 15, 2009, had a post
titled A Christmas Carol. That post referred to my 1976
monograph titled Diamond Theory .

I guess the script I'm summarizing right now is about
the heart of that theory, a group of 322,560 permutations
that preserve the symmetry of a family of graphic designs.

For that group in action, see the Diamond 16 Puzzle.

The "super overarching" phrase was used to describe
this same group in a different context:

IMAGE- Anne Taormina on 'Mathieu Moonshine' and the 'super overarching symmetry group'

This is from "Mathieu Moonshine," a webpage by Anne Taormina.

A logline summarizing my  approach to that group:

Finite projective geometry explains
the surprising symmetry properties
of some simple graphic designs—
found, for instance, in quilts.

The story thus summarized is perhaps not destined for movie greatness.

Wednesday, February 13, 2013

Form:

Filed under: General,Geometry — Tags: , , , — m759 @ 9:29 pm

Story, Structure, and the Galois Tesseract

Recent Log24 posts have referred to the 
"Penrose diamond" and Minkowski space.

The Penrose diamond has nothing whatever
to do with my 1976 monograph "Diamond Theory,"
except for the diamond shape and the connection
of the Penrose diamond to the Klein quadric—

IMAGE- The Penrose diamond and the Klein quadric

The Klein quadric occurs in the five-dimensional projective space
over a field. If the field is the two-element Galois field GF(2), the
quadric helps explain certain remarkable symmetry properties 
of the R. T. Curtis Miracle Octad Generator  (MOG), hence of
the large Mathieu group M24. These properties are also 
relevant to the 1976 "Diamond Theory" monograph.

For some background on the quadric, see (for instance)

IMAGE- Stroppel on the Klein quadric, 2008

See also The Klein Correspondence,
Penrose Space-Time, and a Finite Model
.

Related material:

"… one might crudely distinguish between philosophical
and mathematical motivation. In the first case one tries
to convince with a telling conceptual story; in the second
one relies more on the elegance of some emergent
mathematical structure. If there is a tradition in logic
it favours the former, but I have a sneaking affection for
the latter. Of course the distinction is not so clear cut.
Elegant mathematics will of itself tell a tale, and one with
the merit of simplicity. This may carry philosophical
weight. But that cannot be guaranteed: in the end one
cannot escape the need to form a judgement of significance."

– J. M. E. Hyland. "Proof Theory in the Abstract." (pdf)
Annals of Pure and Applied Logic 114, 2002, 43-78.

Those who prefer story to structure may consult 

  1. today's previous post on the Penrose diamond
  2. the remarks of Scott Aaronson on August 17, 2012
  3. the remarks in this journal on that same date
  4. the geometry of the 4×4 array in the context of M24.

Thursday, January 17, 2013

Brazil Revisited

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

Yesterday's post Treasure Hunt, on a Brazilian weblog,
suggests a review of Brazil  in this journal.  The post
most relevant to yesterday's remarks is from
August 15, 2003, with a link, now broken, to the work
of Brazilian artist Nicole Sigaud* that also uses the
four half-square tiles used in 1704 by Sebastien Truchet 
and somewhat later by myself in Diamond Theory 
(see a 1977 version).

A more recent link that works:

http://vismath9.tripod.com/sigaud/e-index.html

ANACOM PROJECT

 

APPLICATIONS
HISTORY
THE FONT
ALGORITHMS
FAMILY I
FAMILY 2
EXAMPLES
EXAMPLES II
DOWNLOADS
INTERACTIVE PROGRAM (JAVASCRIPT)
 
VisMathHOME

 

© 1997 – 2002 Nicole Sigaud

* Sigaud shares the interests of her fellow Brazilian
   whose weblog was the subject of yesterday's
   Treasure Hunt.—

   "For many years I have dedicated myself to the study
    of medieval magic, demonology, Kabbalah, Astrology,
    Alchemy, Tarot and divination in general."

     — Nicole Sigaud (translated by Google) in a self-profile: 
     http://www.recantodasletras.com.br/autor.php?id=78359.

    I do not share the interest of these authors in such matters,
    except as they are reflected in the works of authors like
    Charles Williams and Umberto Eco.

Wednesday, January 16, 2013

Treasure Hunt

Filed under: General,Geometry — Tags: — m759 @ 3:17 pm

The Mathematical Association of America (MAA)
newsmagazine Focus  for December 2012/January 2013: 

The Babylonian tablet on the cover illustrates the
"Mathematical Treasures" article.

A search for related material yields a Babylonian tablet
reproduced in a Brazilian weblog on July 4, 2012:

In that weblog on the same day, July 4, 2012,
another post quotes at length my Diamond Theory page,
starting with the following image from that page—

IMAGE- Plato's Diamond

That Brazilian post recommends use of geometry together
with Tarot and astrology. I do not concur with this 
recommendation, but still appreciate the mention.

Saturday, January 5, 2013

Vector Addition in a Finite Field

Filed under: General,Geometry — Tags: , — m759 @ 10:18 am

The finite (i.e., Galois) field GF(16),
according to J. J. Seidel in 1974—

The same field according to Steven H. Cullinane in 1986,
in its guise as the affine 4-space over GF(2)—


The same field, again disguised as an affine 4-space,
according to John H. Conway and N.J.A. Sloane in
Sphere Packings, Lattices, and Groups , first published in 1988—

The above figure by Conway and Sloane summarizes, using
a 4×4 array, the additive vector-space structure of the finite
field GF(16).

This structure embodies what in Euclidean space is called
the parallelogram rule for vector addition—

(Thanks to June Lester for the 3D (uvw) part of the above figure.)

For the transition from this colored Euclidean hypercube
(used above to illustrate the parallelogram rule) to the
4×4 Galois space (illustrated by Cullinane in 1979 and
Conway and Sloane in 1988— or later… I do not have
their book’s first edition), see Diamond Theory in 1937,
Vertex Adjacency in a Tesseract and in a 4×4 Array,
Spaces as Hypercubes, and The Galois Tesseract.

For some related narrative, see tesseract  in this journal.

(This post has been added to finitegeometry.org.)

Update of August 9, 2013—

Coordinates for hypercube vertices derived from the
parallelogram rule in four dimensions were better
illustrated by Jürgen Köller in a web page archived in 2002.

Update of August 13, 2013—

The four basis vectors in the 2002 Köller hypercube figure
are also visible at the bottom of the hypercube figure on
page 7 of “Diamond Theory,” excerpts from a 1976 preprint
in Computer Graphics and Art , Vol. 2, No. 1, February 1977.
A predecessor:  Coxeter’s 1950 hypercube figure from
Self-Dual Configurations and Regular Graphs.”

Monday, December 24, 2012

Eternal Recreation

Memories, Dreams, Reflections
by C. G. Jung

Recorded and edited By Aniela Jaffé, translated from the German
by Richard and Clara Winston, Vintage Books edition of April 1989

From pages 195-196:

"Only gradually did I discover what the mandala really is:
'Formation, Transformation, Eternal Mind's eternal recreation.'*
And that is the self, the wholeness of the personality, which if all
goes well is harmonious, but which cannot tolerate self-deceptions."

* Faust , Part Two, trans. by Philip Wayne (Harmondsworth,
England, Penguin Books Ltd., 1959), p. 79. The original:

                   … Gestaltung, Umgestaltung, 
  Des ewigen Sinnes ewige Unterhaltung….

Jung's "Formation, Transformation" quote is from the realm of
the Mothers (Faust Part Two, Act 1, Scene 5: A Dark Gallery).
The speaker is Mephistopheles.

See also Prof. Bruce J. MacLennan on this realm
in a Web page from his Spring 2005 seminar on Faust:

"In alchemical terms, F is descending into the dark, formless
primary matter from which all things are born. Psychologically
he is descending into the deepest regions of the
collective unconscious, to the source of life and all creation.
Mater (mother), matrix (womb, generative substance), and matter
all come from the same root. This is Faust's next encounter with
the feminine, but it's obviously of a very different kind than his
relationship with Gretchen."

The phrase "Gestaltung, Umgestaltung " suggests a more mathematical
approach to the Unterhaltung . Hence

Part I: Mothers

"The ultimate, deep symbol of motherhood raised to
the universal and the cosmic, of the birth, sending forth,
death, and return of all things in an eternal cycle,
is expressed in the Mothers, the matrices of all forms,
at the timeless, placeless originating womb or hearth
where chaos is transmuted into cosmos and whence
the forms of creation issue forth into the world of
place and time."

— Harold Stein Jantz, The Mothers in Faust:
The Myth of Time and Creativity 
,
Johns Hopkins Press, 1969, page 37

Part II: Matrices

        

Part III: Spaces and Hypercubes

Click image for some background.

Part IV: Forms

Forms from the I Ching :

Click image for some background.

Forms from Diamond Theory :

Click image for some background.

Sunday, December 9, 2012

Deep Structure

Filed under: General,Geometry — Tags: , — m759 @ 10:18 am

The concept of "deep structure," once a popular meme,
has long been abandoned by Chomskians.

It still applies, however, to the 1976 mathematics, diamond theory  ,
underlying the formal patterns discussed in a Royal Society paper
this year.

A review of deep structure, from the Wikipedia article Cartesian linguistics

[Numbers in parentheses refer to pages in the original 1966 Harper edition of Chomsky's book Cartesian Linguistics .]

Deep structure vs. surface structure

"Pursuing the fundamental distinction between body and mind, Cartesian linguistics characteristically assumes that language has two aspects" (32). These are namely the sound/character of a linguistic sign and its significance (32). Semantic interpretation or phonetic interpretation may not be identical in Cartesian linguistics (32). Deep structures are often only represented in the mind (a mirror of thought), as opposed to surface structures, which are not.

Deep structures vary less between languages than surface structures. For instance, the transformational operations to derive surface forms of Latin and French may obscure common features of their deep structures (39). Chomsky proposes, "In many respects, it seems to me quite accurate, then, to regard the theory of transformational generative grammar, as it is developing in current work, as essentially a modern and more explicit version of the Port-Royal theory" (39).

Summary of Port Royal Grammar

The Port Royal Grammar is an often cited reference in Cartesian Linguistics  and is considered by Chomsky to be a more than suitable example of Cartesian linguistic philosophy. "A sentence has an inner mental aspect (a deep structure that conveys its meaning) and an outer, physical aspect as a sound sequence"***** This theory of deep and surface structures, developed in Port Royal linguistics, meets the formal requirements of language theory. Chomsky describes it in modern terms as "a base system that generates deep structures and a transformational system that maps these into surface structures", essentially a form of transformational grammar akin to modern studies (42).

The corresponding concepts from diamond theory are

"Deep structure"— The line diagrams indicating the underlying
structure of varying patterns

"A base system that generates deep structures"—
Group actions on square arrays for instance, on the 4×4 square

"A transformational system"— The decomposition theorem 
that maps deep structure into surface structure (and vice-versa)

Saturday, December 8, 2012

It’s 10 PM

Filed under: General,Geometry — Tags: — m759 @ 10:00 pm

Do you know where the mushrooms are?

IMAGE- Cover image for a free mixtape, 'Lawrence Class - The Diamond Theory,' that contains images from Steven H. Cullinane's 'Diamond Theory.'

Above: Image from Log24 on Dec. 4th, 2012, at 4:23 PM ET.

See also… on that date at that time …
The American College of Neuropsychopharmacology… (click to enlarge)

Defining the Contest…

Filed under: General,Geometry — Tags: , , , , , — m759 @ 5:48 am

Chomsky vs. Santa

From a New Yorker  weblog yesterday—

"Happy Birthday, Noam Chomsky." by Gary Marcus—

"… two titans facing off, with Chomsky, as ever,
defining the contest"

"Chomsky sees himself, correctly, as continuing
a conversation that goes back to Plato, especially
the Meno dialogue, in which a slave boy is
revealed by Socrates to know truths about
geometry that he hadn’t realized he knew."

See Meno Diamond in this journal. For instance, from 
the Feast of Saint Nicholas (Dec. 6th) this year—

The Meno Embedding

Plato's Diamond embedded in The Matrix

For related truths about geometry, see the diamond theorem.

For a related contest of language theory vs. geometry,
see pattern theory (Sept. 11, 16, and 17, 2012).

See esp. the Sept. 11 post,  on a Royal Society paper from July 2012
claiming that

"With the results presented here, we have taken the first steps
in decoding the uniquely human  fascination with visual patterns,
what Gombrich* termed our ‘sense of order.’ "

The sorts of patterns discussed in the 2012 paper —

IMAGE- Diamond Theory patterns found in a 2012 Royal Society paper

"First steps"?  The mathematics underlying such patterns
was presented 35 years earlier, in Diamond Theory.

* See Gombrich-Douat in this journal.

Wednesday, December 5, 2012

Arte Programmata*

Filed under: General,Geometry — m759 @ 9:30 pm

The 1976 monograph "Diamond Theory" was an example
of "programmed art" in the sense established by, for
instance, Karl Gerstner. The images were produced 
according to strict rules, and were in this sense 
"programmed," but were drawn by hand.

Now an actual computer program has been written,
based on the Diamond Theory excerpts published
in the Feb. 1977 issue of Computer Graphics and Art
(Vol. 2, No. 1, pp. 5-7), that produces copies of some of
these images (and a few malformed images not  in
Diamond Theory).

See Isaac Gierard's program at GitHub

https://github.com/matthewepler/ReCode_Project/
blob/dda7b23c5ad505340b468d9bd707fd284e6c48bf/
isaac_gierard/StevenHCullinane_DiamondTheory/
StevenHCullinane_DiamondTheory.pde

As the suffix indicates, this program is in the
Processing Development Environment language.

It produces the following sketch:

IMAGE- Sketch programmed by Isaac Gierard to mimic some of the images of 'Diamond Theory' (© 1976 by Steven H. Cullinane).

The rationale for selecting and arranging these particular images is not clear,
and some of the images suffer from defects (exercise: which ones?), but the 
overall effect of the sketch is pleasing.

For some background for the program, see The ReCode Project.

It is good to learn that the Processing language is well-adapted to making the 
images in such sketches. The overall structure of the sketch gives, however,
no clue to the underlying theory  in "Diamond Theory."

For some related remarks, see Theory (Sept. 30, 2012).

* For the title, see Darko Fritz, "Notions of the Program in 1960s Art."

Tuesday, December 4, 2012

McKenna Theory

Filed under: General,Geometry — m759 @ 4:23 pm

A 1976 monograph:

IMAGE- 'Diamond Theory,' © 1976 by Steven H. Cullinane

A 2012 mixtape cover:

IMAGE- Cover image for a free mixtape, 'Lawrence Class - The Diamond Theory,' that contains images from Steven H. Cullinane's 'Diamond Theory.'

A new "Diamond Theory" image found on the Web
today links my work to the "Stoned Ape Theory"
of human evolution due to Terence McKenna

This link is via a picture, apparently copied from deviantart.com,
of two apes contemplating some psychedelic mushrooms.
The picture is titled "Stoned Ape Theory." The mushrooms in
the picture are apparently taken from an image at DrugNet.net:
 

Actually, the mathematical work called "diamond theory"
has nothing whatever to do with psychedelic experiences,
although some of the illustrations may appeal to McKenna fans.

Thursday, November 29, 2012

Conceptual Art

Filed under: General,Geometry — m759 @ 12:09 pm

Quotes from the Bremen site
http://dada.compart-bremen.de/ 
 

IMAGE- Steven H. Cullinane, diamond theorem, from 'Diamond Theory,' Computer Graphics and Art, Vol. 2 No. 1, Feb. 1977, pp. 5-7

" 'compArt | center of excellence digital art' is a project
at the University of Bremen, Germany. It is dedicated
to research and development in computing, design,
and teaching. It is supported by Rudolf Augstein Stiftung,
the University of Bremen, and Karin und Uwe Hollweg Stiftung."

See also Stiftung in this journal.

Sunday, November 18, 2012

Sermon

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 am

Happy birthday to

IMAGE- Margaret Atwood, Kim Wilde, Peta Wilson

Today's sermon, by Marie-Louise von Franz

Number and Time, by Marie-Louise von Franz

For more on the modern physicist analyzed by von Franz,
see The Innermost Kernel , by Suzanne Gieser.

Another modern physicist, Niels Bohr, died
on this date in 1962

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

The circle above is marked with a version
of the classic Chinese symbol
adopted as a personal emblem
by Danish physicist Niels Bohr,
leader of the Copenhagen School.

For the square, see the diamond theorem.

"Two things of opposite natures seem to depend
On one another, as a man depends
On a woman, day on night, the imagined
On the real. This is the origin of change.
Winter and spring, cold copulars, embrace
And forth the particulars of rapture come."

— Wallace Stevens,
  "Notes Toward a Supreme Fiction,"
  Canto IV of "It Must Change"

Thursday, November 1, 2012

Theories of Truth

Filed under: General,Geometry — Tags: — m759 @ 7:20 pm

A review of two theories of truth described
by a clergyman, Richard J. Trudeau, in
The Non-Euclidean Revolution

The Story Theory of Truth:

"But, I asked, is there a difference
between fiction and nonfiction?
'Not much,' she said, shrugging."

New Yorker  profile of tesseract
     author Madeleine L'Engle

The Diamond Theory of Truth:

(Click image for some background.)

Spaces as Hypercubes

See also the links on a webpage at finitegeometry.org.

Monday, August 13, 2012

Raiders of the Lost Tesseract

Filed under: General,Geometry — Tags: — m759 @ 3:33 pm

(An episode of Mathematics and Narrative )

A report on the August 9th opening of Sondheim's Into the Woods

Amy Adams… explained why she decided to take on the role of the Baker’s Wife.

“It’s the ‘Be careful what you wish’ part,” she said. “Since having a child, I’m really aware that we’re all under a social responsibility to understand the consequences of our actions.” —Amanda Gordon at businessweek.com

Related material—

Amy Adams in Sunshine Cleaning  "quickly learns the rules and ropes of her unlikely new market. (For instance, there are products out there specially formulated for cleaning up a 'decomp.')" —David Savage at Cinema Retro

Compare and contrast…

1.  The following item from Walpurgisnacht 2012

IMAGE- Excerpt from 'Unified Approach to Functional Decompositions of Switching Functions,' by Marek A. Perkowski et al., 1995

2.  The six partitions of a tesseract's 16 vertices 
       into four parallel faces in Diamond Theory in 1937

Friday, March 2, 2012

Douat Facsimile

Filed under: General,Geometry — Tags: , — m759 @ 5:14 pm

Title of a treatise by Dominique Douat

"Méthode pour faire une infinité de desseins différens avec des carreaux mi-partis de deux couleurs par une ligne diagonale : ou observations du Père Dominique Doüat Religieux Carmes de la Province de Toulouse sur un mémoire inséré dans l'Histoire de l'Académie Royale des Sciences de Paris l'année 1704, présenté par le Révérend Père Sébastien Truchet religieux du même ordre, Académicien honoraire  " (Paris, 1722)

"The earliest (and perhaps the rarest) treatise on the theory of design"

— E. H. Gombrich, 1979, in The Sense of Order

A facsimile version (excerpts, 108 pp., Feb. 5, 2010) of this treatise is available from

http://jacques-andre.fr/ed/ in a 23.1 MB pdf.

Sample page—

For a treatise on the finite geometry underlying such designs (based on a monograph I wrote in 1976, before I had heard of Douat or his predecessor Truchet), see Diamond Theory.

Saturday, February 18, 2012

Symmetry

Filed under: General,Geometry — m759 @ 7:35 pm

From the current Wikipedia article "Symmetry (physics)"—

"In physics, symmetry includes all features of a physical system that exhibit the property of symmetry—that is, under certain transformations, aspects of these systems are 'unchanged', according to a particular observation. A symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is 'preserved' under some change.

A family of particular transformations may be continuous  (such as rotation of a circle) or discrete  (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries. Continuous symmetries can be described by Lie groups while discrete symmetries are described by finite groups (see Symmetry group)."….

"A discrete symmetry is a symmetry that describes non-continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square's original appearance."

Note the confusion here between continuous (or discontinuous) transformations  and "continuous" (or "discontinuous," i.e. "discrete") groups .

This confusion may impede efforts to think clearly about some pure mathematics related to current physics— in particular, about the geometry of spaces made up of individual units ("points") that are not joined together in a continuous manifold.

For an attempt to forestall such confusion, see Noncontinuous Groups.

For related material, see Erlanger and Galois as well as the opening paragraphs of Diamond Theory

Symmetry is often described as invariance under a group of transformations. An unspoken assumption about symmetry in Euclidean 3-space is that the transformations involved are continuous.

Diamond theory rejects this assumption, and in so doing reveals that Euclidean symmetry may itself  be invariant under rather interesting groups of non-continuous (and a-symmetric) transformations. (These might be called noncontinuous  groups, as opposed to so-called discontinuous  (or discrete ) symmetry groups. See Weyl's Symmetry .)

For example, the affine group A on the 4-space over the 2-element field has a natural noncontinuous and asymmetric but symmetry-preserving action on the elements of a 4×4 array. (Details)

(Version first archived on March 27, 2002)

Update of Sunday, February 19, 2012—

The abuse of language by the anonymous authors
of the above Wikipedia article occurs also in more
reputable sources. For instance—

IMAGE- Brading and Castellani, 'Symmetries in Physics'- Four main sections include 'Continuous Symmetries' and 'Discrete Symmetries.'

Some transformations referred to by Brading and Castellani
and their editees as "discrete symmetries" are, in fact, as
linear transformations of continuous spaces, themselves
continuous  transformations.

This unfortunate abuse of language is at least made explicit
in a 2003 text, Mathematical Perspectives on Theoretical
Physics 
(Nirmala Prakash, Imperial College Press)—

"… associated[*] with any given symmetry there always exists
a continuous or a discrete group of transformations….
A symmetry whose associated group is continuous (discrete)
is called a continuous  (discrete ) symmetry ." — Pp. 235, 236

[* Associated how?]

Thursday, January 19, 2012

Mathematical Imagery

Filed under: General,Geometry — Tags: — m759 @ 10:28 pm

Bourgain and Tao

From the Crafoord Prize website

Related meta -mathematical image from Diamond Theory

Mathematical  image related to combinatorics—

See also permutahedron in this journal.

Tuesday, January 3, 2012

Theorum

Filed under: General,Geometry — Tags: , , — m759 @ 7:48 am

In memory of artist Ronald Searle

IMAGE- Ronald Searle, 'Pythagoras puzzled by one of my theorums,' from 'Down with Skool'

Searle reportedly died at 91 on December 30th.

From Log24 on that date

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Update of 9:29 PM EST Jan. 3, 2012

Theorum

 

From RationalWiki

Theorum (rhymes with decorum, apparently) is a neologism proposed by Richard Dawkins in The Greatest Show on Earth  to distinguish the scientific meaning of theory from the colloquial meaning. In most of the opening introduction to the show, he substitutes "theorum" for "theory" when referring to the major scientific theories such as evolution.

Problems with "theory"

Dawkins notes two general meanings for theory; the scientific one and the general sense that means a wild conjecture made up by someone as an explanation. The point of Dawkins inventing a new word is to get around the fact that the lay audience may not thoroughly understand what scientists mean when they say "theory of evolution". As many people see the phrase "I have a theory" as practically synonymous with "I have a wild guess I pulled out of my backside", there is often confusion about how thoroughly understood certain scientific ideas are. Hence the well known creationist argument that evolution is "just  a theory" – and the often cited response of "but gravity is also just  a theory".

To convey the special sense of thoroughness implied by the word theory in science, Dawkins borrowed the mathematical word "theorem". This is used to describe a well understood mathematical concept, for instance Pythagoras' Theorem regarding right angled triangles. However, Dawkins also wanted to avoid the absolute meaning of proof associated with that word, as used and understood by mathematicians. So he came up with something that looks like a spelling error. This would remove any person's emotional attachment or preconceptions of what the word "theory" means if it cropped up in the text of The Greatest Show on Earth , and so people would (in "theory ") have no other choice but to associate it with only the definition Dawkins gives.

This phrase has completely failed to catch on, that is, if Dawkins intended it to catch on rather than just be a device for use in The Greatest Show on Earth . When googled, Google will automatically correct the spelling to theorem instead, depriving this very page its rightful spot at the top of the results.

See also

 

Some backgound— In this journal, "Diamond Theory of Truth."

Friday, October 28, 2011

The Soul’s Code

Filed under: General,Geometry — m759 @ 7:20 am

James Hillman, NYT obituary on Feast of St. Jude, 2011

James Hillman reportedly died on Thursday, October 27, 2011.

For some commentary, see Wednesday's link to 779

http://www.log24.com/log/pix11C/111028-SoulsCode.JPG

Daimon
  Theory

Diamond Theory

Sunday, September 18, 2011

What Rough Beast

Filed under: General — m759 @ 9:00 pm

Lurching Toward Decision

http://www.log24.com/log/pix11B/110918-NYT-Lurching.jpg

"Suskind… nails, I think, Obama's intellectual blind spot. Indeed, Obama himself nails it, telling Suskind that he was too inclined to search for 'the perfect technical answer' to the myriad of complex issues coming at him."

Frank Rich on Ron Suskind's new book about the White House, Confidence Men

Very distantly related material—

From "Confidence Game," an Oct. 12, 2008, post in this journal, a quasi-European perspective—

Juliette Binoche in 'Blue'  Animated 2x2 kaleidoscope figures from Diamond Theory

Kaleidoscope turning…
Shifting pattern
within unalterable structure…

– Roger Zelazny, Eye of Cat   

See also …

Gravity’s Rainbow , Penguin Classics, 1995, page 742:

"… knowing his Tarot, we would expect to look among the Humility, among the gray and preterite souls, to look for him adrift in the hostile light of the sky, the darkness of the sea….

Now there’s only a long cat’s-eye of bleak sunset left over the plain tonight, bright gray against a purple ceiling of clouds, with an iris of

   742"

Wednesday, August 10, 2011

Objectivity

Filed under: General,Geometry — m759 @ 12:25 pm

From math16.com

Quotations on Realism
and the Problem of Universals:

"It is said that the students of medieval Paris came to blows in the streets over the question of universals. The stakes are high, for at issue is our whole conception of our ability to describe the world truly or falsely, and the objectivity of any opinions we frame to ourselves. It is arguable that this is always the deepest, most profound problem of philosophy. It structures Plato's (realist) reaction to the sophists (nominalists). What is often called 'postmodernism' is really just nominalism, colourfully presented as the doctrine that there is nothing except texts. It is the variety of nominalism represented in many modern humanities, paralysing appeals to reason and truth."
— Simon Blackburn, Think, Oxford University Press, 1999, page 268

"You will all know that in the Middle Ages there were supposed to be various classes of angels…. these hierarchized celsitudes are but the last traces in a less philosophical age of the ideas which Plato taught his disciples existed in the spiritual world."
— Charles Williams, page 31, Chapter Two, "The Eidola and the Angeli," in The Place of the Lion (1933), reprinted in 1991 by Eerdmans Publishing

For Williams's discussion of Divine Universals (i.e., angels), see Chapter Eight of The Place of the Lion.

"People have always longed for truths about the world — not logical truths, for all their utility; or even probable truths, without which daily life would be impossible; but informative, certain truths, the only 'truths' strictly worthy of the name. Such truths I will call 'diamonds'; they are highly desirable but hard to find….The happy metaphor is Morris Kline's in Mathematics in Western Culture (Oxford, 1953), p. 430."
— Richard J. Trudeau, The Non-Euclidean Revolution, Birkhauser Boston, 1987, pages 114 and 117

"A new epistemology is emerging to replace the Diamond Theory of truth. I will call it the 'Story Theory' of truth: There are no diamonds. People make up stories about what they experience. Stories that catch on are called 'true.' The Story Theory of truth is itself a story that is catching on. It is being told and retold, with increasing frequency, by thinkers of many stripes…. My own viewpoint is the Story Theory…. I concluded long ago that each enterprise contains only stories (which the scientists call 'models of reality'). I had started by hunting diamonds; I did find dazzlingly beautiful jewels, but always of human manufacture."
— Richard J. Trudeau, The Non-Euclidean Revolution, Birkhauser Boston, 1987, pages 256 and 259

Trudeau's confusion seems to stem from the nominalism of W. V. Quine, which in turn stems from Quine's appalling ignorance of the nature of geometry. Quine thinks that the geometry of Euclid dealt with "an emphatically empirical subject matter" — "surfaces, curves, and points in real space." Quine says that Euclidean geometry lost "its old status of mathematics with a subject matter" when Einstein established that space itself, as defined by the paths of light, is non-Euclidean. Having totally misunderstood the nature of the subject, Quine concludes that after Einstein, geometry has become "uninterpreted mathematics," which is "devoid not only of empirical content but of all question of truth and falsity." (From Stimulus to Science, Harvard University Press, 1995, page 55)
— S. H. Cullinane, December 12, 2000

The correct statement of the relation between geometry and the physical universe is as follows:

"The contrast between pure and applied mathematics stands out most clearly, perhaps, in geometry. There is the science of pure geometry, in which there are many geometries: projective geometry, Euclidean geometry, non-Euclidean geometry, and so forth. Each of these geometries is a model, a pattern of ideas, and is to be judged by the interest and beauty of its particular pattern. It is a map or picture, the joint product of many hands, a partial and imperfect copy (yet exact so far as it extends) of a section of mathematical reality. But the point which is important to us now is this, that there is one thing at any rate of which pure geometries are not pictures, and that is the spatio-temporal reality of the physical world. It is obvious, surely, that they cannot be, since earthquakes and eclipses are not mathematical concepts."
— G. H. Hardy, section 23, A Mathematician's Apology, Cambridge University Press, 1940

The story of the diamond mine continues
(see Coordinated Steps and Organizing the Mine Workers)— 

From The Search for Invariants (June 20, 2011):

The conclusion of Maja Lovrenov's 
"The Role of Invariance in Cassirer’s Interpretation of the Theory of Relativity"—

"… physical theories prove to be theories of invariants
with regard to certain groups of transformations and
it is exactly the invariance that secures the objectivity
of a physical theory."

— SYNTHESIS PHILOSOPHICA 42 (2/2006), pp. 233–241

http://www.log24.com/log/pix11B/110810-MajaLovrenovBio.jpg

Related material from Sunday's New York Times  travel section—

"Exhibit A is certainly Ljubljana…."

Sunday, June 19, 2011

Abracadabra (continued)

Filed under: General,Geometry — Tags: , — m759 @ 12:00 am

Yesterday's post Ad Meld featured Harry Potter (succeeding in business),
a 4×6 array from a video of the song "Abracadabra," and a link to a post
with some background on the 4×6 Miracle Octad Generator  of R.T. Curtis.

A search tonight for related material on the Web yielded…

(Click to enlarge.)

IMAGE- Art by Steven H. Cullinane displayed as his own in Steve Richards's Piracy Project contribution

   Weblog post by Steve Richards titled "The Search for Invariants:
   The Diamond Theory of Truth, the Miracle Octad Generator
   and Metalibrarianship." The artwork is by Steven H. Cullinane.
   Richards has omitted Cullinane's name and retitled the artwork.

The author of the post is an artist who seems to be interested in the occult.

His post continues with photos of pages, some from my own work (as above), some not.

My own work does not  deal with the occult, but some enthusiasts of "sacred geometry" may imagine otherwise.

The artist's post concludes with the following (note also the beginning of the preceding  post)—

http://www.log24.com/log/pix11A/110619-MOGsteverichards.jpg

"The Struggle of the Magicians" is a 1914 ballet by Gurdjieff. Perhaps it would interest Harry.

Saturday, May 28, 2011

Savage Detectives

Filed under: General,Geometry — Tags: , — m759 @ 9:00 am

IMAGE- Rubeus Hagrid and Jorn Barger


IMAGE- Cover of 'The Savage and Beautiful Country'

   Alan McGlashan

From Savage Logic

Sunday, March 15, 2009  5:24 PM

The Origin of Change

A note on the figure
from this morning's sermon:

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

"Two things of opposite natures seem to depend
On one another, as a man depends
On a woman, day on night, the imagined
On the real. This is the origin of change.
Winter and spring, cold copulars, embrace
And forth the particulars of rapture come."

Wallace Stevens,  
"Notes Toward a Supreme Fiction,"
Canto IV of "It Must Change"

Friday, April 22, 2011

Romancing the Hyperspace

Filed under: General,Geometry — m759 @ 7:59 pm

For the title, see Palm Sunday.

"There is a pleasantly discursive treatment of
Pontius Pilate's unanswered question 'What is truth?'" — H. S. M. Coxeter, 1987

From this date (April 22) last year—

Image-- examples from Galois affine geometry

Richard J. Trudeau in The Non-Euclidean Revolution , chapter on "Geometry and the Diamond Theory of Truth"–

"… Plato and Kant, and most of the philosophers and scientists in the 2200-year interval between them, did share the following general presumptions:

(1) Diamonds– informative, certain truths about the world– exist.
(2) The theorems of Euclidean geometry are diamonds.

Presumption (1) is what I referred to earlier as the 'Diamond Theory' of truth. It is far, far older than deductive geometry."

Trudeau's book was published in 1987. The non-Euclidean* figures above illustrate concepts from a 1976 monograph, also called "Diamond Theory."

Although non-Euclidean,* the theorems of the 1976 "Diamond Theory" are also, in Trudeau's terminology, diamonds.

* "Non-Euclidean" here means merely "other than  Euclidean." No violation of Euclid's parallel postulate is implied.

Trudeau comes to reject what he calls the "Diamond Theory" of truth. The trouble with his argument is the phrase "about the world."

Geometry, a part of pure mathematics, is not  about the world. See G. H. Hardy, A Mathematician's Apology .

Saturday, February 5, 2011

Zen and the Art of Philosophy

Filed under: General,Geometry — m759 @ 12:00 pm

Wallace Stevens Concordance

An Ordinary Evening in New Haven
line 540 (xxx.18): In which hundreds of eyes, in one mind, see at once.

The cover art of a 1976 monograph, "Diamond Theory," was described in this morning's post.

As Madeleine L'Engle noted in 1976, the cover art resembles the character Proginoskes in her novel A Wind in the Door.

A search today for Proginoskes yields a description by Brendan Kidwell

http://www.log24.com/log/pix11/110205-KidwellProginoskesArt.png

A link at Kidwell's site leads to a weblog by Jeff Atwood, a founder of Stack Overflow, a programmers' question-and-answer site.
(Stack Overflow is said to have inspired the similar site for mathematicians, Math Overflow.)

Yesterday Atwood discussed technical writing.

This suggests a look at Robert M. Pirsig on that subject in his 1974 philosophical novel Zen and the Art of Motorcycle Maintenance.

(See also a document on Pirsig's technical-writing background.)

Pirsig describes his novel as "a sort of Chautauqua."

This, together with the Stevens and Proginoskes quotes above, leads back to the Log24 Feb. 1 post The Search.

An image from that post (click to enlarge)—

http://www.log24.com/log/pix11/110201-TwoViews-300w.jpg

Here the apparently fragmented nature of the set of
images imagined as rising above the podium of the
Hall of Philosophy at Chautauqua rather naturally
echoes Stevens's "hundreds of eyes" remark.

Saturday, January 22, 2011

High School Squares*

Filed under: General,Geometry — Tags: , , — m759 @ 1:20 am

The following is from the weblog of a high school mathematics teacher—

http://www.log24.com/log/pix11/110121-LatinSquares4x4.jpg

This is related to the structure of the figure on the cover of the 1976 monograph Diamond Theory

http://www.log24.com/log/pix11/110122-DiamondTheoryCover.jpg

Each small square pattern on the cover is a Latin square,
with elements that are geometric figures rather than letters or numerals.
All order-four Latin squares are represented.

For a deeper look at the structure of such squares, let the high-school
chart above be labeled with the letters A through X, and apply the
four-color decomposition theorem.  The result is 24 structural diagrams—

    Click to enlarge

IMAGE- The Order-4 (4x4) Latin Squares

Some of the squares are structurally congruent under the group of 8 symmetries of the square.

This can be seen in the following regrouping—

   Click to enlarge

IMAGE- The Order-4 (4x4) Latin Squares, with Congruent Squares Adjacent

      (Image corrected on Jan. 25, 2011– "seven" replaced "eight.")

* Retitled "The Order-4 (i.e., 4×4) Latin Squares" in the copy at finitegeometry.org/sc.

Monday, December 27, 2010

Church Diamond

Filed under: General,Geometry — Tags: — m759 @ 3:09 pm

IMAGE- The diamond property

Also known, roughly speaking, as confluence  or the Church-Rosser property.

From “NYU Lambda Seminar, Week 2” —

[See also the parent page Seminar in Semantics / Philosophy of Language or:
What Philosophers and Linguists Can Learn From Theoretical Computer Science But Didn’t Know To Ask)
]

A computational system is said to be confluent, or to have the Church-Rosser or diamond property, if, whenever there are multiple possible evaluation paths, those that terminate always terminate in the same value. In such a system, the choice of which sub-expressions to evaluate first will only matter if some of them but not others might lead down a non-terminating path.

The untyped lambda calculus is confluent. So long as a computation terminates, it always terminates in the same way. It doesn’t matter which order the sub-expressions are evaluated in.

A computational system is said to be strongly normalizing if every permitted evaluation path is guaranteed to terminate. The untyped lambda calculus is not strongly normalizing: ω ω doesn’t terminate by any evaluation path; and (\x. y) (ω ω) terminates only by some evaluation paths but not by others.

But the untyped lambda calculus enjoys some compensation for this weakness. It’s Turing complete! It can represent any computation we know how to describe. (That’s the cash value of being Turing complete, not the rigorous definition. There is a rigorous definition. However, we don’t know how to rigorously define “any computation we know how to describe.”) And in fact, it’s been proven that you can’t have both. If a computational system is Turing complete, it cannot be strongly normalizing.

There is no connection, apart from the common reference to an elementary geometric shape, between the use of “diamond” in the above Church-Rosser sense and the use of “diamond” in the mathematics of (Cullinane’s) Diamond Theory.

Any attempt to establish such a connection would, it seems, lead quickly into logically dubious territory.

Nevertheless, in the synchronistic spirit of Carl Jung and Arthur Koestler, here are some links to such a territory —

 Link One — “Insane Symmetry”  (Click image for further details)—

http://www.log24.com/log/pix10B/101227-InsaneSymmetry.jpg

See also the quilt symmetry in this  journal on Christmas Day.

Link Two — Divine Symmetry

(George Steiner on the Name in this journal on Dec. 31 last year (“All about Eve“)) —

“The links are direct between the tautology out of the Burning Bush, that ‘I am’ which accords to language the privilege of phrasing the identity of God, on the one hand, and the presumptions of concordance, of equivalence, of translatability, which, though imperfect, empower our dictionaries, our syntax, our rhetoric, on the other. That ‘I am’ has, as it were, at an overwhelming distance, informed all predication. It has spanned the arc between noun and verb, a leap primary to creation and the exercise of creative consciousness in metaphor. Where that fire in the branches has gone out or has been exposed as an optical illusion, the textuality of the world, the agency of the Logos in logic—be it Mosaic, Heraclitean, or Johannine—becomes ‘a dead letter.'”

George Steiner, Grammars of Creation

(See also, from Hanukkah this year,  A Geometric Merkabah and The Dreidel is Cast.)

Link Three – Spanning the Arc —

Part A — Architect Louis Sullivan on “span” (see also Kindergarten at Stonehenge)

Part B — “Span” in category theory at nLab —

http://www.log24.com/log/pix10B/101227-nLabSpanImage.jpg

Also from nLab — Completing Spans to Diamonds

“It is often interesting whether a given span in some partial ordered set can be completed into a diamond. The property of a collection of spans to consist of spans which are expandable into diamonds is very useful in the theory of rewriting systems and producing normal forms in algebra. There are classical results e.g. Newman’s diamond lemma, Širšov-Bergman’s diamond lemma (Širšov is also sometimes spelled as Shirshov), and Church-Rosser theorem (and the corresponding Church-Rosser confluence property).”

The concepts in this last paragraph may or may not have influenced the diamond theory of Rudolf Kaehr (apparently dating from 2007).

They certainly have nothing to do with the Diamond Theory of Steven H. Cullinane (dating from 1976).

For more on what the above San Francisco art curator is pleased to call “insane symmetry,” see this journal on Christmas Day.

For related philosophical lucubrations (more in the spirit of Kaehr than of Steiner), see the New York Times  “The Stone” essay “Span: A Remembrance,” from December 22—

“To understand ourselves well,” [architect Louis] Sullivan writes, “we must arrive first at a simple basis: then build up from it.”

Around 300 BC, Euclid arrived at this: “A point is that which has no part. A line is breadthless length.”

See also the link from Christmas Day to remarks on Euclid and “architectonic” in Mere Geometry.

Tuesday, October 19, 2010

Savage Logic…

Filed under: General,Geometry — Tags: , — m759 @ 2:22 am

and the New York Lottery

IMAGE-- NY Lottery Oct. 18, 2010-- Midday 069, Evening 359

A search in this journal for yesterday's evening number in the New York Lottery, 359, leads to…

The Cerebral Savage: 
On the Work of Claude Lévi-Strauss

by Clifford Geertz

Shown below is 359, the final page of Chapter 13 in
The Interpretation of Cultures: Selected Essays by Clifford Geertz,
New York, 1973: Basic Books, pp. 345-359 —

http://www.log24.com/log/pix10B/101019-Geertz359.gif

This page number 359 also appears in this journal in an excerpt from Dan Brown's novel Angels & Demons

See this journal's entries for March 1-15, 2009, especially…

Sunday, March 15, 2009  5:24 PM

Philosophy and Poetry:

The Origin of Change

A note on the figure
from this morning's sermon:

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

"Two things of opposite natures seem to depend
On one another, as a man depends
On a woman, day on night, the imagined

On the real. This is the origin of change.
Winter and spring, cold copulars, embrace
And forth the particulars of rapture come."

-- Wallace Stevens,
  "Notes Toward a Supreme Fiction,"
   Canto IV of "It Must Change"

Sunday, March 15, 2009  11:00 AM

Ides of March Sermon:

Angels, Demons,
"Symbology"

"On Monday morning, 9 March, after visiting the Mayor of Rome and the Municipal Council on the Capitoline Hill, the Holy Father spoke to the Romans who gathered in the square outside the Senatorial Palace…

'… a verse by Ovid, the great Latin poet, springs to mind. In one of his elegies he encouraged the Romans of his time with these words:

"Perfer et obdura: multo graviora tulisti."

 "Hold out and persist:
  you have got through
  far more difficult situations."

 (Tristia, Liber  V, Elegia  XI, verse 7).'"
 

This journal
on 9 March:

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

Note the color-interchange
symmetry
of each symbol
under 180-degree rotation.

Related material:
The Illuminati Diamond:

IMAGE- Illuminati Diamond, pp. 359-360 in 'Angels & Demons,' Simon & Schuster Pocket Books 2005, 448 pages, ISBN 0743412397

The symmetry of the yin-yang symbol, of the diamond-theorem symbol, and of Brown's Illuminati Diamond is also apparent in yesterday's midday New York lottery number (see above).

