Log24

Saturday, September 15, 2018

Eidetic Reduction in Geometry

Filed under: G-Notes,General,Geometry — Tags: , , , , , — m759 @ 1:23 am
 

"Husserl is not the greatest philosopher of all times.
He is the greatest philosopher since Leibniz."

Kurt Gödel as quoted by Gian-Carlo Rota

Some results from a Google search —

Eidetic reduction | philosophy | Britannica.com

Eidetic reduction, in phenomenology, a method by which the philosopher moves from the consciousness of individual and concrete objects to the transempirical realm of pure essences and thus achieves an intuition of the eidos (Greek: “shape”) of a thing—i.e., of what it is in its invariable and essential structure, apart …

Phenomenology Online » Eidetic Reduction

The eidetic reduction: eidos. Method: Bracket all incidental meaning and ask: what are some of the possible invariate aspects of this experience? The research …

Eidetic reduction – New World Encyclopedia

Sep 19, 2017 – Eidetic reduction is a technique in Husserlian phenomenology, used to identify the essential components of the given phenomenon or experience.

Terminology: Eidos

For example —

The reduction of two-colorings and four-colorings of a square or cubic
array of subsquares or subcubes to lines, sets of lines, cuts, or sets of
cuts between the subsquares or subcubes.

See the diamond theorem and the eightfold cube.

* Cf. posts tagged Interality and Interstice.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress