Log24

Thursday, February 3, 2022

Through the Asian Looking Glass

Filed under: General — Tags: , , , — m759 @ 10:59 pm

The Miracle Octad Generator (MOG) —
The Conway-Sloane version of 1988:

Embedding Change, Illustrated

See also the 1976 R. T. Curtis version, of which the Conway-Sloane version
is a mirror reflection —

“There is a correspondence between the two systems
of 35 groups, which is illustrated in Fig. 4 (the MOG or
Miracle Octad Generator).”
—R.T. Curtis, “A New Combinatorial Approach to M24,” 
Mathematical Proceedings of the Cambridge Philosophical
Society
 (1976), 79: 25-42

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

Curtis’s 1976 Fig. 4. (The MOG.)

The Guy Embedding (named for M.J.T., not Richard K., Guy) states that
the MOG is naturally embedded in the codewords of the extended binary
Golay code, if those codewords are generated in lexicographic order.

MOG in LOG embedding

The above reading order for the MOG 4×6 array —
down the columns, from left to right — yields the Conway-Sloane MOG.

Since that is a mirror image of the original Curtis MOG, the reading order
yielding that  MOG is down the columns, from right to left.

"Traditionally, ChineseJapaneseVietnamese and Korean are written vertically
in columns going from top to bottom and ordered from right to left, with each
new column starting to the left of the preceding one." — Wikipedia

The Asian reading order has certain artistic advantages:

Four-Color Structures (Review)

Filed under: General — Tags: , , , — m759 @ 1:30 pm

Four-color decomposition applied to the 8-point binary affine space

Miracle Octad Generator — Analysis of Structure

For those who prefer art that is less abstract — Heartland Sutra.

Thursday, January 27, 2022

The Lexicographic Octad Generator

Filed under: General — Tags: , , , , — m759 @ 2:30 pm

A Lexicographic Basis for the Binary Golay Code:

Brouwer and Guven — "Long ago," in 
"The generating rank of the space of short vectors
in the Leech lattice mod 2," by 
Andries Brouwer & Cicek Guven,
https://www.win.tue.nl/~aeb/preprints/udim24a.pdf —

"One checks by computer" that this is a basis:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

(Copied from the Brouwer-Guven paper)

_________________________________________________

Adlam at Harvard — 
"Constructing the Extended Binary Golay Code,"
by Ben Adlam, Harvard University, August 9, 2011,
https://fliphtml5.com/llqx/wppz/basic —

Adlam also asserts, citing a reference, that this same
set of twelve vectors is a basis:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

(Copied from the Adlam paper)
__________________________________________________

Sources —

Background for Log24 posts on 'Embedding Change'

"One checks by computer" —

At http://magma.maths.usyd.edu.au/calc/ —

> V24 := VectorSpace(FiniteField(2), 24);
> G := sub< V24 |  
> [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],
> [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1],
> [0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1],
> [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1],
> [0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1],
> [0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0],
> [0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1],
> [0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,0],
> [0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,1,1,1,0,0,0],
> [0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1],
> [0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,0],
> [1,0,0,0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0,0]>;       
> Dimension(G);
12

Sunday, January 2, 2022

Annals of Modernism:  URGrid

Filed under: General — Tags: , — m759 @ 10:09 am

The above New Yorker  art illustrates the 2×4  structure of
an octad  in the Miracle Octad Generator  of R. T. Curtis.

Enthusiasts of simplicity may note how properties of this eight-cell
2×4  grid are related to those of the smaller six-cell 3×2  grid:

See Nocciolo  in this journal and . . .

Further reading on the six-set – eight-set relationship:

the diamond theorem correlation

Thursday, December 30, 2021

Antidote to Chaos?

Filed under: General — Tags: , , , , — m759 @ 3:57 pm

Some formal symmetry —

"… each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding  a 1×8 array
from Turyn's 1967 construction of the Golay code.

Folding a 2×4 Curtis array yet again  yields
the 2x2x2 eightfold cube ."

— Steven H. Cullinane on April 19, 2016 — The Folding.

Related art-historical remarks:

The Shape of Time  (Kubler, Yale U.P., 1962).

See yesterday's post The Thing 

Friday, October 8, 2021

Square Dance, 1979-2021

Sunday, May 30, 2021

Framed

Filed under: General — Tags: , — m759 @ 10:55 pm

Related reading: "Frame Analysis" in this  journal.

Update of Monday, May 31, 2021 —

For connoisseurs of bullshit —

"… it would have made for a memorable
photograph, the image preserved within
he confines of a four-by-six-inch print."

— Lincoln Perry on a remembered scene
in "If You Frame It Like That," an essay in
The American Scholar  dated March 2, 2020,
linked to today at Arts & Letters Daily
(A website whose motto is VERITAS ODIT
MORAS ,
 "Truth hates delay").

And then there is non-bullshit about a
four-by-six frame —

Bullshit addicts pondering the meaning of the letter "Q" may consult
"Q is for Quelle ," "Q is for Quality," and this journal on the above
American Scholar  date — March 2, 2020.

Saturday, May 8, 2021

A Tale of Two Omegas

Filed under: General — Tags: , — m759 @ 5:00 am

The Greek capital letter Omega, Ω, is customarily
used to denote a set that is acted upon by a group.
If the group is the affine group of 322,560
transformations of the four-dimensional
affine space over the two-element Galois field,
the appropriate Ω is the 4×4 grid above.

See the Cullinane diamond theorem .

If the group is the large Mathieu group  of
244,823,040 permutations of 24 things,
the appropriate Ω  is the 4×6 grid below.

See the Miracle Octad Generator  of R. T. Curtis.

Sunday, March 21, 2021

Mathematics and Narrative: The Unity

Filed under: General — Tags: , , , — m759 @ 10:25 pm

“To conquer, three boxes* have to synchronize and join together into the Unity.”

―Wonder Woman in Zack Snyder’s Justice League

See also The Unity of Combinatorics  and The Miracle Octad Generator.

* Cf.  Aitchison’s Octads

Thursday, February 25, 2021

Compare and Contrast

Filed under: General — Tags: , , , — m759 @ 12:31 pm

“… What is your dream—your ideal?  What is your News from Nowhere,
or, rather, What is the result of the little shake your hand has given to
the old pasteboard toy with a dozen bits of colored glass for contents?
And, most important of all, can you present it in a narrative or romance
which will enable me to pass an idle hour not disagreeably? How, for instance,
does it compare in this respect with other prophetic books on the shelf?”

— Hudson, W. H.. A Crystal Age  (p. 2). Open Road Media. Kindle Edition.

See as well . . .

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

Wednesday, January 27, 2021

Adoration of the Cube . . .

Filed under: General — Tags: , , , — m759 @ 2:53 am

Continues.

Related vocabulary —

See as well the word facet in this journal.

Analogously, one might write . . .

A Hiroshima cube  consists of 6 faces ,
each with 4 squares called facets ,
for a total of 24 facets. . . ."

(See Aitchison's Octads , a post of Feb. 19, 2020.)

Click image to enlarge.  Background: Posts tagged 'Aitchison.'"

Thursday, December 3, 2020

Brick Joke

The "bricks" in posts tagged Octad Group suggest some remarks
from last year's HBO "Watchmen" series —

Related material — The two  bricks constituting a 4×4 array, and . . .

"(this is the famous Kummer abstract configuration )"
Igor Dolgachev, ArXiv, 16 October 2019.

As is this

.

The phrase "octad group" does not, as one might reasonably
suppose, refer to symmetries of an octad (a "brick"), but
instead to symmetries of the above 4×4 array.

A related Broomsday event for the Church of Synchronology

Wednesday, October 7, 2020

Between Pyramid and Pentagon

Filed under: General — Tags: , , — m759 @ 12:34 am

The 35 small squares between the pyramid and the pentagon
in the above search result illustrate the role of finite geometry
in the Miracle Octad Generator  of R. T. Curtis.

'Then a miracle occurs' cartoon

Cartoon by S. Harris

Wednesday, September 2, 2020

Space Wars:  Sith Pyramid vs. Jedi Cube

Filed under: General — Tags: , — m759 @ 11:18 am

For the Sith Pyramid, see posts tagged Pyramid Game.
For the Jedi Cube, see posts tagged Enigma Cube
and cube-related remarks by Aitchison at Hiroshima.

This  post was suggested by two events of May 16, 2019 —
A weblog post by Frans Marcelis on the Miracle Octad
Generator of R. T. Curtis (illustrated with a pyramid),
and the death of I. M. Pei, architect of the Louvre pyramid.

That these events occurred on the same date is, of course,
completely coincidental.

Perhaps Dan Brown can write a tune to commemorate
the coincidence.

Thursday, August 27, 2020

The Complete Extended Binary Golay Code

Filed under: General — Tags: , , , , , — m759 @ 12:21 pm

All 4096 vectors in the code are at . . .

http://neilsloane.com/oadir/oa.4096.12.2.7.txt.

Sloane’s list* contains the 12 generating vectors
listed in 2011 by Adlam —

As noted by Conway in Sphere Packings, Lattices and Groups ,
these 4096 vectors, constructed lexicographically, are exactly
the same vectors produced by using the Conway-Sloane version
of the Curtis Miracle Octad Generator (MOG). Conway says this
lexico-MOG equivalence was first discovered by M. J. T. Guy.

(Of course, any  permutation of the 24 columns above produces
a version of the code qua  code. But because the lexicographic and
the MOG constructions yield the same result, that result is in
some sense canonical.)

See my post of July 13, 2020 —

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

For some related results, Google the twelfth generator:

* Sloane’s list is of the codewords as the rows of  an orthogonal array

See also http://neilsloane.com/oadir/.

Tuesday, July 28, 2020

For 7/28

Filed under: General — Tags: , — m759 @ 8:33 am

Miracle Octad Generator — Analysis of Structure

Friday, July 17, 2020

Theoretical as Well as Practical Value

Filed under: General — Tags: , , , , — m759 @ 12:25 am

See also The Lexicographic Octad Generator (LOG) (July 13, 2020)
and Octads and Geometry (April 23, 2020).

Monday, July 13, 2020

The Lexicographic Octad Generator (LOG)*

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

By Steven H. Cullinane, July 13, 2020

Background —


The Miracle Octad Generator (MOG)
of R. T. Curtis (Conway-Sloane version) —

Embedding Change, Illustrated

A basis for the Golay code, excerpted from a version of
the code generated in lexicographic order, in

"Constructing the Extended Binary Golay Code"
Ben Adlam
Harvard University
August 9, 2011:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

Below, each vector above has been reordered within
a 4×6 array, by Steven H. Cullinane, to form twelve
independent Miracle Octad Generator  vectors
(as in the Conway-Sloane SPLAG version above, in
which Curtis's earlier heavy bricks are reflected in
their vertical axes) —

01 02 03 04 05 . . . 20 21 22 23 24 -->

01 05 09 13 17 21
02 06 10 14 18 22
03 07 11 15 19 23
04 08 12 16 20 24

0000 0000 0000 0000 1111 1111 -->

0000 11
0000 11
0000 11
0000 11 as in the MOG.

0000 0000 0000 1111 0000 1111 -->

0001 01
0001 01
0001 01
0001 01 as in the MOG.

0000 0000 0011 0011 0011 0011 -->

0000 00
0000 00
0011 11
0011 11 as in the MOG.

0000 0000 0101 0101 0101 0101 -->

0000 00
0011 11
0000 00
0011 11 as in the MOG.

0000 0000 1001 0110 0110 1001 -->

0010 01
0001 10
0001 10
0010 01 as in the MOG.

0000 0011 0000 0011 0101 0110 -->

0000 00
0000 11
0101 01
0101 10 as in the MOG.

0000 0101 0000 0101 0110 0011 -->

0000 00
0101 10
0000 11
0101 01 as in the MOG.

0000 1001 0000 0110 0011 1010 -->

0100 01
0001 00
0001 11
0100 10 as in the MOG.

0001 0001 0001 0001 0111 1000 -->

0000 01
0000 10
0000 10
1111 10 as in the MOG.

0010 0001 0001 0010 0001 1101 -->

0000 01
0000 01
1001 00
0110 11 as in the MOG.

0100 0001 0001 0100 0100 1110 -->

0000 01
1001 11
0000 01
0110 00 as in the MOG.

1000 0001 0001 0111 0010 0100 -->

10 00 00
00 01 01
00 01 10
01 11 00 as in the MOG (heavy brick at center).

Update at 7:41 PM ET the same day —
A check of SPLAG shows that the above result is not new:
MOG in LOG embedding

And at 7:59 PM ET the same day —
Conway seems to be saying that at some unspecified point in the past,
M.J.T. Guy, examining the lexicographic Golay code,  found (as I just did)
that weight-8 lexicographic Golay codewords, when arranged naturally
in 4×6 arrays, yield certain intriguing visual patterns. If the MOG existed
at the time of his discovery, he would have identified these patterns as
those of the MOG.  (Lexicographic codes have apparently been
known since 1960, the MOG since the early 1970s.)

* Addendum at 4 AM ET  the next day —
See also Logline  (Walpurgisnacht 2013).

Saturday, May 2, 2020

Turyn’s Octad Theorem: The Next Level*

Filed under: General — Tags: , , — m759 @ 11:24 am

From  the obituary of a game inventor  who reportedly died
on Monday, February 25, 2013 —

” ‘He was hired because of the game,’ Richard Turyn,
a mathematician who worked at Sylvania, told
the Washington Post in a 2004 feature on Diplomacy.”

* For the theorem, see Wolfram Neutsch,  Coordinates .
(Published by de Gruyter, 1996. See pp. 761-766.)

Having defined (pp. 751-752) the Miracle Octad Generator (MOG)
as a 4×6 array to be used with Conway’s “hexacode,” Neutsch says . . .

“Apart from the three constructions of the Golay codes
discussed at length in this book (lexicographic and via
the MOG or the projective line), there are literally
dozens of alternatives. For lack of space, we have to
restrict our attention to a single example. It has been
discovered by Turyn and can be connected in a very
beautiful way with the Miracle Octad Generator….

To this end, we consider the natural splitting of the MOG into
three disjoint octads L, M, R (‘left’, ‘middle’, and ‘right’ octad)….”

— From page 761

“The theorem of Turyn”  is on page 764

Wednesday, April 29, 2020

Curtis at Pilsen, Thursday, July 5, 2018

Filed under: General — Tags: , , , , , — m759 @ 11:48 am

For an account by R. T. Curtis of how he discovered the Miracle Octad Generator,
see slides by Curtis, “Graphs and Groups,” from his talk on July 5, 2018, at the
Pilsen conference on algebraic graph theory, “Symmetry vs. Regularity: The first
50 years since Weisfeiler-Leman stabilization” (WL2018).

See also “Notes to Robert Curtis’s presentation at WL2018,” by R. T. Curtis.

Meanwhile, here  on July 5, 2018

Simultaneous perspective does not look upon language as a path because it is not the search for meaning that orients it. Poetry does not attempt to discover what there is at the end of the road; it conceives of the text as a series of transparent strata within which the various parts—the different verbal and semantic currents—produce momentary configurations as they intertwine or break apart, as they reflect each other or efface each other. Poetry contemplates itself, fuses with itself, and obliterates itself in the crystallizations of language. Apparitions, metamorphoses, volatilizations, precipitations of presences. These configurations are crystallized time: although they are perpetually in motion, they always point to the same hour—the hour of change. Each one of them contains all the others, each one is inside the others: change is only the oft-repeated and ever-different metaphor of identity.

— Paz, Octavio. The Monkey Grammarian
(Kindle Locations 1185-1191).
Arcade Publishing. Kindle Edition.

The 2018 Log24 post containing the above Paz quote goes on to quote
remarks by Lévi-Strauss. Paz’s phrase “series of transparent strata”
suggests a review of other remarks by Lévi-Strauss in the 2016 post
Key to  All Mythologies.

Thursday, April 23, 2020

Octads and Geometry

See the web pages octad.group and octad.us.

Related geometry (not the 759 octads, but closely related to them) —

The 4×6 rectangle of R. T. Curtis
illustrates the geometry of octads —

Counting symmetries with the orbit-stabilizer theorem

Curtis splits the 4×6 rectangle into three 4×2 "bricks" —

.

"In fact the construction enables us to describe the octads
in a very revealing manner. It shows that each octad,
other than Λ1, Λ2, Λ3, intersects at least one of these ' bricks' —
the 'heavy brick' – in just four points." . . . .

— R. T. Curtis (1976). "new combinatorial approach to M24,"
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42.

Sunday, March 15, 2020

The “Octad Group”

Filed under: General — Tags: , , , , — m759 @ 4:17 pm

The phrase “octad group” discussed here in a post
of March 7 is now a domain name, “octad.group,”
that leads to that post. Remarks by Conway and
Sloane now quoted there indicate how the group
that I defined in 1979 is embedded in the large
Mathieu group M24.

Related literary notes — Watson + Embedding.

Saturday, March 7, 2020

The “Octad Group” as Symmetries of the 4×4 Square

From "Mathieu Moonshine and Symmetry Surfing" —

(Submitted on 29 Sep 2016, last revised 22 Jan 2018)
by Matthias R. Gaberdiel (1), Christoph A. Keller (2),
and Hynek Paul (1)

(1)  Institute for Theoretical Physics, ETH Zurich
(2)  Department of Mathematics, ETH Zurich

https://arxiv.org/abs/1609.09302v2 —

"This presentation of the symmetry groups Gi  is
particularly well-adapted for the symmetry surfing
philosophy. In particular it is straightforward to
combine them into an overarching symmetry group G
by combining all the generators. The resulting group is
the so-called octad group

G = (Z2)4  A8 .

It can be described as a maximal subgroup of M24
obtained by the setwise stabilizer of a particular
'reference octad' in the Golay code, which we take
to be O= {3,5,6,9,15,19,23,24} ∈ 𝒢24. The octad
subgroup is of order 322560, and its index in M24
is 759, which is precisely the number of
different reference octads one can choose."

This "octad group" is in fact the symmetry group of the affine 4-space over GF(2),
so described in 1979 in connection not with the Golay code but with the geometry
of the 4×4 square.* Its nature as an affine group acting on the Golay code was
known long before 1979, but its description as an affine group acting on
the 4×4 square may first have been published in connection with the
Cullinane diamond theorem and Abstract 79T-A37, "Symmetry invariance in a
diamond ring
," by Steven H. Cullinane in Notices of the American Mathematical
Society
, February 1979, pages A-193, 194.

* The Galois tesseract .

Update of March 15, 2020 —

Conway and Sloane on the "octad group" in 1993 —

Wednesday, February 19, 2020

Aitchison’s Octads

Filed under: General — Tags: , , , , , — m759 @ 11:36 am

The 759 octads of the Steiner system S(5,8,24) are displayed
rather neatly in the Miracle Octad Generator of R. T. Curtis.

A March 9, 2018, construction by Iain Aitchison* pictures the
759 octads on the faces of a cube , with octad elements the
24 edges of a  cuboctahedron :

The Curtis octads are related to symmetries of the square.

See my webpage "Geometry of the 4×4 square" from March 2004.
Aitchison's p. 42 slide includes an illustration from that page —

Aitchison's  octads are instead related to symmetries of the cube.

Note that essentially the same model as Aitchison's can be pictured 
by using, instead of the 24 edges of a cuboctahedron, the 24 outer 
faces of subcubes in the eightfold cube .

The Eightfold Cube: The Beauty of Klein's Simple Group

   Image from Christmas Day 2005.

http://www.math.sci.hiroshima-u.ac.jp/branched/files/2018/
presentations/Aitchison-Hiroshima-2-2018.pdf
.
See also Aitchison in this journal.

 
 

Saturday, December 14, 2019

Colorful Tale

Filed under: General — Tags: , , , , — m759 @ 9:00 pm

(Continued)

Four-color correspondence in an eightfold array (eightfold cube unfolded)

The above image is from 

"A Four-Color Theorem:
Function Decomposition Over a Finite Field,"
http://finitegeometry.org/sc/gen/mapsys.html.

These partitions of an 8-set into four 2-sets
occur also in Wednesday night's post
Miracle Octad Generator Structure.

This  post was suggested by a Daily News
story from August 8, 2011, and by a Log24
post from that same date, "Organizing the
Mine Workers
" —

http://www.log24.com/log/pix11B/110808-DwarfsParade500w.jpg

Wednesday, December 11, 2019

Miracle Octad Generator Structure

Miracle Octad Generator — Analysis of Structure

(Adapted from Eightfold Geometry, a note of April 28, 2010.
See also the recent post Geometry of 6 and 8.)

Thursday, October 31, 2019

56 Triangles

The post “Triangles, Spreads, Mathieu” of October 29 has been
updated with an illustration from the Curtis Miracle Octad Generator.

Related material — A search in this journal for “56 Triangles.”

Saturday, September 21, 2019

Annals of Random Fandom

Filed under: General — Tags: , , , — m759 @ 5:46 pm

For Dan Brown fans …

… and, for fans of The Matrix, another tale
from the above death date: May 16, 2019 —

An illustration from the above
Miracle Octad Generator post:

Related mathematics — Tetrahedron vs. Square.

Thursday, July 25, 2019

Simple

Filed under: General — Tags: , — m759 @ 2:08 pm

From "110 in the Shade" —

   A quote from "Marshall, Meet Bagger," July 29, 2011:

"Time for you to see the field."

_________________________________________________________

  From a Log24 search for "To See the Field" —

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

Wednesday, July 24, 2019

The Batty Farewell

Filed under: General — Tags: , , — m759 @ 8:40 pm

Adam Rogers today on "Rutger Hauer in Blade Runner , playing
the artificial* person Roy Batty in his death scene." 

* See the word "Artifice" in this  journal,
   as well as Tears in Rain . . .

Game Over

The film "The Matrix," illustrated
Coordinates for generating the Miracle Octad Generator

and Adam Rogers in
    the previous post.

 

Frameworks

Filed under: General — Tags: , — m759 @ 7:50 pm

"Games provide frameworks that miniaturize
and represent idealized realities; so do narratives."

— Adam Rogers, Sunday, July 21, 2019, at Wired

Reviewing yesterday's post Word Magic

See also a technological framework (the microwave at left) vs. a
purely mathematical framework (the pattern on the towel at right)
in the image below:

170703-The_Forger-Christopher_Plummer-2015-500w.jpg (500×336)

For some backstory about the purely mathematical framework, 
see Octad Generator in this journal.

Saturday, May 4, 2019

The Chinese Jars of Shing-Tung Yau

Filed under: General — Tags: , , , , — m759 @ 11:00 am

The title refers to Calabi-Yau spaces.

T. S. Eliot —

Four Quartets

. . . Only by the form, the pattern,
Can words or music reach
The stillness, as a Chinese jar still
Moves perpetually in its stillness.

A less "cosmic" but still noteworthy code — The Golay code.

This resides in a 12-dimensional space over GF(2).

Related material from Plato and R. T. Curtis

Counting symmetries with the orbit-stabilizer theorem

A related Calabi-Yau "Chinese jar" first described in detail in 1905

Illustration of K3 surface related to Mathieu moonshine

A figure that may or may not be related to the 4x4x4 cube that
holds the classical  Chinese "cosmic code" — the I Ching

ftp://ftp.cs.indiana.edu/pub/hanson/forSha/AK3/old/K3-pix.pdf

Wednesday, May 1, 2019

The Medium and the Message

Filed under: General — Tags: , , — m759 @ 6:45 pm

In memory of Quentin Fiore — from a Log24 search for McLuhan,
an item related to today's previous post . . .

Related material from Log24 on the above-reported date of death —

See also, from a search for Analogy in this journal . . .

 .

Thursday, March 7, 2019

In Reality

Filed under: General — Tags: , — m759 @ 11:45 am

The previous post, quoting a characterization of the R. T. Curtis
Miracle Octad Generator , describes it as a "hand calculator ."

Other views 
 

A "natural diagram " —


 

A geometric object

Counting symmetries with the orbit-stabilizer theorem.

Tuesday, March 5, 2019

A Block Design 3-(16,4,1) as a Steiner Quadruple System:

Filed under: General — Tags: , , , — m759 @ 11:19 am

A Midrash for Wikipedia 

Midrash —

Related material —


________________________________________________________________________________

The Miracle Octad Generator (MOG), the affine 4-space over GF(2), and the Cullinane diamond theorem

Friday, March 1, 2019

Wikipedia Scholarship (Continued)

Filed under: General — Tags: , , , , — m759 @ 12:45 pm

This post continues a post from yesterday on the square model of
PG(3,2) that apparently first appeared (presented as such*) in . . .

Cullinane, "Symmetry invariance in a diamond ring,"
Notices of the AMS , pp. A193-194, Feb. 1979.

The Cullinane diamond theorem, AMS Notices, Feb. 1979, pp. A-193-194

Yesterday's Wikipedia presentation of the square model was today
revised by yet another anonymous author —

Revision history accounting for the above change from yesterday —

The jargon "rm OR" means "remove original research."

The added verbiage about block designs is a smokescreen having
nothing to do with the subject, which is square  representation
of the 35 points and lines.

* The 35 squares, each consisting of four 4-element subsets, appeared earlier
   in the Miracle Octad Generator (MOG) of R. T. Curtis (published in 1976).
  They were not at that time  presented as constituting a finite geometry, 
  either affine (AG(4,2)) or projective (PG(3,2)).

Friday, February 22, 2019

Back Issues of AMS Notices

Filed under: General — Tags: , — m759 @ 3:04 pm

From the online home page of the new March issue —

Feb. 22, 2019 — AMS Notices back issues now available.

For instance . . .

The Cullinane diamond theorem, AMS Notices, Feb. 1979, pp. A-193-194

Related material now at Wikipedia

The Miracle Octad Generator (MOG), the affine 4-space over GF(2), and the Cullinane diamond theorem

Thursday, February 7, 2019

Geometry of the 4×4 Square: The Kummer Configuration

Filed under: General — Tags: , , , — m759 @ 12:00 am

From the series of posts tagged Kummerhenge

A Wikipedia article relating the above 4×4 square to the work of Kummer —

A somewhat more interesting aspect of the geometry of the 4×4 square
is its relationship to the 4×6 grid underlying the Miracle Octad Generator
(MOG) of R. T. Curtis.  Hudson's 1905 classic Kummer's Quartic Surface
deals with the Kummer properties above and also foreshadows, without
explicitly describing, the finite-geometry properties of the 4×4 square as
a finite affine 4-space — properties that are of use in studying the Mathieu
group M24  with the aid of the MOG.

Sunday, December 2, 2018

Symmetry at Hiroshima

Filed under: G-Notes,General,Geometry — Tags: , , , , — m759 @ 6:43 am

A search this morning for articles mentioning the Miracle Octad Generator
of R. T. Curtis within the last year yielded an abstract for two talks given
at Hiroshima on March 8 and 9, 2018

http://www.math.sci.hiroshima-u.ac.jp/
branched/files/2018/abstract/Aitchison.txt

 

Iain AITCHISON

Title:

Construction of highly symmetric Riemann surfaces, related manifolds, and some exceptional objects, I, II

Abstract:

Since antiquity, some mathematical objects have played a special role, underpinning new mathematics as understanding deepened. Perhaps archetypal are the Platonic polyhedra, subsequently related to Platonic idealism, and the contentious notion of existence of mathematical reality independent of human consciousness.

Exceptional or unique objects are often associated with symmetry – manifest or hidden. In topology and geometry, we have natural base points for the moduli spaces of closed genus 2 and 3 surfaces (arising from the 2-fold branched cover of the sphere over the 6 vertices of the octahedron, and Klein's quartic curve, respectively), and Bring's genus 4 curve arises in Klein's description of the solution of polynomial equations of degree greater than 4, as well as in the construction of the Horrocks-Mumford bundle. Poincare's homology 3-sphere, and Kummer's surface in real dimension 4 also play special roles.

In other areas: we have the exceptional Lie algebras such as E8; the sporadic finite simple groups; the division algebras: Golay's binary and ternary codes; the Steiner triple systems S(5,6,12) and S(5,8,24); the Leech lattice; the outer automorphisms of the symmetric group S6; the triality map in dimension 8; and so on. We also note such as: the 27 lines on a cubic, the 28 bitangents of a quartic curve, the 120 tritangents of a sextic curve, and so on, related to Galois' exceptional finite groups PSL2(p) (for p= 5,7,11), and various other so-called `Arnol'd Trinities'.

Motivated originally by the `Eightfold Way' sculpture at MSRI in Berkeley, we discuss inter-relationships between a selection of these objects, illustrating connections arising via highly symmetric Riemann surface patterns. These are constructed starting with a labeled polygon and an involution on its label set.

Necessarily, in two lectures, we will neither delve deeply into, nor describe in full, contexts within which exceptional objects arise. We will, however, give sufficient definition and detail to illustrate essential inter-connectedness of those exceptional objects considered.

Our starting point will be simplistic, arising from ancient Greek ideas underlying atomism, and Plato's concepts of space. There will be some overlap with a previous talk on this material, but we will illustrate with some different examples, and from a different philosophical perspective.

Some new results arising from this work will also be given, such as an alternative graphic-illustrated MOG (Miracle Octad Generator) for the Steiner system S(5,8,24), and an alternative to Singerman – Jones' genus 70 Riemann surface previously proposed as a completion of an Arnol'd Trinity. Our alternative candidate also completes a Trinity whose two other elements are Thurston's highly symmetric 6- and 8-component links, the latter related by Thurston to Klein's quartic curve.

See also yesterday morning's post, "Character."

Update: For a followup, see the next  Log24 post.

Sunday, September 23, 2018

Three Times Eight

Filed under: General,Geometry — Tags: , , — m759 @ 9:21 am

The New York Times 's Sunday School today —

I prefer the three bricks of the Miracle Octad Generator —

Image result for mog miracle octad bricks

Wednesday, July 18, 2018

Doodle

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

From "The Educated Imagination: A Website Dedicated
to Northrop Frye
" —

"In one of the notebooks for his first Bible book Frye writes,

'For at least 25 years I’ve been preoccupied by
the notion of a key to all mythologies.' . . . .

Frye made a valiant effort to provide a key to all mythology,
trying to fit everything into what he called the Great Doodle. . . ."

From a different page at the same website —

Here Frye provides a diagram of four sextets.

I prefer the Miracle Octad Generator of R. T. Curtis —

Counting symmetries with the orbit-stabilizer theorem.

Monday, June 25, 2018

The Trials of Device

Filed under: General — Tags: , , — m759 @ 9:34 am

"A blank underlies the trials of device."

Wallace Stevens

"Designing with just a blank piece of paper is very quiet."

Kate Cullinane

Related material —

An image posted at 12 AM ET December 25, 2014:

The image stands for the
phrase "five by five,"
meaning "loud and clear."

Other posts featuring the above 5×5 square with some added structure:

Thursday, August 24, 2017

Maori Chess, Vol. 2

Filed under: General,Geometry — Tags: , — m759 @ 4:20 pm

This just in

From IMDb

From Radio New Zealand

"Genesis Potini died of a heart attack aged 46
on the 15th August 2011."

The 15th of August in New Zealand overlapped
the 14th of August in the U.S.A.

From a Log24 post, "Sunday Review," on August 14, 2011 —

Part II (from "Marshall, Meet Bagger," July 29):

"Time for you to see the field."

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

McLuhan was a Toronto Catholic philosopher.
For related views of a Montreal Catholic philosopher,
see the Saturday evening post.

Tuesday, May 2, 2017

Image Albums

Filed under: General,Geometry — Tags: , , , , , — m759 @ 1:05 pm

Pinterest boards uploaded to the new m759.net/piwigo

Diamond Theorem 

Diamond Theorem Correlation

Miracle Octad Generator

The Eightfold Cube

Six-Set Geometry

Diamond Theory Cover

Update of May 2 —

Four-Color Decomposition

Binary Galois Spaces

The Galois Tesseract

Update of May 3 —

Desargues via Galois

The Tetrahedral Model

Solomon's Cube

Update of May 8 —

Art Space board created at Pinterest

Wednesday, December 7, 2016

Spreads and Conwell’s Heptads

Filed under: General,Geometry — Tags: , , , — m759 @ 7:11 pm

For a concise historical summary of the interplay between
the geometry of an 8-set and that of a 16-set that is
involved in the the Miracle Octad Generator approach
to the large Mathieu group M24, see Section 2 of 

Alan R. Prince
A near projective plane of order 6 (pp. 97-105)
Innovations in Incidence Geometry
Volume 13 (Spring/Fall 2013).

This interplay, notably discussed by Conwell and
by Edge, involves spreads and Conwell’s heptads .

Update, morning of the following day (7:07 ET) — related material:

See also “56 spreads” in this  journal.

Friday, December 2, 2016

A Small Witt Design*

Filed under: General — Tags: , , — m759 @ 2:00 pm

The New York Times 's  online T Magazine  yesterday —

"A version of this article appears in print on December 4, 2016, on page
M263 of T Magazine with the headline: The Year of Magical Thinking."

* Thanks to Emily Witt for inadvertently publicizing the
   Miracle Octad Generator  of R. T. Curtis, which
   summarizes the 759 octads found in the large Witt design.

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: General,Geometry — Tags: , , , , , — m759 @ 10:00 pm

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface
.

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Ron Shaw on symplectic geometry and a linear complex in PG(3,2)

Tuesday, April 19, 2016

The Folding

Filed under: General,Geometry — Tags: , , , — m759 @ 2:00 pm

(Continued

A recent post about the eightfold cube  suggests a review of two
April 8, 2015, posts on what Northrop Frye called the ogdoad :

As noted on April 8, each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding  a 1×8 array from Turyn's
1967 construction of the Golay code.

Folding a 2×4 Curtis array yet again  yields the 2x2x2 eightfold cube .

Those who prefer an entertainment  approach to concepts of space
may enjoy a video (embedded yesterday in a story on theverge.com) —
"Ghost in the Shell: Identity in Space." 

Monday, April 11, 2016

Combinatorial Spider

Filed under: General,Geometry — Tags: , , , — m759 @ 1:16 pm

“Chaos is order yet undeciphered.”

— The novel The Double , by José Saramago,
on which the film "Enemy" was based

Some background for the 2012 Douglas Glover
"Attack of the Copula Spiders" book
mentioned in Sunday's Synchronicity Check

  • "A vision of Toronto as Hell" — Douglas Glover in the
    March 25, 2011, post Combinatorial Delight
  • For Louise Bourgeois — a post from the date of Galois's death—

http://www.log24.com/log/pix11B/110715-GaloisMemorial-Lg.jpg

  • For Toronto — Scene from a film that premiered there
    on Sept. 8, 2013:

Friday, April 8, 2016

Ogdoads by Curtis

Filed under: General,Geometry — Tags: , , , , , — m759 @ 12:25 pm

As was previously noted here, the construction of the Miracle Octad Generator
of R. T. Curtis in 1974 may have involved his "folding" the 1×8 octads constructed
in 1967 by Turyn into 2×4 form.

This results in a way of picturing a well-known correspondence (Conwell, 1910)
between partitions of an 8-set and lines of the projective 3-space PG(3,2).

For some background related to the "ogdoads" of the previous post, see
A Seventh Seal (Sept. 15, 2014).

Monday, February 1, 2016

Religious Note

Filed under: General — Tags: , — m759 @ 1:00 pm

See also the previous post.

Friday, November 13, 2015

A Connection between the 16 Dirac Matrices and the Large Mathieu Group



Note that the six anticommuting sets of Dirac matrices listed by Arfken
correspond exactly to the six spreads in the above complex of 15 projective
lines of PG(3,2) fixed under a symplectic polarity (the diamond theorem
correlation
 
). As I noted in 1986, this correlation underlies the Miracle
Octad Generator of R. T. Curtis, hence also the large Mathieu group.

References:

Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Related material:

The 6-set in my 1986 note above also appears in a 1996 paper on
the sixteen Dirac matrices by David M. Goodmanson —

Background reading:

Ron Shaw on finite geometry, Clifford algebras, and Dirac groups 
(undated compilation of publications from roughly 1994-1995)—

Saturday, September 19, 2015

Geometry of the 24-Point Circle

Filed under: General,Geometry — Tags: , , — m759 @ 1:13 am

The latest Visual Insight  post at the American Mathematical
Society website discusses group actions on the McGee graph,
pictured as 24 points arranged in a circle that are connected
by 36 symmetrically arranged edges.

Wikipedia remarks that

"The automorphism group of the McGee graph
is of order 32 and doesn't act transitively upon
its vertices: there are two vertex orbits of lengths
8 and 16."

The partition into 8 and 16 points suggests, for those familiar
with the Miracle Octad Generator and the Mathieu group M24,
the following exercise:

Arrange the 24 points of the projective line
over GF(23) in a circle in the natural cyclic order
, 1, 2, 3,  , 22, 0 ).  Can the McGee graph be
modeled by constructing edges in any natural way?

Image that may or may not be related to the extended binary Golay code and the large Witt design

In other words, if the above set of edges has no
"natural" connection with the 24 points of the
projective line over GF(23), does some other 
set of edges in an isomorphic McGee graph
have such a connection?

Update of 9:20 PM ET Sept. 20, 2015:

Backstory: A related question by John Baez
at Math Overflow on August 20.

Thursday, August 27, 2015

Tears in the Rain

Filed under: General — Tags: , , — m759 @ 12:21 pm

For a Norwegian historian

Game Over

The film "The Matrix," illustrated
Coordinates for generating the Miracle Octad Generator

Monday, January 12, 2015

Points Omega*

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

The previous post displayed a set of
24 unit-square “points” within a rectangular array.
These are the points of the
Miracle Octad Generator  of R. T. Curtis.

The array was labeled  Ω
because that is the usual designation for
a set acted upon by a group:

* The title is an allusion to Point Omega , a novel by
Don DeLillo published on Groundhog Day 2010.
See “Point Omega” in this journal.

Thursday, January 8, 2015

Gitterkrieg

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 am

(Continued)

From the abstract of a talk, "Extremal Lattices," at TU Graz
on Friday, Jan. 11, 2013, by Prof. Dr. Gabriele Nebe
(RWTH Aachen) —

"I will give a construction of the extremal even
unimodular lattice Γ of dimension 72  I discovered
in summer 2010. The existence of such a lattice
was a longstanding open problem. The
construction that allows to obtain the
minimum by computer is similar to the one of the
Leech lattice from E8 and of the Golay code from
the Hamming code (Turyn 1967)."

On an earlier talk by Nebe at Oberwolfach in 2011 —

"Exciting new developments were presented by
Gabriele Nebe (Extremal lattices and codes ) who
sketched the construction of her recently found
extremal lattice in 72 dimensions…."

Nebe's Oberwolfach slides include one on 
"The history of Turyn's construction" —

Nebe's list omits the year 1976. This was the year of
publication for "A New Combinatorial Approach to M24"
by R. T. Curtis, the paper that defined Curtis's 
"Miracle Octad Generator."

Turyn's 1967 construction, uncredited by Curtis, may have
been the basis for Curtis's octad-generator construction.

See Turyn in this journal.

Saturday, October 25, 2014

Foundation Square

Filed under: General,Geometry — Tags: , , , — m759 @ 2:56 pm

In the above illustration of the 3-4-5 Pythagorean triangle,
the grids on each side may be regarded as figures of
Euclidean  geometry or of Galois  geometry.

In Euclidean geometry, these grids illustrate a property of
the inner triangle.

In elementary Galois geometry, ignoring the connection with
the inner triangle, the grids may be regarded instead as
illustrating vector spaces over finite (i.e., Galois) fields.
Previous posts in this journal have dealt with properties of
the 3×3 and 4×4 grids.  This suggests a look at properties of
the next larger grid, the 5×5 array, viewed as a picture of the
two-dimensional vector space (or affine plane) over the finite
Galois field GF(5) (also known as ℤ5).

The 5×5 array may be coordinatized in a natural way, as illustrated
in (for instance) Matters Mathematical , by I.N. Herstein and
Irving Kaplansky, 2nd ed., Chelsea Publishing, 1978, p. 171:

See Herstein and Kaplansky for the elementary Galois geometry of
the 5×5 array.

For 5×5 geometry that is not so elementary, see…

Hafner's abstract:

We describe the Hoffman-Singleton graph geometrically, showing that
it is closely related to the incidence graph of the affine plane over ℤ5.
This allows us to construct all automorphisms of the graph.

The remarks of Brouwer on graphs connect the 5×5-related geometry discussed
by Hafner with the 4×4 geometry related to the Steiner system S(5,8,24).
(See the Miracle Octad Generator of R. T. Curtis and the related coordinatization
by Cullinane of the 4×4 array as a four-dimensional vector space over GF(2).)

Monday, September 15, 2014

The Eight

Filed under: General — Tags: , , , — m759 @ 12:00 pm

The image at the end of today’s previous post A Seventh Seal
suggests a review of posts on Katherine Neville’s The Eight .

Update of 1:25 PM ET on Sept. 15, 2014:

Neville’s longtime partner is neurosurgeon and cognitive theorist
Karl H. Pribram. A quote from one of his books:

See also Sense and Sensibility.

Sunday, August 31, 2014

Sunday School

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 am

The Folding

Cynthia Zarin in The New Yorker , issue dated April 12, 2004—

“Time, for L’Engle, is accordion-pleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”

The geometry of the 4×4 square array is that of the
3-dimensional projective Galois space PG(3,2).

This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc.  on
15 June 1974).  Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.

Some history: 

Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.

[Rewritten for clarity on Sept. 3, 2014.]

Sunday, August 24, 2014

Symplectic Structure…

In the Miracle Octad Generator (MOG):

The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.

The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.

Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.

Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements  in two pictures, each showing 10 of the
3-subsets.

This pair of pictures corresponds to the 20 Rosenhain tetrads  among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads  among the 35 lines.

See Rosenhain and Göpel tetrads in PG(3,2). Some further background:

Tuesday, June 17, 2014

Finite Relativity

Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 am

Continued.

Anyone tackling the Raumproblem  described here
on Feb. 21, 2014 should know the history of coordinatizations
of the 4×6 Miracle Octad Generator (MOG) array by R. T. Curtis
and J. H. Conway. Some documentation:

The above two images seem to contradict a statement by R. T. Curtis
in a 1989 paper.  Curtis seemed in that paper to be saying, falsely, that
his original 1973 and 1976 MOG coordinates were those in array M below—

This seemingly false statement involved John H. Conway's supposedly
definitive and natural canonical coordinatization of the 4×6 MOG
array by the symbols for the 24 points of the projective line over GF(23)—
{∞, 0, 1, 2, 3… , 21, 22}:

An explanation of the apparent falsity in Curtis's 1989 paper:

By "two versions of the MOG" Curtis seems to have meant merely that the
octads , and not the projective-line coordinates , in his earlier papers were
mirror images of the octads  that resulted later from the Conway coordinates,
as in the images below.

Thursday, April 24, 2014

The Inscape of 24

Filed under: General,Geometry — Tags: , — m759 @ 9:29 am

“The more intellectual, less physical, the spell of contemplation
the more complex must be the object, the more close and elaborate
must be the comparison the mind has to keep making between
the whole and the parts, the parts and the whole.”

— The Journals and Papers of Gerard Manley Hopkins ,
edited by Humphry House, 2nd ed. (London: Oxford
University Press, 1959), p. 126, as quoted by Philip A.
Ballinger in The Poem as Sacrament 

Related material from All Saints’ Day in 2012:

Talk pointing out that R. T. Curtis's 1974 construction of the Steiner system S(5,8,24) is taken from Turyn.

Thursday, April 3, 2014

Better Late…

Filed under: General — Tags: , — m759 @ 4:00 pm

Last Sunday’s sermon from Princeton’s Nassau Presbyterian
Church is now online. It reveals the answer to the “One Thing”
riddle posted at the church site Sunday:

IMAGE- Sermon topic 'One Thing Do I Know'

The online sermon has been retitled “One Thing I Do Know.”
A related search yields a relevant example of the original
Yoda-like word order:

IMAGE- 'One thing do I know' in a religious book from 1843

From the online sermon —

“What comes into view is the bombarding cynicism,
the barrage of mistrust and questions, and the
flat out trial of the man born blind. The
interrogation coming not because of the miracle
that gave the man sight….”

Related material — “Then a miracle occurs.”

Friday, March 28, 2014

Blazing Thule

Filed under: General — Tags: , , — m759 @ 10:20 am

The title is suggested by a new novel (see cover below),
and by an unwritten book by Nabokov —

Siri Hustvedt, 'The Blazing World'.

Related material:

Friday, March 21, 2014

Three Constructions of the Miracle Octad Generator

Filed under: General,Geometry — Tags: , , , , — m759 @ 12:24 pm

IMAGE- Two constructions, by Turyn/Curtis, and by Conway, of the Miracle Octad Generator

See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.

Related material on the Turyn-Curtis construction
from the University of Cambridge —

— Slide by "Dr. Parker" — Apparently Richard A. Parker —
Lecture 4, "Discovering M24," in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on "Sporadic and Related Groups."
See also the Parker lectures of 2012-2013 on the same topic.

A third construction of Curtis's 35  4×6  1976 MOG arrays would use
Cullinane's analysis of the 4×4 subarrays' affine and projective structure,
and point out the fact that Conwell's 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis's 1976 MOG.

See The Diamond Theorem,  Finite RelativityGalois Space,
Generating the Octad Generator, and The Klein Correspondence.

Update of March 22-March 23 —

Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1's, all other squares as 0's) of the 35  4×6 arrays of the 1976
Curtis MOG would then reveal*  the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35  MOG arrays.  For more
details of this "by-hand" construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction (such as Turyn's), not  by hand, of the
extended binary Golay code. See the Brouwer preprint quoted above.

* "Then a miracle occurs," as in the classic 1977 Sidney Harris cartoon.

Illustration of array addition from March 23 —

IMAGE- Discovery of the S_3 action on bricks in the Conwell-Cullinane 'by-hand' approach to octad-building

Sunday, March 9, 2014

The Story Creeps Up

Filed under: General,Geometry — Tags: , , — m759 @ 11:01 pm

For Women’s History Month —

Conclusion of “The Storyteller,” a story
by Cynthia Zarin about author Madeleine L’Engle—

See also the exercise on the Miracle Octad Generator (MOG) at the end of
the previous post, and remarks on the MOG by Emily Jennings (non -fiction)
on All Saints’ Day, 2012 (the date the L’Engle quote was posted here).

Hesse’s Table

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 pm

From “Quartic Curves and Their Bitangents,” by
Daniel Plaumann, Bernd Sturmfels, and Cynthia Vinzant,
arXiv:1008.4104v2  [math.AG] 10 Jan 2011 —

The table mentioned (from 1855) is…

Exercise: Discuss the relationship, if any, to
the Miracle Octad Generator of R. T. Curtis.

Friday, February 21, 2014

Raumproblem*

Despite the blocking of Doodles on my Google Search
screen, some messages get through.

Today, for instance —

"Your idea just might change the world.
Enter Google Science Fair 2014"

Clicking the link yields a page with the following image—

IMAGE- The 24-triangle hexagon

Clearly there is a problem here analogous to
the square-triangle coordinatization problem,
but with the 4×6 rectangle of the R. T. Curtis
Miracle Octad Generator playing the role of
the square.

I once studied this 24-triangle-hexagon
coordinatization problem, but was unable to
obtain any results of interest. Perhaps
someone else will have better luck.

* For a rather different use of this word,
see Hermann Weyl in the Stanford
Encyclopedia of Philosophy.

Friday, December 20, 2013

For Emil Artin

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

(On His Dies Natalis )

An Exceptional Isomorphism Between Geometric and
Combinatorial Steiner Triple Systems Underlies 
the Octads of the M24 Steiner System S(5, 8, 24).

This is asserted in an excerpt from… 

"The smallest non-rank 3 strongly regular graphs
​which satisfy the 4-vertex condition"
by Mikhail Klin, Mariusz Meszka, Sven Reichard, and Alex Rosa,
BAYREUTHER MATHEMATISCHE SCHRIFTEN 73 (2005), 152-212—

(Click for clearer image)

Note that Theorem 46 of Klin et al.  describes the role
of the Galois tesseract  in the Miracle Octad Generator
of R. T. Curtis (original 1976 version). The tesseract
(a 4×4 array) supplies the geometric  part of the above
exceptional geometric-combinatorial isomorphism.

Saturday, December 14, 2013

Beautiful Mathematics

Filed under: General,Geometry — Tags: , , , , — m759 @ 7:59 pm

The title, which I dislike, is taken from a 2011 publication
of the MAA, also sold by Cambridge University Press.

Some material relevant to the title adjective:

"For those who have learned something of higher mathematics, nothing could be more natural than to use the word 'beautiful' in connection with it. Mathematical beauty, like the beauty of, say, a late Beethoven quartet, arises from a combination of strangeness and inevitability. Simply defined abstractions disclose hidden quirks and complexities. Seemingly unrelated structures turn out to have mysterious correspondences. Uncanny patterns emerge, and they remain uncanny even after being underwritten by the rigor of logic."— Jim Holt, opening of a book review in the Dec. 5, 2013, issue of The New York Review of Books

Some relevant links—

The above list was updated on Jan. 31, 2014, to include the
"Strangeness" and "Hidden quirks" links.  See also a post of
​Jan. 31, 2014.

Update of March 9, 2014 —

The link "Simply defined abstractions" is to the construction of the Steiner
system S(5, 8, 24) described by R. T. Curtis in his 1976 paper defining the
Miracle Octad Generator. It should be noted that this construction is due
to Richard J. Turyn, in a 1967 Sylvania research report. (See Emily Jennings's
talk of 1 Nov. 2012.) Compare  the Curtis construction, written in 1974,
with the Turyn construction of 1967 as described in Sphere Packings, Lattices
and Groups , by J. H. Conway and N. J. A. Sloane (first published in 1988).

Wednesday, September 4, 2013

Moonshine

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the 
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.) 

A Google search documents the moonshine
relating Rosenhain's and Göpel's 19th-century work
in complex analysis to M24  via the book of Hudson and
the geometry of the 4×4 square.

Monday, August 12, 2013

Form

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The Galois tesseract is the basis for a representation of the smallest
projective 3-space, PG(3,2), that differs from the representation at
Wolfram Demonstrations Project. For the latter, see yesterday’s post.

The tesseract representation underlies the diamond theorem, illustrated
below in its earliest form, also from the above February 1977 article—

IMAGE- Steven H. Cullinane, diamond theorem, from 'Diamond Theory,' Computer Graphics and Art, Vol. 2 No. 1, Feb. 1977, pp. 5-7

As noted in a more recent version, the group described by
the diamond theorem is also the group of the 35 square
patterns within the 1976 Miracle Octad Generator  (MOG) of
R. T. Curtis.

Monday, August 5, 2013

Wikipedia Updates

Filed under: General,Geometry — Tags: , — m759 @ 12:30 pm

I added links today in the following Wikipedia articles:

The links will probably soon be deleted,
but it seemed worth a try.

Tuesday, July 9, 2013

Vril Chick

Filed under: General,Geometry — Tags: , , — m759 @ 4:30 am

Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo

Profile picture for "Jo Lyxe" (Josefine Lyche) at Vimeo

Compare to an image of Vril muse Maria Orsitsch.

From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,
I DE LANGE NÆTTER —

Josefine Lyche
Born in 1973 in Bergen, Norway.
Lives and works in Oslo and Berlin.

Keywords (to help place my artwork in the
proper context): Aliens, affine geometry, affine
planes, affine spaces, automorphisms, binary
codes, block designs, classical groups, codes,
coding theory, collineations, combinatorial,
combinatorics, conjugacy classes, the Conwell
correspondence, correlations, Cullinane,
R. T. Curtis, design theory, the diamond theorem,
diamond theory, duads, duality, error correcting
codes, esoteric, exceptional groups,
extraterrestrials, finite fields, finite geometry, finite
groups, finite rings, Galois fields, generalized
quadrangles, generators, geometry, GF(2),
GF(4), the (24,12) Golay code, group actions,
group theory, Hadamard matrices, hypercube,
hyperplanes, hyperspace, incidence structures,
invariance, Karnaugh maps, Kirkman’s schoolgirls
problem, Latin squares, Leech lattice, linear
groups, linear spaces, linear transformations,
Magick, Mathieu groups, matrix theory, Meno,
Miracle Octad Generator, MOG, multiply transitive
groups, occultism, octahedron, the octahedral
group, Orsic, orthogonal arrays, outer automorphisms,
parallelisms, partial geometries,
permutation groups, PG(3,2), Plato, Platonic
solids, polarities, Polya-Burnside theorem, projective
geometry, projective planes, projective
spaces, projectivities, Pythagoras, reincarnation,
Reed-Muller codes, the relativity problem,
reverse engineering, sacred geometry, Singer
cycle, skew lines, Socrates, sporadic simple
groups, Steiner systems, Sylvester, symmetric,
symmetry, symplectic, synthemes, synthematic,
Theosophical Society tesseract, Tessla, transvections,
Venn diagrams, Vril society, Walsh
functions, Witt designs.

(See also the original catalog page.)

Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.

For some background, see (for instance) 
Conspiracy Theories and Secret Societies for Dummies .

Tuesday, July 2, 2013

Diamond Theorem Updates

Filed under: General,Geometry — Tags: , , — m759 @ 8:00 pm

My diamond theorem articles at PlanetMath and at 
Encyclopedia of Mathematics have been updated
to clarify the relationship between the graphic square
patterns of the diamond theorem and the schematic
square patterns of the Curtis Miracle Octad Generator.

Tuesday, May 28, 2013

Codes

The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Sunday, May 19, 2013

Priority Claim

From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):

"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis
in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."

[Cur89] reference:
 R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 
32 (1989), 345-353 (received on
July 20, 1987).

— Anne Taormina and Katrin Wendland,
    "The overarching finite symmetry group of Kummer
      surfaces in the Mathieu group 24 ,"
     arXiv.org > hep-th > arXiv:1107.3834

"First mentioned by Curtis…."

No. I claim that to the best of my knowledge, the 
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.

Update of the above paragraph on July 6, 2013—

No. The vector space structure was described by
(for instance) Peter J. Cameron in a 1976
Cambridge University Press book —
Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pages 59 and 60.

The vector space structure as it occurs in a 4×4 array
of the sort that appears in the Curtis Miracle Octad
Generator may first have been pointed out by me,
Steven H. Cullinane,
 in an AMS abstract submitted in
October 1978, some nine years before the Curtis article.

See Notes on Finite Geometry for some background.

See in particular The Galois Tesseract.

For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).

Sunday, April 28, 2013

The Octad Generator

Filed under: General,Geometry — Tags: , , , , — m759 @ 11:00 pm

… And the history of geometry  
Desargues, Pascal, Brianchon and Galois
in the light of complete n-points in space.

(Rewritten for clarity at about 10 AM ET April 29, with quote from Dowling added.
Updated with a reference to a Veblen and Young exercise (on p. 53) on April 30.)

Veblen and Young, Projective Geometry, Vol. I ,
Ginn and Company, 1910, page 39:

"The Desargues configuration. A very important configuration
is obtained by taking the plane section of a complete space five-point."

Each of figures 14 and 15 above has 15 points and 20 lines.
The Desargues configuration within each figure is denoted by
10 white points and 10 solid lines, with 3 points on each line and
3 lines on each point. Black  points and dashed  lines indicate the
complete space five-point and lines connecting it to the plane section
containing the Desargues configuration.

In a 1915 University of Chicago doctoral thesis, Archibald Henderson
used a complete space six -point to construct a configuration of
15 points and 20 lines in the context not of Desargues '  theorem, but
rather of Brianchon 's theorem and of the Pascal  hexagram.
Henderson's 1915 configuration is, it turns out, isomorphic to that of
the 15 points and 20 lines in the configuration constructed via a
complete space five -point five years earlier by Veblen and Young.
(See, in Veblen and Young's 1910 Vol. I, exercise 11, page 53:
"A plane section of a 6-point in space can  be considered as
3 triangles perspective in pairs from 3 collinear points with
corresponding sides meeting in 3 collinear points." This is the
large  Desargues configuration. See Classical Geometry in Light of 
Galois Geometry
.)

For this large  Desargues configuration see April 19.
For Henderson's complete six –point, see The Six-Set (April 23).
That post ends with figures relating the large  Desargues configuration
to the Galois  geometry PG(3,2) that underlies the Curtis
Miracle Octad Generator  and the large Mathieu group M24 —

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

See also Note on the MOG Correspondence from April 25, 2013.

That correspondence was also discussed in a note 28 years ago, on this date in 1985.

Thursday, April 25, 2013

Rosenhain and Göpel Revisited

Filed under: General,Geometry — Tags: , , , — m759 @ 5:24 pm

Some historical background for today's note on the geometry
underlying the Curtis Miracle Octad Generator (MOG):

IMAGE- Bateman in 1906 on Rosenhain and Göpel tetrads

The above incidence diagram recalls those in today's previous post
on the MOG, which is used to construct the large Mathieu group M24.

For some related material that is more up-to-date, search the Web
for Mathieu + Kummer .

Saturday, April 6, 2013

Pascal via Curtis

Filed under: General,Geometry — Tags: , , , — m759 @ 9:17 am

Click image for some background.

IMAGE- The Miracle Octad Generator (MOG) of R.T. Curtis

Shown above is a rearranged version of the
Miracle Octad Generator (MOG) of R. T. Curtis
("A new combinatorial approach to M24,"
Math. Proc. Camb. Phil. Soc., 79 (1976), 25-42.)

The 8-subcell rectangles in the left part of the figure may be
viewed as illustrating (if the top left subcell is disregarded)
the thirty-five 3-subsets of a 7-set.

Such a view relates, as the remarks below show, the
MOG's underlying Galois geometry, that of PG(3,2), to
the hexagrammum mysticum  of Pascal.

On Danzer's 354 Configuration:

IMAGE- Branko Grünbaum on Danzer's configuration
 

"Combinatorially, Danzer’s configuration can be interpreted
as defined by all 3-sets and all 4-sets that can be formed
by the elements of a 7-element set; each 'point' is represented
by one of the 3-sets, and it is incident with those lines
(represented by 4-sets) that contain the 3-set."

— Branko Grünbaum, "Musings on an Example of Danzer's,"
European Journal of Combinatorics , 29 (2008),
pp. 1910–1918 (online March 11, 2008)

"Danzer's configuration is deeply rooted in
Pascal's Hexagrammum Mysticum ."

— Marko Boben, Gábor Gévay, and Tomaž Pisanski,
"Danzer's Configuration Revisited," arXiv.org, Jan. 6, 2013

For an approach to such configurations that differs from
those of Grünbaum, Boben, Gévay, and Pisanski, see

Classical Geometry in Light of Galois Geometry.

Grünbaum has written little about Galois geometry.
Pisanski has recently touched on the subject;
see Configurations in this journal (Feb. 19, 2013).

Wednesday, February 13, 2013

Form:

Filed under: General,Geometry — Tags: , , , — m759 @ 9:29 pm

Story, Structure, and the Galois Tesseract

Recent Log24 posts have referred to the 
"Penrose diamond" and Minkowski space.

The Penrose diamond has nothing whatever
to do with my 1976 monograph "Diamond Theory,"
except for the diamond shape and the connection
of the Penrose diamond to the Klein quadric—

IMAGE- The Penrose diamond and the Klein quadric

The Klein quadric occurs in the five-dimensional projective space
over a field. If the field is the two-element Galois field GF(2), the
quadric helps explain certain remarkable symmetry properties 
of the R. T. Curtis Miracle Octad Generator  (MOG), hence of
the large Mathieu group M24. These properties are also 
relevant to the 1976 "Diamond Theory" monograph.

For some background on the quadric, see (for instance)

IMAGE- Stroppel on the Klein quadric, 2008

See also The Klein Correspondence,
Penrose Space-Time, and a Finite Model
.

Related material:

"… one might crudely distinguish between philosophical
and mathematical motivation. In the first case one tries
to convince with a telling conceptual story; in the second
one relies more on the elegance of some emergent
mathematical structure. If there is a tradition in logic
it favours the former, but I have a sneaking affection for
the latter. Of course the distinction is not so clear cut.
Elegant mathematics will of itself tell a tale, and one with
the merit of simplicity. This may carry philosophical
weight. But that cannot be guaranteed: in the end one
cannot escape the need to form a judgement of significance."

– J. M. E. Hyland. "Proof Theory in the Abstract." (pdf)
Annals of Pure and Applied Logic 114, 2002, 43-78.

Those who prefer story to structure may consult 

  1. today's previous post on the Penrose diamond
  2. the remarks of Scott Aaronson on August 17, 2012
  3. the remarks in this journal on that same date
  4. the geometry of the 4×4 array in the context of M24.

Monday, November 19, 2012

Poetry and Truth

From today's noon post

"In all his poems with all their enchantments
for the poet himself, there is the final enchantment
that they are true. The significance of the poetic act
then is that it is evidence. It is instance and illustration.
It is an illumination of a surface,
the movement of a self in the rock.
Above all it is a new engagement with life.
It is that miracle to which the true faith of the poet
attaches itself."

— Wallace Stevens at Bard College, March 30, 1951

Stevens also said at Bard that

"When Joan of Arc said: 

Have no fear: what I do, I do by command.
My brothers of Paradise tell me what I have to do.

these words were the words of an hallucination.
No matter what her brothers of Paradise drove her to do,
what she did was never a poetic act of faith in reality
because it could not be."

There are those who would dispute this.

Some related material:

"Ageometretos me eisito."—
"Let no one ignorant of geometry enter."—
Said to be a saying of Plato, part of the
seal of the American Mathematical Society—

A poetic approach to geometry—

"A surface" and "the rock," from All Saints' Day, 2012

Spaces as Hypercubes

— and from 1981—

http://www.log24.com/log/pix09/090217-SolidSymmetry.jpg

Some mathematical background for poets in Purgatory—

"… the Klein correspondence underlies Conwell's discussion 
of eight heptads. These play an important role in another
correspondence, illustrated in the Miracle Octad Generator
of R. T. Curtis, that may be used to picture actions
of the large Mathieu group M24."

Friday, August 17, 2012

Hidden

Filed under: General,Geometry — Tags: , — m759 @ 12:25 pm

Detail from last night's 1.3 MB image
"Search for the Lost Tesseract"—

The lost tesseract appears here on the cover of Wittgenstein's
Zettel  and, hidden in the form of a 4×4 array, as a subarray 
of the Miracle Octad Generator on the cover of Griess's
Twelve Sporadic Groups  and in a figure illustrating
the geometry of logic.

Another figure—

IMAGE- Serbian chess innovator Svetozar Gligoric dies at 89

Gligoric died in Belgrade, Serbia, on Tuesday, August 14.

From this journal on that date

"Visual forms, he thought, were solutions to 
specific problems that come from specific needs."

— Michael Kimmelman in The New York Times
    obituary of E. H. Gombrich (November 7th, 2001)

Saturday, April 28, 2012

Play and Interplay

Filed under: General — Tags: , — m759 @ 7:59 pm

The last paragraph of the previous post
(as updated at about 7:20 PM today)
suggests a search for the phrase
"play and interplay" that yields…

"He had accepted the world as the world,
but now he was comprehending the
organization of it, the play and interplay
of force and matter."

Martin Eden  by Jack London

This in turn suggests a review of the film "Queen to Play" —

(Background: Nabokov + Patterns.)

The review announces showings of the film at Clark University
in Worcester, Mass., on Sunday, October 30, 2011.

See also this journal on that date— "The Idea Idea"— and
references to a knight figure from today's  date in 1985.

Wednesday, October 26, 2011

Erlanger and Galois

Filed under: General,Geometry — Tags: , , , — m759 @ 8:00 pm

Peter J. Cameron yesterday on Galois—

"He was killed in a duel at the age of 20…. His work languished for another 14 years until Liouville published it in his Journal; soon it was recognised as the foundation stone of modern algebra, a position it has never lost."

Here Cameron is discussing Galois theory, a part of algebra. Galois is known also as the founder* of group theory, a more general subject.

Group theory is an essential part of modern geometry as well as of modern algebra—

"In der Galois'schen Theorie, wie hier, concentrirt sich das Interesse auf Gruppen von Änderungen. Die Objecte, auf welche sich die Änderungen beziehen, sind allerdings verschieden; man hat es dort mit einer endlichen Zahl discreter Elemente, hier mit der unendlichen Zahl von Elementen einer stetigen Mannigfaltigkeit zu thun."

— Felix Christian Klein, Erlanger Programm , 1872

("In the Galois theory, as in ours, the interest centres on groups of transformations. The objects to which the transformations are applied are indeed different; there we have to do with a finite number of discrete elements, here with the infinite number of elements in a continuous manifoldness." (Translated by M.W. Haskell, published in Bull. New York Math. Soc. 2, (1892-1893), 215-249))

Related material from Hermann Weyl, Symmetry , Princeton University Press, 1952 (paperback reprint of 1982, pp. 143-144)—

"A field is perhaps the simplest algebraic structure we can invent. Its elements are numbers…. Space is another example of an entity endowed with a structure. Here the elements are points…. What we learn from our whole discussion and what has indeed become a guiding principle in modern mathematics is this lesson: Whenever you have to do with a structure-endowed entity  Σ try to determine is group of automorphisms , the group of those element-wise transformations which leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution of Σ in this way."

For a simple example of a group acting on a field (of 8 elements) that is also a space (of 8 points), see Generating the Octad Generator and Knight Moves.

* Joseph J. Rotman, An Introduction to the Theory of Groups , 4th ed., Springer, 1994, page 2

Saturday, September 3, 2011

The Galois Tesseract (continued)

A post of September 1, The Galois Tesseract, noted that the interplay
of algebraic and geometric properties within the 4×4 array that forms
two-thirds of the Curtis Miracle Octad Generator (MOG) may first have
been described by Cullinane (AMS abstract 79T-A37, Notices , Feb. 1979).

Here is some supporting material—

http://www.log24.com/log/pix11B/110903-Carmichael-Conway-Curtis.jpg

The passage from Carmichael above emphasizes the importance of
the 4×4 square within the MOG.

The passage from Conway and Sloane, in a book whose first edition
was published in 1988, makes explicit the structure of the MOG's
4×4 square as the affine 4-space over the 2-element Galois field.

The passage from Curtis (1974, published in 1976) describes 35 sets
of four "special tetrads" within the 4×4 square of the MOG. These
correspond to the 35 sets of four parallel 4-point affine planes within
the square. Curtis, however, in 1976 makes no mention of the affine
structure, characterizing his 140 "special tetrads" rather by the parity
of their intersections with the square's rows and columns.

The affine structure appears in the 1979 abstract mentioned above—

IMAGE- An AMS abstract from 1979 showing how the affine group AGL(4,2) of 322,560 transformations acts on a 4x4 square

The "35 structures" of the abstract were listed, with an application to
Latin-square orthogonality, in a note from December 1978

IMAGE- Projective-space structure and Latin-square orthogonality in a set of 35 square arrays

See also a 1987 article by R. T. Curtis—

Further elementary techniques using the miracle octad generator, by R. T. Curtis. Abstract:

“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”

(Received July 20 1987)

Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353

* For instance:

Algebraic structure in the 4x4 square, by Cullinane (1985) and Curtis (1987)

Update of Sept. 4— This post is now a page at finitegeometry.org.

Sunday, August 14, 2011

Sunday Review

Filed under: General,Geometry — Tags: , , — m759 @ 3:33 pm

The Sunday New York Times  today—

http://www.log24.com/log/pix11B/110814-GablerNYT500w.jpg

This suggests…

The Elusive Small Idea—

Part I:

McLuhan and the Seven Snow Whites

http://www.log24.com/log/pix11B/110814-GablerNYT500w7white.jpg

Part II (from "Marshall, Meet Bagger," July 29):

"Time for you to see the field."

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

McLuhan was a Toronto Catholic philosopher.
For related views of a Montreal Catholic philosopher,
see the Saturday evening post.

Saturday, August 6, 2011

Correspondences

Filed under: General,Geometry — Tags: , , , , , , — m759 @ 2:00 pm

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité….

— Baudelaire, “Correspondances

From “A Four-Color Theorem”

http://www.log24.com/log/pix11B/110806-Four_Color_Correspondence.gif

Figure 1

Note that this illustrates a natural correspondence
between

(A) the seven highly symmetrical four-colorings
of the 4×2 array at the left of Fig. 1, and

(B) the seven points of the smallest
projective plane at the right of Fig. 1.

To see the correspondence, add, in binary
fashion, the pairs of projective points from the
“points” section that correspond to like-colored
squares in a four-coloring from the left of Fig. 1.
(The correspondence can, of course, be described
in terms of cosets rather than of colorings.)

A different correspondence between these 7 four-coloring
structures and these 7 projective-line structures appears in
a structural analysis of the Miracle Octad Generator
(MOG) of R.T. Curtis—

http://www.log24.com/log/pix11B/110806-Analysis_of_Structure.gif

Figure 2

Here the correspondence between the 7 four-coloring structures (left section) and the 7 projective-line structures (center section) is less obvious, but more fruitful.  It yields, as shown, all of the 35 partitions of an 8-element set  (an 8-set ) into two 4-sets. The 7 four-colorings in Fig. 2 also appear in the 35 4×4 parts of the MOG that correspond, in a way indicated by Fig. 2, to the 35 8-set paritions. This larger correspondence— of 35 4×2 arrays with 35 4×4 arrays— is  the MOG, at least as it was originally defined. See The MOG, Generating the Octad Generator, and Eightfold Geometry

For some applications of the Curtis MOG, see
(for instance) Griess’s Twelve Sporadic Groups .

Wednesday, July 6, 2011

Nordstrom-Robinson Automorphisms

Filed under: General,Geometry — Tags: , , , , , — m759 @ 1:01 am

A 2008 statement on the order of the automorphism group of the Nordstrom-Robinson code—

"The Nordstrom-Robinson code has an unusually large group of automorphisms (of order 8! = 40,320) and is optimal in many respects. It can be found inside the binary Golay code."

— Jürgen Bierbrauer and Jessica Fridrich, preprint of "Constructing Good Covering Codes for Applications in Steganography," Transactions on Data Hiding and Multimedia Security III, Springer Lecture Notes in Computer Science, 2008, Volume 4920/2008, 1-22

A statement by Bierbrauer from 2004 has an error that doubles the above figure—

The automorphism group of the binary Golay code G is the simple Mathieu group M24 of order |M24| = 24 × 23 × 22 × 21 × 20 × 48 in its 5-transitive action on the 24 coordinates. As M24 is transitive on octads, the stabilizer of an octad has order |M24|/759 [=322,560]. The stabilizer of NR has index 8 in this group. It follows that NR admits an automorphism group of order |M24| / (759 × 8 ) = [?] 16 × 7! [=80,640]. This is a huge symmetry group. Its structure can be inferred from the embedding in G as well. The automorphism group of NR is a semidirect product of an elementary abelian group of order 16 and the alternating group A7.

— Jürgen Bierbrauer, "Nordstrom-Robinson Code and A7-Geometry," preprint dated April 14, 2004, published in Finite Fields and Their Applications , Volume 13, Issue 1, January 2007, Pages 158-170

The error is corrected (though not detected) later in the same 2004 paper—

In fact the symmetry group of the octacode is a semidirect product of an elementary abelian group of order 16 and the simple group GL(3, 2) of order 168. This constitutes a large automorphism group (of order 2688), but the automorphism group of NR is larger yet as we saw earlier (order 40,320).

For some background, see a well-known construction of the code from the Miracle Octad Generator of R.T. Curtis—

Click to enlarge:

IMAGE - The 112 hexads of the Nordstrom-Robinson code

For some context, see the group of order 322,560 in Geometry of the 4×4 Square.

Sunday, June 19, 2011

Abracadabra (continued)

Filed under: General,Geometry — Tags: , — m759 @ 12:00 am

Yesterday's post Ad Meld featured Harry Potter (succeeding in business),
a 4×6 array from a video of the song "Abracadabra," and a link to a post
with some background on the 4×6 Miracle Octad Generator  of R.T. Curtis.

A search tonight for related material on the Web yielded…

(Click to enlarge.)

IMAGE- Art by Steven H. Cullinane displayed as his own in Steve Richards's Piracy Project contribution

   Weblog post by Steve Richards titled "The Search for Invariants:
   The Diamond Theory of Truth, the Miracle Octad Generator
   and Metalibrarianship." The artwork is by Steven H. Cullinane.
   Richards has omitted Cullinane's name and retitled the artwork.

The author of the post is an artist who seems to be interested in the occult.

His post continues with photos of pages, some from my own work (as above), some not.

My own work does not  deal with the occult, but some enthusiasts of "sacred geometry" may imagine otherwise.

The artist's post concludes with the following (note also the beginning of the preceding  post)—

http://www.log24.com/log/pix11A/110619-MOGsteverichards.jpg

"The Struggle of the Magicians" is a 1914 ballet by Gurdjieff. Perhaps it would interest Harry.

