Log24

Tuesday, October 10, 2017

Another 35-Year Wait

Filed under: Uncategorized — Tags: — m759 @ 9:00 PM

The title refers to today's earlier post "The 35-Year Wait."

A check of my activities 35 years ago this fall, in the autumn
of 1982, yields a formula I prefer to the nonsensical, but famous,
"canonical formula" of Claude Lévi-Strauss.

The Lévi-Strauss formula

My "inscape" formula, from a note of Sept. 22, 1982 —

S = f ( f ( X ) ) .

Some mathematics from last year related to the 1982 formula —

Koen Thas, 'Unextendible Mututally Unbiased Bases' (2016)

See also Inscape in this  journal and posts tagged Dirac and Geometry.

Monday, June 26, 2017

Upgrading to Six

Filed under: Uncategorized — Tags: , — m759 @ 9:00 PM

This post was suggested by the previous post — Four Dots —
and by the phrase "smallest perfect" in this journal.

Related material (click to enlarge) —

Detail —

From the work of Eddington cited in 1974 by von Franz —

See also Dirac and Geometry and Kummer in this journal.

Updates from the morning of June 27 —

Ron Shaw on Eddington's triads "associated in conjugate pairs" —

For more about hyperbolic  and isotropic  lines in PG(3,2),
see posts tagged Diamond Theorem Correlation.

For Shaw, in memoriam — See Contrapuntal Interweaving and The Fugue.

Tuesday, July 12, 2016

Group Elements and Skew Lines

Filed under: Uncategorized — Tags: — m759 @ 12:00 AM

The following passage by Igor Dolgachev (Good Friday, 2003
seems somewhat relevant (via its connection to Kummer's 166 )
to previous remarks here on Dirac matrices and geometry

Note related remarks from E. M. Bruins in 1959 —

First page of 'Configurations in Quantum Mechanics,' by E.M. Bruins, 1959

Friday, June 3, 2016

Bruins and van Dam

Filed under: Uncategorized — Tags: — m759 @ 8:00 AM

A review of some recent posts on Dirac and geometry,
each of which mentions the late physicist Hendrik van Dam:

The first of these posts mentions the work of E. M. Bruins.
Some earlier posts that cite Bruins:

Wednesday, May 25, 2016

Framework

Filed under: Uncategorized — Tags: , — m759 @ 12:00 PM

"Studies of spin-½ theories in the framework of projective geometry
have been undertaken before." — Y. Jack Ng  and H. van Dam
February 20, 2009

For one such framework,* see posts from that same date 
four years earlier — February 20, 2005.

* A 4×4 array. See the 19771978, and 1986 versions by 
Steven H. Cullinane,   the 1987 version by R. T. Curtis, and
the 1988 Conway-Sloane version illustrated below —

Cullinane, 1977

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Cullinane, 1978

Cullinane, 1986

Curtis, 1987

Update of 10:42 PM ET on Sunday, June 19, 2016 —

The above images are precursors to

Conway and Sloane, 1988

Update of 10 AM ET Sept. 16, 2016 — The excerpt from the
1977 "Diamond Theory" article was added above.

Kummer and Dirac

Filed under: Uncategorized — Tags: , — m759 @ 11:00 AM

From "Projective Geometry and PT-Symmetric Dirac Hamiltonian,"
Y. Jack Ng  and H. van Dam, 
Physics Letters B , Volume 673, Issue 3,
23 March 2009, Pages 237–239

(http://arxiv.org/abs/0901.2579v2, last revised Feb. 20, 2009)

" Studies of spin-½ theories in the framework of projective geometry
have been undertaken before. See, e.g., Ref. [4]. 1 "

1 These papers are rather mathematical and technical.
The authors of the first two papers discuss the Dirac equation
in terms of the Plucker-Klein correspondence between lines of
a three-dimensional projective space and points of a quadric
in a five-dimensional projective space. The last paper shows
that the Dirac equation bears a certain relation to Kummer’s
surface, viz., the structure of the Dirac ring of matrices is 
related to that of Kummer’s 166 configuration . . . ."

[4]

O. Veblen
Proc. Natl. Acad. Sci. USA , 19 (1933), p. 503
Full Text via CrossRef

E.M. Bruins
Proc. Nederl. Akad. Wetensch. , 52 (1949), p. 1135

F.C. Taylor Jr., Master thesis, University of North Carolina
at Chapel Hill (1968), unpublished


A remark of my own on the structure of Kummer’s 166 configuration . . . .

See that structure in this  journal, for instance —

See as well yesterday morning's post.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

Filed under: Uncategorized — Tags: , — m759 @ 8:23 AM

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface
.

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Monday, February 8, 2016

A Game with Four Letters

Filed under: Uncategorized — Tags: — m759 @ 2:56 PM

Related material — Posts tagged Dirac and Geometry.

For an example of what Eddington calls "an open mind,"
see the 1958 letters of Nanavira Thera.
(Among the "Early Letters" in Seeking the Path ).

Monday, December 14, 2015

Dirac and Geometry

Filed under: Uncategorized — Tags: , — m759 @ 10:30 AM

(Continued)

See a post by Peter Woit from Sept. 24, 2005 — Dirac's Hidden Geometry.

