The 16 Dirac matrices form six anticommuting sets of five matrices each (Arfken 1985, p. 214):
1. , , , , ,
2. , , , , ,
3. , , , , ,
4. , , , , ,
5. , , , , ,
6. , , , , .
SEE ALSO: Pauli Matrices
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 211-217, 1985.
Berestetskii, V. B.; Lifshitz, E. M.; and Pitaevskii, L. P. "Algebra of Dirac Matrices." §22 in Quantum Electrodynamics, 2nd ed. Oxford, England: Pergamon Press, pp. 80-84, 1982.
Bethe, H. A. and Salpeter, E. Quantum Mechanics of One- and Two-Electron Atoms. New York: Plenum, pp. 47-48, 1977.
Bjorken, J. D. and Drell, S. D. Relativistic Quantum Mechanics. New York: McGraw-Hill, 1964.
Dirac, P. A. M. Principles of Quantum Mechanics, 4th ed. Oxford, England: Oxford University Press, 1982.
Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 580, 1980.
Good, R. H. Jr. "Properties of Dirac Matrices." Rev. Mod. Phys. 27, 187-211, 1955.
Referenced on Wolfram|Alpha: Dirac Matrices
CITE THIS AS:
Weisstein, Eric W. "Dirac Matrices."
From MathWorld— A Wolfram Web Resource.
http://mathworld.wolfram.com/DiracMatrices.html
|