Sunday, June 5, 2011

Edifice Complex

Filed under: General,Geometry — Tags: , , , — m759 @ 7:00 pm

"Total grandeur of a total edifice,
Chosen by an inquisitor of structures
For himself. He stops upon this threshold,
As if the design of all his words takes form
And frame from thinking and is realized."

— Wallace Stevens, "To an Old Philosopher in Rome"

The following edifice may be lacking in grandeur,
and its properties as a configuration  were known long
before I stumbled across a description of it… still…

"What we do may be small, but it has
 a certain character of permanence…."
 — G.H. Hardy, A Mathematician's Apology

The Kummer 166 Configuration
as seen by Kantor in 1969— (pdf, 2.5 MB)

IMAGE-- 16_6 configuration from '2-Transitive Symmetric Designs,' by William M. Kantor (AMS Transactions, 1969)

For some background, see Configurations and Squares.

For some quite different geometry of the 4×4 square that  is
original with me, see a page with that title. (The geometry's
importance depends in part on its connection with the
Miracle Octad Generator (MOG) of R.T. Curtis. I of course
had nothing to do with the MOG's discovery, but I do  claim credit
for discovering some geometric properties of the 4×4 square
that constitutes two-thirds of the MOG as originally defined .)

Related material— The Schwartz Notes of June 1.

Wednesday, June 1, 2011

The Schwartz Notes

Filed under: General,Geometry — Tags: , , , , — m759 @ 2:00 pm

A Google search today for material on the Web that puts the diamond theorem
in context yielded a satisfyingly complete list. (See the first 21 results.)
(Customization based on signed-out search activity was disabled.)

The same search limited to results from only the past month yielded,
in addition, the following—

http://www.log24.com/log/pix11A/110601-Search.jpg

This turns out to be a document by one Richard Evan Schwartz,
Chancellor’s Professor of Mathematics at Brown University.

Pages 12-14 of the document, which is untitled, undated, and
unsigned, discuss the finite-geometry background of the R.T.
Curtis Miracle Octad Generator (MOG) . As today’s earlier search indicates,
this is closely related to the diamond theorem. The section relating
the geometry to the MOG is titled “The MOG and Projective Space.”
It does not mention my own work.

See Schwartz’s page 12, page 13, and page 14.

Compare to the web pages from today’s earlier search.

There are no references at the end of the Schwartz document,
but there is this at the beginning—

These are some notes on error correcting codes. Two good sources for
this material are
From Error Correcting Codes through Sphere Packings to Simple Groups ,
by Thomas Thompson.
Sphere Packings, Lattices, and Simple Groups  by J. H. Conway and N.
Sloane
Planet Math (on the internet) also some information.

It seems clear that these inadequate remarks by Schwartz on his sources
can and should be expanded.

Thursday, May 26, 2011

Life’s Persistent Questions

Filed under: General — Tags: , — m759 @ 4:01 pm

This afternoon's online New York Times  reviews "The Tree of Life," a film that opens tomorrow.

With disarming sincerity and daunting formal sophistication “The Tree of Life” ponders some of the hardest and most persistent questions, the kind that leave adults speechless when children ask them. In this case a boy, in whispered voice-over, speaks directly to God, whose responses are characteristically oblique, conveyed by the rustling of wind in trees or the play of shadows on a bedroom wall. Where are you? the boy wants to know, and lurking within this question is another: What am I doing here?

Persistent answers… Perhaps conveyed by wind, perhaps by shadows, perhaps by the New York Lottery.

For the nihilist alternative— the universe arose by chance out of nothing and all is meaningless— see Stephen Hawking and Jennifer Ouellette.

Update of 10:30 PM EDT May 26—

Today's NY Lottery results: Midday 407, Evening 756. The first is perhaps about the date April 7, the second about the phrase "three bricks shy"— in the context of the number 759 and the Miracle Octad Generator. (See also Robert Langdon and The Poetics of Space.)

Tuesday, May 24, 2011

Noncontinuous (or Non-Continuous) Groups

Filed under: General,Geometry — Tags: , , — m759 @ 2:56 pm

The web page has been updated.

An example, the action of the Mathieu group M24
on the Miracle Octad Generator of R.T. Curtis,
was added, with an illustration from a book cover—

http://www.log24.com/log/pix11A/110524-TwelveSG.jpg

Thursday, April 28, 2011

26 Today

Filed under: General,Geometry — Tags: , — m759 @ 9:29 pm

Click to enlarge

http://www.log24.com/log/pix11A/110428-GenTheOG.jpg

For some background, see a search here for Octad Generator.

Wednesday, March 2, 2011

Labyrinth of the Line

Filed under: General,Geometry — Tags: , , — m759 @ 11:24 am

“Yo sé de un laberinto griego que es una línea única, recta.”
—Borges, “La Muerte y la Brújula”

“I know of one Greek labyrinth which is a single straight line.”
—Borges, “Death and the Compass”

Another single-line labyrinth—

Robert A. Wilson on the projective line with 24 points
and its image in the Miracle Octad Generator (MOG)—

IMAGE- Robert Wilson on the projective line with 24 points and its image in the MOG

Related material —

The remarks of Scott Carnahan at Math Overflow on October 25th, 2010
and the remarks at Log24 on that same date.

A search in the latter for miracle octad is updated below.

http://www.log24.com/log/pix11/110302-MOGsearch.jpg

This search (here in a customized version) provides some context for the
Benedictine University discussion described here on February 25th and for
the number 759 mentioned rather cryptically in last night’s “Ariadne’s Clue.”

Update of March 3— For some historical background from 1931, see The Mathieu Relativity Problem.

Sunday, January 2, 2011

Horseness

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 am

"Art has to reveal to us ideas, formless spiritual essences."

— A character clearly talking nonsense, from the National Library section of James Joyce's Ulysses

"Unsheathe your dagger definitions. Horseness is the whatness of allhorse."

— A thought of Stephen Dedalus in the same Ulysses  section

For a representation of horseness related to Singer's dagger definitions in Saturday evening's post, see Generating the Octad Generator and Art Wars: Geometry as Conceptual Art.

More seriously, Joyce's "horseness" is related to the problem of universals. For an illuminating approach to universals from a psychological point of view, see James Hillman's Re-Visioning Psychology  (Harper Collins, 1977). (See particularly pages 154-157.)

Saturday, July 24, 2010

Playing with Blocks

"Many of the finite simple groups can be described as symmetries of finite geometries, and it remains a hot topic in group theory to expand our knowledge of the Classification of Finite Simple Groups using finite geometry."

Finite geometry page at the Centre for the Mathematics of
   Symmetry and Computation at the University of Western Australia
   (Alice Devillers, John Bamberg, Gordon Royle)

For such symmetries, see Robert A. WIlson's recent book The Finite Simple Groups.

The finite simple groups are often described as the "building blocks" of finite group theory.

At least some of these building blocks have their own building blocks. See Non-Euclidean Blocks.

For instance, a set of 24 such blocks (or, more simply, 24 unit squares) appears in the Miracle Octad Generator (MOG) of R.T. Curtis, used in the study of the finite simple group M24.

(The octads  of the MOG illustrate yet another sort of mathematical blocks— those of a block design.)

Sunday, July 4, 2010

Brightness at Noon (continued)

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

Today's sermon mentioned the phrase "Omega number."

Other sorts of Omega numbers— 24 and 759— occur
in connection with the set named Ω by R. T. Curtis in 1976—

Image-- In a 1976 paper, R.T. Curtis names the 24-set of his Miracle Octad Generator 'Omega.'

— R. T. Curtis, "A New Combinatorial Approach to M24,"
Math. Proc. Camb. Phil. Soc. (1976), 79, 25-42

Friday, May 14, 2010

Competing MOG Definitions

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 pm

A recently created Wikipedia article says that  “The Miracle Octad Generator [MOG] is an array of coordinates, arranged in four rows and six columns, capable of describing any point in 24-dimensional space….” (Clearly any  array with 24 parts is so capable.) The article ignores the fact that the MOG, as defined by R.T. Curtis in 1976, is not  an array of coordinates, but rather a picture of a correspondence between two sets, each containing 35 structures. (As a later commentator has remarked, this correspondence is a well-known one that preserves a certain incidence property. See Eightfold Geometry.)

From the 1976 paper defining the MOG—

“There is a correspondence between the two systems of 35 groups, which is illustrated in Fig. 4 (the MOG or Miracle Octad Generator).” —R.T. Curtis, “A New Combinatorial Approach to M24,” Mathematical Proceedings of the Cambridge Philosophical Society  (1976), 79: 25-42

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

Curtis’s 1976 Fig. 4. (The MOG.)

The Wikipedia article, like a similar article at PlanetMath, is based on a different definition, from a book first published in 1988—

http://www.log24.com/log/pix10A/100514-SpherePack.jpg

I have not seen the 1973 Curtis paper, so I do not know whether it uses the 35-sets correspondence definition or the 6×4 array definition. The remarks of Conway and Sloane on page 312 of the 1998 edition of their book about “Curtis’s original way of finding octads in the MOG [Cur2]” indicate that the correspondence definition was the one Curtis used in 1973—

http://www.log24.com/log/pix10A/100514-ConwaySloaneMOG.jpg

Here the picture of  “the 35 standard sextets of the MOG”
is very like (modulo a reflection) Curtis’s 1976 picture
of the MOG as a correspondence between two 35-sets.

A later paper by Curtis does  use the array definition. See “Further Elementary Techniques Using the Miracle Octad Generator,” Proceedings of the Edinburgh Mathematical Society  (1989) 32, 345-353.

The array definition is better suited to Conway’s use of his hexacode  to describe octads, but it obscures the close connection of the MOG with finite geometry. That connection, apparent in the phrases “vector space structure in the standard square” and “parallel 2-spaces” (Conway and Sloane, third ed., p. 312, illustrated above), was not discussed in the 1976 Curtis paper.  See my own page on the MOG at finitegeometry.org.

Wednesday, April 28, 2010

Eightfold Geometry

Filed under: General,Geometry — Tags: , , , , , — m759 @ 11:07 am

Image-- The 35 partitions of an 8-set into two 4-sets

Image-- Analysis of structure of the 35 partitions of an 8-set into two 4-sets

Image-- Miracle Octad Generator of R.T. Curtis

Related web pages:

Miracle Octad Generator,
Generating the Octad Generator,
Geometry of the 4×4 Square

Related folklore:

"It is commonly known that there is a bijection between the 35 unordered triples of a 7-set [i.e., the 35 partitions of an 8-set into two 4-sets] and the 35 lines of PG(3,2) such that lines intersect if and only if the corresponding triples have exactly one element in common." –"Generalized Polygons and Semipartial Geometries," by F. De Clerck, J. A. Thas, and H. Van Maldeghem, April 1996 minicourse, example 5 on page 6

The Miracle Octad Generator may be regarded as illustrating the folklore.

Update of August 20, 2010–

For facts rather than folklore about the above bijection, see The Moore Correspondence.

Thursday, August 6, 2009

Thursday August 6, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 1:44 pm
A Fisher of Men
 
 
Cover, Schulberg's novelization of 'Waterfront,' Bantam paperback
Update: The above image was added
at about 11 AM ET Aug. 8, 2009.

 
Dove logo, First United Methodist Church of Bloomington, Indiana

From a webpage of the First United Methodist Church of Bloomington, Indiana–

 

Dr. Joe Emerson, April 24, 2005–

"The Ultimate Test"

— Text: I Peter 2:1-9

Dr. Emerson falsely claims that the film "On the Waterfront" was based on a book by the late Budd Schulberg (who died yesterday). (Instead, the film's screenplay, written by Schulberg– similar to an earlier screenplay by Arthur Miller, "The Hook"–  was based on a series of newspaper articles by Malcolm Johnson.)

"The movie 'On the Waterfront' is once more in rerun. (That’s when Marlon Brando looked like Marlon Brando.  That’s the scary part of growing old when you see what he looked like then and when he grew old.)  It is based on a book by Budd Schulberg."

 

Emerson goes on to discuss the book, Waterfront, that Schulberg wrote based on his screenplay–

"In it, you may remember a scene where Runty Nolan, a little guy, runs afoul of the mob and is brutally killed and tossed into the North River.  A priest is called to give last rites after they drag him out."

 

Hook on cover of Budd Schulberg's novel 'Waterfront' (NY Times obituary, detail)

New York Times today

Dr. Emerson flunks the test.

 

Dr. Emerson's sermon is, as noted above (Text: I Peter 2:1-9), not mainly about waterfronts, but rather about the "living stones" metaphor of the Big Fisherman.

My own remarks on the date of Dr. Emerson's sermon

The 4x6 array used in the Miracle Octad Generator of R. T. Curtis

Those who like to mix mathematics with religion may regard the above 4×6 array as a context for the "living stones" metaphor. See, too, the five entries in this journal ending at 12:25 AM ET on November 12 (Grace Kelly's birthday), 2006, and today's previous entry.

Wednesday, May 20, 2009

Wednesday May 20, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 4:00 pm
From Quilt Blocks to the
Mathieu Group
M24

Diamonds

(a traditional
quilt block):

Illustration of a diamond-theorem pattern

Octads:

Octads formed by a 23-cycle in the MOG of R.T. Curtis

 

Click on illustrations for details.

The connection:

The four-diamond figure is related to the finite geometry PG(3,2). (See "Symmetry Invariance in a Diamond Ring," AMS Notices, February 1979, A193-194.) PG(3,2) is in turn related to the 759 octads of the Steiner system S(5,8,24). (See "Generating the Octad Generator," expository note, 1985.)

The relationship of S(5,8,24) to the finite geometry PG(3,2) has also been discussed in–
  • "A Geometric Construction of the Steiner System S(4,7,23)," by Alphonse Baartmans, Walter Wallis, and Joseph Yucas, Discrete Mathematics 102 (1992) 177-186.

Abstract: "The Steiner system S(4,7,23) is constructed from the geometry of PG(3,2)."

  • "A Geometric Construction of the Steiner System S(5,8,24)," by R. Mandrell and J. Yucas, Journal of Statistical Planning and Inference 56 (1996), 223-228.

Abstract: "The Steiner system S(5,8,24) is constructed from the geometry of PG(3,2)."

For the connection of S(5,8,24) with the Mathieu group M24, see the references in The Miracle Octad Generator.

Tuesday, May 19, 2009

Tuesday May 19, 2009

Filed under: General,Geometry — Tags: , , , — m759 @ 7:20 pm
Exquisite Geometries

"By far the most important structure in design theory is the Steiner system S(5, 8, 24)."

"Block Designs," 1995, by Andries E. Brouwer

"The Steiner system S(5, 8, 24) is a set S of 759 eight-element subsets ('octads') of a twenty-four-element set T such that any five-element subset of T is contained in exactly one of the 759 octads. Its automorphism group is the large Mathieu group M24."