"Savage logic works like a kaleidoscope…." — Clifford Geertz on Lévi-Strauss

Tuesday, September 7, 2010

Burning Patrick —

Filed under: General,Geometry — Tags: — m759 @ 11:15 am

Notes on Mathematics and Narrative

Background—

  1. The Burning Man in Bester's classic The Stars My Destination,
  2. The not-so-classic Hitler Plans Burning Man, and
  3. The cult film The Wicker Man

Commentary on The Wicker Man

Originally The Wicker Man  was not well-received by critics in the UK. It was considered
to be bizarre, disturbing, and uncomfortable, with the hasty editing making the story confusing
and out of order…. Today this movie is considered a cult classic and has been called
the “Citizen Kane  of horror films” by some reviewers. How did this film become a cult classic?

Real estate motto— Location, Location, Location.

Illustration— The fire leap scene from Wicker Man, filmed at Castle Kennedy

http://www.log24.com/log/pix10B/100907-WickerManFireLeapScene.jpg

From August 27

In today's New York Times, Michiko Kakutani reviews a summer thriller
by Kevin Guilfoile.  The Thousand  is in the manner of Dan Brown's
2003 The Da Vinci Code  or of Katherine Neville's 1988 The Eight .

From the review—

What connects these disparate events, it turns out, is a sinister organization
called the Thousand, made up of followers of the ancient Greek mathematician
and philosopher Pythagoras (yes, the same Pythagoras associated with
the triangle theorem that we learned in school).

As Mr. Guilfoile describes it, this organization is part Skull and Bones,
part Masonic lodge, part something much more twisted and nefarious….

The plot involves, in part,

… an eccentric artist’s mysterious masterwork, made up of thousands of
individually painted tiles that may cohere into an important message….

Not unlike the tiles in the Diamond Theory cover (see yesterday's post)
or, more aptly, the entries in this journal.
http://www.log24.com/log/pix10B/100827-GuilfoileTiles2.jpg

A brief prequel to the above dialogue—

http://www.log24.com/log/pix10B/100907-PatrickBlackburn-TheThousand.jpg

In lieu of songs, here is a passage by Patrick Blackburn
more relevant to the art of The Thousand

http://www.log24.com/log/pix10B/100907-PatrickBlackburn.jpg

See also the pagan fire leaping in Dancing at Lughnasa.

Friday, August 27, 2010

Mathematics and Narrative continued…

Filed under: General — m759 @ 5:01 pm

Narrative Sequence

In today's New York Times, Michiko Kakutani reviews a summer thriller by Kevin Guilfoile.  The Thousand  is in the manner of Dan Brown's 2003 The Da Vinci Code  or of Katherine Neville's 1988 The Eight .

From the review—

What connects these disparate events, it turns out, is a sinister organization called the Thousand, made up of followers of the ancient Greek mathematician and philosopher Pythagoras (yes, the same Pythagoras associated with the triangle theorem that we learned in school).

As Mr. Guilfoile describes it, this organization is part Skull and Bones, part Masonic lodge, part something much more twisted and nefarious….

The plot involves, in part,

… an eccentric artist’s mysterious masterwork, made up of thousands of individually painted tiles that may cohere into an important message….

Not unlike the tiles in the Diamond Theory cover (see yesterday's post) or, more aptly, the entries in this journal.

http://www.log24.com/log/pix10B/100827-GuilfoileTiles2.jpg

Thursday, August 26, 2010

Home from Home continued

Filed under: General,Geometry — m759 @ 2:02 pm

Or— Childhood's Rear End

This post was suggested by…

  1. Today's New York Times
    "For many artists Electric Lady has become a home away from home…. For Jimmy Page the personal imprimaturs of Hendrix and Mr. Kramer made all the difference when Led Zeppelin mixed parts of 'Houses of the Holy' there in 1972."
  2. The album cover pictures for "Houses of the Holy"
  3. Boleskine House, home to Aleister Crowley and (occasionally) to Jimmy Page.

Related material:

The Zeppelin album cover, featuring rear views of nude children, was shot at the Giant's Causeway.

From a page at led-zeppelin.org—

http://www.log24.com/log/pix10B/100826-Causeway.jpg

See also Richard Rorty on Heidegger

Safranski, the author of ''Schopenhauer and the Wild Years of Philosophy,'' never steps back and pronounces judgment on Heidegger, but something can be inferred from the German title of his book: ''Ein Meister aus Deutschland'' (''A Master From Germany''). Heidegger was, undeniably, a master, and was very German indeed. But Safranski's spine-chilling allusion is to Paul Celan's best-known poem, ''Death Fugue.'' In Michael Hamburger's translation, its last lines are:

death is a master from Germany his eyes are blue
he strikes you with leaden bullets his aim is true
a man lives in the house your golden hair Margarete
he sets his pack on us he grants us a grave in the air
he plays with the serpents and daydreams death is a master from Germany

your golden hair Margarete
your ashen hair Shulamith.

No one familiar with Heidegger's work can read Celan's poem without recalling Heidegger's famous dictum: ''Language is the house of Being. In its home man dwells.'' Nobody who makes this association can reread the poem without having the images of Hitler and Heidegger — two men who played with serpents and daydreamed — blend into each other. Heidegger's books will be read for centuries to come, but the smell of smoke from the crematories — the ''grave in the air'' — will linger on their pages.

Heidegger is the antithesis of the sort of philosopher (John Stuart Mill, William James, Isaiah Berlin) who assumes that nothing ultimately matters except human happiness. For him, human suffering is irrelevant: philosophy is far above such banalities. He saw the history of the West not in terms of increasing freedom or of decreasing misery, but as a poem. ''Being's poem,'' he once wrote, ''just begun, is man.''

For Heidegger, history is a sequence of ''words of Being'' — the words of the great philosophers who gave successive historical epochs their self-image, and thereby built successive ''houses of Being.'' The history of the West, which Heidegger also called the history of Being, is a narrative of the changes in human beings' image of themselves, their sense of what ultimately matters. The philosopher's task, he said, is to ''preserve the force of the most elementary words'' — to prevent the words of the great, houses-of-Being-building thinkers of the past from being banalized.

Related musical meditations—

Shine On (Saturday, April 21, 2007), Shine On, Part II, and Built (Sunday, April 22, 2007).

Related pictorial meditations—

http://www.log24.com/log/pix10B/100826-CameronBlog.jpg

The Giant's Causeway at Peter J. Cameron's weblog

and the cover illustration for Diamond Theory (1976)—

http://www.log24.com/log/pix10B/100826-CoverArt.jpg

The connection between these two images is the following from Cameron's weblog today

… as we saw, there are two different Latin squares of order 4;
one, but not the other, can be extended to a complete set
of 3 MOLS [mutually orthogonal Latin squares].

The underlying structures of the square pictures in the Diamond Theory cover are those of the two different Latin squares of order 4 mentioned by Cameron.

Connection with childhood—

The children's book A Wind in the Door, by Madeleine L'Engle. See math16.com. L'Engle's fantasies about children differ from those of Arthur C. Clarke and Led Zeppelin.

Thursday, July 1, 2010

Darkness at Seven

Filed under: General,Geometry — Tags: — m759 @ 7:00 pm

Hoax and Hype 
Four Years Ago Today—

Image-- Fanfiction-- Harry Potter and Plato's Diamond

There is Plato's diamond—

Image-- Plato's Diamond

and there is diamond theory

Google Search result for 'Diamond Theory'

… but there is no "Plato's Diamond Theory."

See, however, today's noon entry, "Plato's Code."

"You gotta be true to your code…" —Sinatra

Tuesday, May 4, 2010

Mathematics and Narrative, continued

Filed under: General,Geometry — Tags: , , — m759 @ 8:28 pm

Romancing the
Non-Euclidean Hyperspace

Backstory
Mere Geometry, Types of Ambiguity,
Dream Time, and Diamond Theory, 1937

The cast of 1937's 'King Solomon's Mines' goes back to the future

For the 1937 grid, see Diamond Theory, 1937.

The grid is, as Mere Geometry points out, a non-Euclidean hyperspace.

For the diamonds of 2010, see Galois Geometry and Solomon’s Cube.

Monday, May 3, 2010

An Ordinary Evening

Filed under: General,Geometry — Tags: — m759 @ 8:00 pm

“…geometrically organized, with the parts labeled”

— Ursula K. Le Guin on what she calls “the Euclidean utopia

“There is such a thing as a tesseract.”

Madeleine L’Engle

Related material– Diamond Theory, 1937

Thursday, April 22, 2010

Mere Geometry

Filed under: General,Geometry — Tags: — m759 @ 1:00 pm

Image-- semeion estin ou meros outhen

Image-- Euclid's definition of 'point'

Stanford Encyclopedia of Philosophy

Mereology (from the Greek μερος, ‘part’) is the theory of parthood relations: of the relations of part to whole and the relations of part to part within a whole. Its roots can be traced back to the early days of philosophy, beginning with the Presocratics….”

A non-Euclidean* approach to parts–

Image-- examples from Galois affine geometry

Corresponding non-Euclidean*
projective points —

Image-- The smallest Galois geometries

Richard J. Trudeau in The Non-Euclidean Revolution, chapter on “Geometry and the Diamond Theory of Truth”–

“… Plato and Kant, and most of the philosophers and scientists in the 2200-year interval between them, did share the following general presumptions:

(1) Diamonds– informative, certain truths about the world– exist.
(2) The theorems of Euclidean geometry are diamonds.

Presumption (1) is what I referred to earlier as the ‘Diamond Theory’ of truth. It is far, far older than deductive geometry.”

Trudeau’s book was published in 1987. The non-Euclidean* figures above illustrate concepts from a 1976 monograph, also called “Diamond Theory.”

Although non-Euclidean,* the theorems of the 1976 “Diamond Theory” are also, in Trudeau’s terminology, diamonds.

* “Non-Euclidean” here means merely “other than  Euclidean.” No violation of Euclid’s parallel postulate is implied.

Tuesday, March 16, 2010

Variations on a Theme

Filed under: General — Tags: — m759 @ 2:29 pm

Today's previous entry was "Gameplayers of the Academy."

More on this theme–

David Corfield in the March 2010
European Mathematical Society newsletter

    "Staying on the theme of games, the mathematician
Alexandre Borovik* once told me he thinks of mathematics
as a Massively-Multiplayer Online Role-Playing Game. If
so, it would show up very clearly the difference between
internal and external viewpoints. Inside the game people
are asking each other whether they were right about
something they encountered in it– 'When you entered
the dungeon did you see that dragon in the fireplace or
did I imagine it?' But someone observing them from the
outside wants to shout: 'You’re not dealing with anything
real. You’ve just got a silly virtual reality helmet on.' External
nominalists say the same thing, if more politely, to
mathematical practitioners. But in an important way the
analogy breaks down. Even if the players interact with
the game to change its functioning in unforeseen ways,
there were the original programmers who set the bounds
for what is possible by the choices they made. When they
release the next version of the game they will have made
changes to allow new things to happen. In the case of
mathematics, it’s the players themselves who make these
choices. There’s no further layer outside.
    What can we do then instead to pin down internal reality?"

*See previous references to Borovik in this journal.

Related material:

The Diamond Theory vs. the Story Theory of Truth,

Infantilizing the Audience, and

It's Still the Same Old Story…God of War III

Thursday, February 18, 2010

Theories: An Outline

Filed under: General,Geometry — Tags: , , , , — m759 @ 10:31 am

Truth, Geometry, Algebra

The following notes are related to A Simple Reflection Group of Order 168.

1. According to H.S.M. Coxeter and Richard J. Trudeau

“There is a pleasantly discursive treatment of Pontius Pilate’s unanswered question ‘What is truth?’.”

— Coxeter, 1987, introduction to Trudeau’s The Non-Euclidean Revolution

1.1 Trudeau’s Diamond Theory of Truth

1.2 Trudeau’s Story Theory of Truth

2. According to Alexandre Borovik and Steven H. Cullinane

2.1 Coxeter Theory according to Borovik

2.1.1 The Geometry–

Mirror Systems in Coxeter Theory

2.1.2 The Algebra–

Coxeter Languages in Coxeter Theory

2.2 Diamond Theory according to Cullinane

2.2.1 The Geometry–

Examples: Eightfold Cube and Solomon’s Cube

2.2.2 The Algebra–

Examples: Cullinane and (rather indirectly related) Gerhard Grams

Summary of the story thus far:

Diamond theory and Coxeter theory are to some extent analogous– both deal with reflection groups and both have a visual (i.e., geometric) side and a verbal (i.e., algebraic) side.  Coxeter theory is of course highly developed on both sides. Diamond theory is, on the geometric side, currently restricted to examples in at most three Euclidean (and six binary) dimensions. On the algebraic side, it is woefully underdeveloped. For material related to the algebraic side, search the Web for generators+relations+”characteristic two” (or “2“) and for generators+relations+”GF(2)”. (This last search is the source of the Grams reference in 2.2.2 above.)

Sunday, December 20, 2009

The Test

Filed under: General,Geometry — m759 @ 11:00 am

Dies Natalis of
Emil Artin

From the September 1953 Bulletin of the American Mathematical Society

Emil Artin, in a review of Éléments de mathématique, by N. Bourbaki, Book II, Algebra, Chaps. I-VII–

"We all believe that mathematics is an art. The author of a book, the lecturer in a classroom tries to convey the structural beauty of mathematics to his readers, to his listeners. In this attempt he must always fail. Mathematics is logical to be sure; each conclusion is drawn from previously derived statements. Yet the whole of it, the real piece of art, is not linear; worse than that its perception should be instantaneous. We all have experienced on some rare occasions the feeling of elation in realizing that we have enabled our listeners to see at a moment's glance the whole architecture and all its ramifications. How can this be achieved? Clinging stubbornly to the logical sequence inhibits the visualization of the whole, and yet this logical structure must predominate or chaos would result."

Art Versus Chaos

http://www.log24.com/log/pix09A/091220-ForakisHypercube.jpg
From an exhibit,
"Reimagining Space
"

The above tesseract (4-D hypercube)
sculpted in 1967 by Peter Forakis
provides an example of what Artin
called "the visualization of the whole."

For related mathematical details see
Diamond Theory in 1937.

"'The test?' I faltered, staring at the thing.
'Yes, to determine whether you can live
in the fourth dimension or only die in it.'"
Fritz Leiber, 1959

See also the Log24 entry for
Nov. 26,  2009, the date that
Forakis died.

"There is such a thing
as a tesseract."
Madeleine L'Engle, 1962

Wednesday, November 11, 2009

Triptych

Filed under: General,Geometry — Tags: , — m759 @ 10:31 am

Triptych: 'Look at the Birdie,' 'A Wind in the Door,' and 'Diamond Theory'

Related material:

"Harrowing cuteness,"* The Eden Express, and a search on "harrowing" in this journal

* Perhaps a typo, but still a memorable phrase.

Older Posts »

Powered by WordPress