The Miracle Octad Generator (MOG) of R.T. Curtis (webpage)

"… in 1861 Mathieu… discovered five multiply transitive permutation groups…. In a little-known 1931 paper of Carmichael… they were first observed to be automorphism groups of exquisite finite geometries."

William M. Kantor, 1981

The 1931 paper of Carmichael is now available online from the publisher for $10.
 

Tuesday, February 24, 2009

Tuesday February 24, 2009

Filed under: General,Geometry — Tags: , , , , , — m759 @ 1:00 pm
 
Hollywood Nihilism
Meets
Pantheistic Solipsism

Tina Fey to Steve Martin
at the Oscars:
"Oh, Steve, no one wants
 to hear about our religion
… that we made up."

Tina Fey and Steve Martin at the 2009 Oscars

From Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, p. 117:

… in 'The Pediment of Appearance,' a slight narrative poem in Transport to Summer

 A group of young men enter some woods 'Hunting for the great ornament, The pediment of appearance.' Though moving through the natural world, the young men seek the artificial, or pure form, believing that in discovering this pediment, this distillation of the real, they will also discover the 'savage transparence,' the rude source of human life. In Stevens's world, such a search is futile, since it is only through observing nature that one reaches beyond it to pure form. As if to demonstrate the degree to which the young men's search is misaligned, Stevens says of them that 'they go crying/The world is myself, life is myself,' believing that what surrounds them is immaterial. Such a proclamation is a cardinal violation of Stevens's principles of the imagination.


Superficially the young men's philosophy seems to resemble what Wikipedia calls "pantheistic solipsism"– noting, however, that "This article has multiple issues."

As, indeed, does pantheistic solipsism– a philosophy (properly called "eschatological pantheistic multiple-ego solipsism") devised, with tongue in cheek, by science-fiction writer Robert A. Heinlein.

Despite their preoccupation with solipsism, Heinlein and Stevens point, each in his own poetic way, to a highly non-solipsistic topic from pure mathematics that is, unlike the religion of Martin and Fey, not made up– namely, the properties of space.

Heinlein:

"Sharpie, we have condensed six dimensions into four, then we either work by analogy into six, or we have to use math that apparently nobody but Jake and my cousin Ed understands. Unless you can think of some way to project six dimensions into three– you seem to be smart at such projections."
    I closed my eyes and thought hard. "Zebbie, I don't think it can be done. Maybe Escher could have done it."

Stevens:

A discussion of Stevens's late poem "The Rock" (1954) in Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, p. 120:

For Stevens, the poem "makes meanings of the rock." In the mind, "its barrenness becomes a thousand things/And so exists no more." In fact, in a peculiar irony that only a poet with Stevens's particular notion of the imagination's function could develop, the rock becomes the mind itself, shattered into such diamond-faceted brilliance that it encompasses all possibilities for human thought:

The rock is the gray particular of man's life,
The stone from which he rises, up—and—ho,
The step to the bleaker depths of his descents ...

The rock is the stern particular of the air,
The mirror of the planets, one by one,
But through man's eye, their silent rhapsodist,

Turquoise the rock, at odious evening bright
With redness that sticks fast to evil dreams;
The difficult rightness of half-risen day.

The rock is the habitation of the whole,
Its strength and measure, that which is near,
     point A
In a perspective that begins again

At B: the origin of the mango's rind.

                    (Collected Poems, 528)

Stevens's rock is associated with empty space, a concept that suggests "nothingness" to one literary critic:

B. J. Leggett, "Stevens's Late Poetry" in The Cambridge Companion to Wallace Stevens— On the poem "The Rock":

"… the barren rock of the title is Stevens's symbol for the nothingness that underlies all existence, 'That in which space itself is contained'….  Its subject is its speaker's sense of nothingness and his need to be cured of it."

This interpretation might appeal to Joan Didion, who, as author of the classic novel Play It As It Lays, is perhaps the world's leading expert on Hollywood nihilism.

More positively…

Space is, of course, also a topic
in pure mathematics…
For instance, the 6-dimensional
affine space
(or the corresponding
5-dimensional projective space)

The 4x4x4 cube

over the two-element Galois field
can be viewed as an illustration of
Stevens's metaphor in "The Rock."

Heinlein should perhaps have had in mind the Klein correspondence when he discussed "some way to project six dimensions into three." While such a projection is of course trivial for anyone who has taken an undergraduate course in linear algebra, the following remarks by Philippe Cara present a much more meaningful mapping, using the Klein correspondence, of structures in six (affine) dimensions to structures in three.

Cara:

Philippe Cara on the Klein correspondence
Here the 6-dimensional affine
space contains the 63 points
of PG(5, 2), plus the origin, and
the 3-dimensional affine
space contains as its 8 points
Conwell's eight "heptads," as in
Generating the Octad Generator.

Tuesday, January 6, 2009

Tuesday January 6, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 am
Archetypes, Synchronicity,
and Dyson on Jung

The current (Feb. 2009) Notices of the American Mathematical Society has a written version of Freeman Dyson’s 2008 Einstein Lecture, which was to have been given in October but had to be canceled. Dyson paraphrases a mathematician on Carl Jung’s theory of archetypes:

“… we do not need to accept Jung’s theory as true in order to find it illuminating.”

The same is true of Jung’s remarks on synchronicity.

For example —

Yesterday’s entry, “A Wealth of Algebraic Structure,” lists two articles– each, as it happens, related to Jung’s four-diamond figure from Aion as well as to my own Notes on Finite Geometry. The articles were placed online recently by Cambridge University Press on the following dates:

R. T. Curtis’s 1974 article defining his Miracle Octad Generator (MOG) was published online on Oct. 24, 2008.

Curtis’s 1987 article on geometry and algebraic structure in the MOG was published online on Dec. 19, 2008.

On these dates, the entries in this journal discussed…

Oct. 24:
Cube Space, 1984-2003

Material related to that entry:

Dec. 19:
Art and Religion: Inside the White Cube

That entry discusses a book by Mark C. Taylor:

The Picture in Question: Mark Tansey and the Ends of Representation (U. of Chicago Press, 1999).

In Chapter 3, “Sutures of Structures,” Taylor asks —

“What, then, is a frame, and what is frame work?”

One possible answer —

Hermann Weyl on the relativity problem in the context of the 4×4 “frame of reference” found in the above Cambridge University Press articles.

“Examples are the stained-glass
windows of knowledge.”
— Vladimir Nabokov 

Monday, January 5, 2009

Monday January 5, 2009

Filed under: General,Geometry — Tags: , , , , — m759 @ 9:00 pm

A Wealth of
Algebraic Structure

A 4x4 array (part of chessboard)

A 1987 article by R. T. Curtis on the geometry of his Miracle Octad Generator (MOG) as it relates to the geometry of the 4×4 square is now available online ($20):

Further elementary techniques using the miracle octad generator
, by R. T. Curtis. Abstract:

“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”

 

(Received July 20 1987)

Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353, doi:10.1017/S0013091500004600.

(Published online by Cambridge University Press 19 Dec 2008.)

In the above article, Curtis explains how two-thirds of his 4×6 MOG array may be viewed as the 4×4 model of the four-dimensional affine space over GF(2).  (His earlier 1974 paper (below) defining the MOG discussed the 4×4 structure in a purely combinatorial, not geometric, way.)

For further details, see The Miracle Octad Generator as well as Geometry of the 4×4 Square and Curtis’s original 1974 article, which is now also available online ($20):

A new combinatorial approach to M24, by R. T. Curtis. Abstract:

“In this paper, we define M24 from scratch as the subgroup of S24 preserving a Steiner system S(5, 8, 24). The Steiner system is produced and proved to be unique and the group emerges naturally with many of its properties apparent.”

 

(Received June 15 1974)

Mathematical Proceedings of the Cambridge Philosophical Society (1976), 79: 25-42, doi:10.1017/S0305004100052075.

(Published online by Cambridge University Press 24 Oct 2008.)

* For instance:

Algebraic structure in the 4x4 square, by Cullinane (1985) and Curtis (1987)

Click for details.

Monday, November 24, 2008

Monday November 24, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm

Frame Tale

'Brick' octads in the Miracle Octad Generator (MOG) of R. T. Curtis

Click on image for details.

Thursday, July 31, 2008

Thursday July 31, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm
Symmetry in Review

“Put bluntly, who is kidding whom?”

Anthony Judge, draft of
“Potential Psychosocial Significance
of Monstrous Moonshine:
An Exceptional Form of Symmetry
as a Rosetta Stone for
Cognitive Frameworks,”
dated September 6, 2007.

Good question.

Also from
September 6, 2007 —
the date of
Madeleine L’Engle‘s death —

 
Pavarotti takes a bow
Related material:

1. The performance of a work by
Richard Strauss,
Death and Transfiguration,”
(Tod und Verklärung, Opus 24)
by the Chautauqua Symphony
at Chautauqua Institution on
July 24, 2008

2. Headline of a music review
in today’s New York Times:

Welcoming a Fresh Season of
Transformation and Death

3. The picture of the R. T. Curtis
Miracle Octad Generator
on the cover of the book
Twelve Sporadic Groups:

Cover of 'Twelve Sporadic Groups'

4. Freeman Dyson’s hope, quoted by
Gorenstein in 1986, Ronan in 2006,
and Judge in 2007, that the Monster
group is “built in some way into
the structure of the universe.”

5. Symmetry from Plato to
the Four-Color Conjecture

6. Geometry of the 4×4 Square

7. Yesterday’s entry,
Theories of Everything

Coda:

There is such a thing

Tesseract
     as a tesseract.

— Madeleine L’Engle

Cover of The New Yorker, April 12, 2004-- Roz Chast, Easter Eggs

For a profile of
L’Engle, click on
the Easter eggs.

Monday, October 1, 2007

Monday October 1, 2007

Filed under: General,Geometry — Tags: , , — m759 @ 7:20 am
Bright as Magnesium

"Definitive"

— The New York Times,  
Sept. 30, 2007, on
Blade Runner:
The Final Cut

Institute for Advanced Study, Princeton, N.J.

"The art historian Kirk Varnedoe died on August 14, 2003, after a long and valiant battle with cancer. He was 57. He was a faculty member in the Institute for Advanced Study’s School of Historical Studies, where he was the fourth art historian to hold this prestigious position, first held by the German Renaissance scholar Erwin Panofsky in the 1930s."

Hal Crowther

"His final lecture was an eloquent, prophetic flight of free association….

Varnedoe chose to introduce his final lecture with the less-quoted last words of the android Roy Batty (Rutger Hauer) in Ridley Scott's film Blade Runner: 'I've seen things you people wouldn't believe– attack ships on fire off the shoulder of Orion, bright as magnesium; I rode on the back decks of a blinker and watched C-beams glitter in the dark near the Tannhauser Gate. All those moments will be lost in time, like tears in the rain. Time to die.'"


Related material: 
tears in the rain–

Game Over
(Nov. 5, 2003):
 

The film "The Matrix," illustrated

Coordinates for generating the Miracle Octad Generator

Monday, May 28, 2007

Monday May 28, 2007

Filed under: General,Geometry — Tags: , , , , — m759 @ 5:00 pm
Space-Time

and a Finite Model

Notes by Steven H. Cullinane
May 28, 2007

Part I: A Model of Space-Time

The following paper includes a figure illustrating Penrose’s model of  “complexified, compactified Minkowski space-time as the Klein quadric in complex projective 5-space.”
 
The image “http://www.log24.com/log/pix07/070528-Twistor.jpg” cannot be displayed, because it contains errors.

Click on picture to enlarge.

For some background on the Klein quadric and space-time, see Roger Penrose, “On the Origins of Twistor Theory,” from Gravitation and Geometry: A Volume in Honor of Ivor Robinson, Bibliopolis, 1987.


Part II: A Corresponding Finite Model

 

The Klein quadric also occurs in a finite model of projective 5-space.  See a 1910 paper:

G. M. Conwell, The 3-space PG(3,2) and its group, Ann. of Math. 11, 60-76.

Conwell discusses the quadric, and the related Klein correspondence, in detail.  This is noted in a more recent paper by Philippe Cara:

The image “http://www.log24.com/log/pix07/070528-Quadric.jpg” cannot be displayed, because it contains errors.

 

As Cara goes on to explain, the Klein correspondence underlies Conwell’s discussion of eight heptads.  These play an important role in another correspondence, illustrated in the Miracle Octad Generator of R. T. Curtis, that may be used to picture actions of the large Mathieu group M24.


Related material:

The projective space PG(5,2), home of the Klein quadric in the finite model, may be viewed as the set of 64 points of the affine space AG(6,2), minus the origin.

The 64 points of this affine space may in turn be viewed as the 64 hexagrams of the Classic of Transformation, China’s I Ching.

There is a natural correspondence between the 64 hexagrams and the 64 subcubes of a 4x4x4 cube.  This correspondence leads to a natural way to generate the affine group AGL(6,2).  This may in turn be viewed as a group of over a trillion natural transformations of the 64 hexagrams.

Geometry of the I Ching.
“Once Knecht confessed to his teacher that he wished to learn enough to be able to incorporate the system of the I Ching into the Glass Bead Game.  Elder Brother laughed.  ‘Go ahead and try,’ he exclaimed.  ‘You’ll see how it turns out.  Anyone can create a pretty little bamboo garden in the world.  But I doubt that the gardener would succeed in incorporating the world in his bamboo grove.'”
— Hermann Hesse, The Glass Bead Game,
  translated by Richard and Clara Winston

Wednesday, February 28, 2007

Wednesday February 28, 2007

Filed under: General,Geometry — Tags: , , , — m759 @ 7:59 am

Elements
of Geometry

The title of Euclid’s Elements is, in Greek, Stoicheia.

From Lectures on the Science of Language,
by Max Muller, fellow of All Souls College, Oxford.
New York: Charles Scribner’s Sons, 1890, pp. 88-90 –

Stoicheia

“The question is, why were the elements, or the component primary parts of things, called stoicheia by the Greeks? It is a word which has had a long history, and has passed from Greece to almost every part of the civilized world, and deserves, therefore, some attention at the hand of the etymological genealogist.

Stoichos, from which stoicheion, means a row or file, like stix and stiches in Homer. The suffix eios is the same as the Latin eius, and expresses what belongs to or has the quality of something. Therefore, as stoichos means a row, stoicheion would be what belongs to or constitutes a row….

Hence stoichos presupposes a root stich, and this root would account in Greek for the following derivations:–

  1. stix, gen. stichos, a row, a line of soldiers
  2. stichos, a row, a line; distich, a couplet
  3. steichoestichon, to march in order, step by step; to mount
  4. stoichos, a row, a file; stoichein, to march in a line

In German, the same root yields steigen, to step, to mount, and in Sanskrit we find stigh, to mount….

Stoicheia are the degrees or steps from one end to the other, the constituent parts of a whole, forming a complete series, whether as hours, or letters, or numbers, or parts of speech, or physical elements, provided always that such elements are held together by a systematic order.”

Tuesday, October 3, 2006

Tuesday October 3, 2006

Filed under: General,Geometry — Tags: , , , — m759 @ 9:26 am

Serious

"I don't think the 'diamond theorem' is anything serious, so I started with blitzing that."

Charles Matthews at Wikipedia, Oct. 2, 2006

"The 'seriousness' of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas."

— G. H. Hardy, A Mathematician's Apology

Matthews yesterday deleted references to the diamond theorem and related material in the following Wikipedia articles:

Affine group‎
Reflection group‎
Symmetry in mathematics‎
Incidence structure‎
Invariant (mathematics)‎
Symmetry‎
Finite geometry‎
Group action‎
History of geometry‎

This would appear to be a fairly large complex of mathematical ideas.

See also the following "large complex" cited, following the above words of Hardy, in Diamond Theory:

Affine geometry, affine planes, affine spaces, automorphisms, binary codes, block designs, classical groups, codes, coding theory, collineations, combinatorial, combinatorics, conjugacy classes, the Conwell correspondence, correlations, design theory, duads, duality, error correcting codes, exceptional groups, finite fields, finite geometry, finite groups, finite rings, Galois fields, generalized quadrangles, generators, geometry, GF(2), GF(4), the (24,12) Golay code, group actions, group theory, Hadamard matrices, hypercube, hyperplanes, hyperspace, incidence structures, invariance, Karnaugh maps, Kirkman's schoolgirl problem, Latin squares, Leech lattice, linear groups, linear spaces, linear transformations, Mathieu groups, matrix theory, Meno, Miracle Octad Generator, MOG, multiply transitive groups, octads, the octahedral group, orthogonal arrays, outer automorphisms, parallelisms, partial geometries, permutation groups, PG(3,2), polarities, Polya-Burnside theorem, projective geometry, projective planes, projective spaces, projectivities, Reed-Muller codes, the relativity problem, Singer cycle, skew lines,  sporadic simple groups, Steiner systems, symmetric, symmetry, symplectic, synthemes, synthematic, tesseract, transvections, Walsh functions, Witt designs.

Thursday, September 28, 2006

Thursday September 28, 2006

Filed under: General,Geometry — Tags: , — m759 @ 9:15 am
A Table

From the diary
of John Baez:

September 22, 2006

… Meanwhile, the mystics beckon:

Out beyond ideas of wrongdoing and rightdoing, there is a field. I’ll meet you there. – Rumi

September 23, 2006

I’m going up to San Rafael (near the Bay in Northern California) to visit my college pal Bruce Smith and his family. I’ll be back on Wednesday the 27th, just in time to start teaching the next day.

A check on the Rumi quote yields
this, on a culinary organization:

“Out beyond rightdoing and wrongdoing there is a field.  I’ll meet you there.”

This is the starting place of good spirit for relationship healing and building prescribed centuries ago in the Middle East by Muslim Sufi teacher and mystic, Jelaluddin Rumi (1207-1273).

Even earlier, the Psalmists knew such a meeting place of adversaries was needed, sacred and blessed:

“Thou preparest a table before me in the presence of mine enemies….” (23rd Psalm)

A Field and a Table:

The image “http://www.log24.com/theory/GF8-Table.gif” cannot be displayed, because it contains errors.

From “Communications Toolbox”
at MathWorks.com

For more on this field
in a different context, see
Generating the Octad Generator
and
“Putting Descartes Before Dehors”
in my own diary for December 2003.

The image “http://www.log24.com/log/pix06A/060928-Descartes.jpg” cannot be displayed, because it contains errors.
Descartes



Après l’Office à l’Église
de la Sainte-Trinité, Noël 1890

(After the Service at Holy Trinity Church,
Christmas 1890), Jean Béraud

Let us pray to the Holy Trinity that
San Rafael guides the teaching of John Baez
this year.  For related material on theology
and the presence of enemies, see Log24 on
  the (former) Feast of San Rafael, 2003.

Saturday, July 29, 2006

Saturday July 29, 2006

Filed under: General,Geometry — Tags: , , , , — m759 @ 2:02 pm

Big Rock

Thanks to Ars Mathematicaa link to everything2.com:

“In mathematics, a big rock is a result which is vastly more powerful than is needed to solve the problem being considered. Often it has a difficult, technical proof whose methods are not related to those of the field in which it is applied. You say ‘I’m going to hit this problem with a big rock.’ Sard’s theorem is a good example of a big rock.”

Another example:

Properties of the Monster Group of R. L. Griess, Jr., may be investigated with the aid of the Miracle Octad Generator, or MOG, of R. T. Curtis.  See the MOG on the cover of a book by Griess about some of the 20 sporadic groups involved in the Monster:

The image “http://www.log24.com/theory/images/TwelveSG.jpg” cannot be displayed, because it contains errors.

The MOG, in turn, illustrates (via Abstract 79T-A37, Notices of the American Mathematical Society, February 1979) the fact that the group of automorphisms of the affine space of four dimensions over the two-element field is also the natural group of automorphisms of an arbitrary 4×4 array.

This affine group, of order 322,560, is also the natural group of automorphisms of a family of graphic designs similar to those on traditional American quilts.  (See the diamond theorem.)

This top-down approach to the diamond theorem may serve as an illustration of the “big rock” in mathematics.

For a somewhat simpler, bottom-up, approach to the theorem, see Theme and Variations.

For related literary material, see Mathematics and Narrative and The Diamond as Big as the Monster.

“The rock cannot be broken.
It is the truth.”

Wallace Stevens,
“Credences of Summer”

 

Sunday, May 7, 2006

Sunday May 7, 2006

Filed under: General,Geometry — Tags: , , — m759 @ 3:00 am

Bagombo Snuff Box
 
(in memory of
Burt Kerr Todd)


“Well, it may be the devil
or it may be the Lord
But you’re gonna have to
serve somebody.”

— “Bob Dylan”
(pseudonym of Robert Zimmerman),
quoted by “Bob Stewart”
on July 18, 2005

“Bob Stewart” may or may not be the same person as “crankbuster,” author of the “Rectangular Array Theorem” or “RAT.”  This “theorem” is intended as a parody of the “Miracle Octad Generator,” or “MOG,” of R. T. Curtis.  (See the Usenet group sci.math, “Steven Cullinane is a Crank,” July 2005, messages 51-60.)

“Crankbuster” has registered at Math Forum as a teacher in Sri Lanka (formerly Ceylon).   For a tall tale involving Ceylon, see the short story “Bagombo Snuff Box” in the book of the same title by Kurt Vonnegut, who has at times embodied– like Martin Gardner and “crankbuster“– “der Geist, der stets verneint.”

Here is my own version (given the alleged Ceylon background of “crankbuster”) of a Bagombo snuff box:

Related material:

Log24 entries of
April 16-30, 2005,

and the 5 Log24 entries
ending on Friday,
April 28, 2006.

Friday, April 28, 2006

Friday April 28, 2006

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm

Exercise

Review the concepts of integritas, consonantia,  and claritas in Aquinas:

"For in respect to beauty three things are essential: first of all, integrity or completeness, since beings deprived of wholeness are on this score ugly; and [secondly] a certain required design, or patterned structure; and finally a certain splendor, inasmuch as things are called beautiful which have a certain 'blaze of being' about them…."

Summa Theologiae Sancti Thomae Aquinatis, I, q. 39, a. 8, as translated by William T. Noon, S.J., in Joyce and Aquinas, Yale University Press, 1957

Review the following three publications cited in a note of April 28, 1985 (21 years ago today):

(1) Cameron, P. J.,
     Parallelisms of Complete Designs,
     Cambridge University Press, 1976.

(2) Conwell, G. M.,
     The 3-space PG(3,2) and its group,
     Ann. of Math. 11 (1910) 60-76.

(3) Curtis, R. T.,
     A new combinatorial approach to M24,
     Math. Proc. Camb. Phil. Soc.
    
79 (1976) 25-42.

Discuss how the sextet parallelism in (1) illustrates integritas, how the Conwell correspondence in (2) illustrates consonantia, and how the Miracle Octad Generator in (3) illustrates claritas.
 

Wednesday, November 30, 2005

Wednesday November 30, 2005

Filed under: General,Geometry — Tags: , — m759 @ 1:00 am

For St. Andrew’s Day

The miraculous enters…. When we investigate these problems, some fantastic things happen….”

— John H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, preface to first edition (1988)

The remarkable Mathieu group M24, a group of permutations on 24 elements, may be studied by picturing its action on three interchangeable 8-element “octads,” as in the “Miracle Octad Generator” of R. T. Curtis.

A picture of the Miracle Octad Generator, with my comments, is available online.


 Cartoon by S.Harris

Related material:
Mathematics and Narrative.

Tuesday, January 6, 2004

Tuesday January 6, 2004

Filed under: General,Geometry — Tags: , , — m759 @ 10:10 pm

720 in the Book

Searching for an epiphany on this January 6 (the Feast of the Epiphany), I started with Harvard Magazine, the current issue of January-February 2004.

An article titled On Mathematical Imagination concludes by looking forward to

“a New Instauration that will bring mathematics, at last, into its rightful place in our lives: a source of elation….”

Seeking the source of the phrase “new instauration,” I found it was due to Francis Bacon, who “conceived his New Instauration as the fulfilment of a Biblical prophecy and a rediscovery of ‘the seal of God on things,’ ” according to a web page by Nieves Mathews.

Hmm.

The Mathews essay leads to Peter Pesic, who, it turns out, has written a book that brings us back to the subject of mathematics:

Abel’s Proof:  An Essay
on the Sources and Meaning
of Mathematical Unsolvability

by Peter Pesic,
MIT Press, 2003

From a review:

“… the book is about the idea that polynomial equations in general cannot be solved exactly in radicals….

Pesic concludes his account after Abel and Galois… and notes briefly (p. 146) that following Abel, Jacobi, Hermite, Kronecker, and Brioschi, in 1870 Jordan proved that elliptic modular functions suffice to solve all polynomial equations.  The reader is left with little clarity on this sequel to the story….”

— Roger B. Eggleton, corrected version of a review in Gazette Aust. Math. Soc., Vol. 30, No. 4, pp. 242-244

Here, it seems, is my epiphany:

“Elliptic modular functions suffice to solve all polynomial equations.”


Incidental Remarks
on Synchronicity,
Part I

Those who seek a star
on this Feast of the Epiphany
may click here.


Most mathematicians are (or should be) familiar with the work of Abel and Galois on the insolvability by radicals of quintic and higher-degree equations.

Just how such equations can be solved is a less familiar story.  I knew that elliptic functions were involved in the general solution of a quintic (fifth degree) equation, but I was not aware that similar functions suffice to solve all polynomial equations.

The topic is of interest to me because, as my recent web page The Proof and the Lie indicates, I was deeply irritated by the way recent attempts to popularize mathematics have sown confusion about modular functions, and I therefore became interested in learning more about such functions.  Modular functions are also distantly related, via the topic of “moonshine” and via the  “Happy Family” of the Monster group and the Miracle Octad Generator of R. T. Curtis, to my own work on symmetries of 4×4 matrices.


Incidental Remarks
on Synchronicity,
Part II

There is no Log24 entry for
December 30, 2003,
the day John Gregory Dunne died,
but see this web page for that date.


Here is what I was able to find on the Web about Pesic’s claim:

From Wolfram Research:

From Solving the Quintic —

“Some of the ideas described here can be generalized to equations of higher degree. The basic ideas for solving the sextic using Klein’s approach to the quintic were worked out around 1900. For algebraic equations beyond the sextic, the roots can be expressed in terms of hypergeometric functions in several variables or in terms of Siegel modular functions.”

From Siegel Theta Function —

“Umemura has expressed the roots of an arbitrary polynomial in terms of Siegel theta functions. (Mumford, D. Part C in Tata Lectures on Theta. II. Jacobian Theta Functions and Differential Equations. Boston, MA: Birkhäuser, 1984.)”

From Polynomial

“… the general quintic equation may be given in terms of the Jacobi theta functions, or hypergeometric functions in one variable.  Hermite and Kronecker proved that higher order polynomials are not soluble in the same manner. Klein showed that the work of Hermite was implicit in the group properties of the icosahedron.  Klein’s method of solving the quintic in terms of hypergeometric functions in one variable can be extended to the sextic, but for higher order polynomials, either hypergeometric functions in several variables or ‘Siegel functions’ must be used (Belardinelli 1960, King 1996, Chow 1999). In the 1880s, Poincaré created functions which give the solution to the nth order polynomial equation in finite form. These functions turned out to be ‘natural’ generalizations of the elliptic functions.”

Belardinelli, G. “Fonctions hypergéométriques de plusieurs variables er résolution analytique des équations algébrique générales.” Mémoral des Sci. Math. 145, 1960.

King, R. B. Beyond the Quartic Equation. Boston, MA: Birkhäuser, 1996.

Chow, T. Y. “What is a Closed-Form Number.” Amer. Math. Monthly 106, 440-448, 1999. 

From Angel Zhivkov,

Preprint series,
Institut für Mathematik,
Humboldt-Universität zu Berlin:

“… discoveries of Abel and Galois had been followed by the also remarkable theorems of Hermite and Kronecker:  in 1858 they independently proved that we can solve the algebraic equations of degree five by using an elliptic modular function….  Kronecker thought that the resolution of the equation of degree five would be a special case of a more general theorem which might exist.  This hypothesis was realized in [a] few cases by F. Klein… Jordan… showed that any algebraic equation is solvable by modular functions.  In 1984 Umemura realized the Kronecker idea in his appendix to Mumford’s book… deducing from a formula of Thomae… a root of [an] arbitrary algebraic equation by Siegel modular forms.”  

— “Resolution of Degree Less-than-or-equal-to Six Algebraic Equations by Genus Two Theta Constants


Incidental Remarks
on Synchronicity,
Part III

From Music for Dunne’s Wake:

Heaven was kind of a hat on the universe,
a lid that kept everything underneath it
where it belonged.”

— Carrie Fisher,
Postcards from the Edge

     

720 in  
the Book”

and
Paradise

“The group Sp4(F2) has order 720,”
as does S6. — Angel Zhivkov, op. cit.

Those seeking
“a rediscovery of
‘the seal of God on things,’ “
as quoted by Mathews above,
should see
The Unity of Mathematics
and the related note
Sacerdotal Jargon.

For more remarks on synchronicity
that may or may not be relevant
to Harvard Magazine and to
the annual Joint Mathematics Meetings
that start tomorrow in Phoenix, see

Log24, June 2003.

For the relevance of the time
of this entry, 10:10, see

  1. the reference to Paradise
    on the “postcard” above, and
  2. Storyline (10/10, 2003).

Related recreational reading:

Labyrinth



The Shining

Shining Forth

Older Posts »

Powered by WordPress