The connection, if any, with recent Log24 posts on Dirac and Geometry
is not immediately apparent.  Some related remarks from a novel —

From Broken Symmetries by Paul Preuss
(first published by Simon and Schuster in 1983) —

"He pondered the source of her fascination with the occult, which sooner or later seemed to entangle a lot of thoughtful people who were not already mired in establishmentarian science or religion. It was  the religious impulse, at base. Even reason itself could function as a religion, he supposed— but only for those of severely limited imagination. 

He’d toyed with 'psi' himself, written a couple of papers now much quoted by crackpots, to his chagrin. The reason he and so many other theoretical physicists were suckers for the stuff was easy to understand— for two-thirds of a century an enigma had rested at the heart of theoretical physics, a contradiction, a hard kernel of paradox. Quantum theory was inextricable from the uncertainty relations. 

The classical fox knows many things, but the quantum-mechanical hedgehog knows only one big thing— at a time. 'Complementarity,' Bohr had called it, a rubbery notion the great professor had stretched to include numerous pairs of opposites. Peter Slater was willing to call it absurdity, and unlike some of his older colleagues who, following in Einstein’s footsteps, demanded causal explanations for everything (at least in principle), Peter had never thirsted after 'hidden variables' to explain what could not be pictured. Mathematical relationships were enough to satisfy him, mere formal relationships which existed at all times, everywhere, at once. It was a thin nectar, but he was convinced it was the nectar of the gods. 

The psychic investigators, on the other hand, demanded to know how  the mind and the psychical world were related. Through ectoplasm, perhaps? Some fifth force of nature? Extra dimensions of spacetime? All these naive explanations were on a par with the assumption that psi is propagated by a species of nonlocal hidden variables, the favored explanation of sophisticates; ignotum per ignotius

'In this connection one should particularly remember that the human language permits the construction of sentences which do not involve any consequences and which therefore have no content at all…' The words were Heisenberg’s, lecturing in 1929 on the irreducible ambiguity of the uncertainty relations. They reminded Peter of Evan Harris Walker’s ingenious theory of the psi force, a theory that assigned psi both positive and negative values in such a way that the mere presence of a skeptic in the near vicinity of a sensitive psychic investigation could force null results. Neat, Dr. Walker, thought Peter Slater— neat, and totally without content. 

One had to be willing to tolerate ambiguity; one had to be willing to be crazy. Heisenberg himself was only human— he’d persuasively woven ambiguity into the fabric of the universe itself, but in that same set of 1929 lectures he’d rejected Dirac’s then-new wave equations with the remark, 'Here spontaneous transitions may occur to the states of negative energy; as these have never been observed, the theory is certainly wrong.' It was a reasonable conclusion, and that was its fault, for Dirac’s equations suggested the existence of antimatter: the first antiparticles, whose existence might never have been suspected without Dirac’s crazy results, were found less than three years later. 

Those so-called crazy psychics were too sane, that was their problem— they were too stubborn to admit that the universe was already more bizarre than anything they could imagine in their wildest dreams of wizardry."

Particularly relevant

"Mathematical relationships were enough to satisfy him,
mere formal relationships which existed at all times,
everywhere, at once."

Some related pure  mathematics

Anticommuting Dirac matrices as spreads of projective lines

Friday, November 27, 2015

Einstein and Geometry

Filed under: Uncategorized — Tags: — m759 @ 2:01 PM

(A Prequel to Dirac and Geometry)

"So Einstein went back to the blackboard.
And on Nov. 25, 1915, he set down
the equation that rules the universe.
As compact and mysterious as a Viking rune,
it describes space-time as a kind of sagging mattress…."

— Dennis Overbye in The New York Times  online,
     November 24, 2015

Some pure  mathematics I prefer to the sagging Viking mattress —

Readings closely related to the above passage —

Thomas Hawkins, "From General Relativity to Group Representations:
the Background to Weyl's Papers of 1925-26
," in Matériaux pour
l'histoire des mathématiques au XXe siècle:
Actes du colloque
à la mémoire de Jean Dieudonné
, Nice, 1996  (Soc. Math.
de France, Paris, 1998), pp. 69-100.

The 19th-century algebraic theory of invariants is discussed
as what Weitzenböck called a guide "through the thicket
of formulas of general relativity."

Wallace Givens, "Tensor Coordinates of Linear Spaces," in
Annals of Mathematics  Second Series, Vol. 38, No. 2, April 1937, 
pp. 355-385.

Tensors (also used by Einstein in 1915) are related to 
the theory of line complexes in three-dimensional
projective space and to the matrices used by Dirac
in his 1928 work on quantum mechanics.

For those who prefer metaphors to mathematics —

"We acknowledge a theorem's beauty
when we see how the theorem 'fits' in its place,
how it sheds light around itself, like a Lichtung ,
a clearing in the woods." 
— Gian-Carlo Rota, Indiscrete Thoughts ,
Birkhäuser Boston, 1997, page 132

Rota fails to cite the source of his metaphor.
It is Heidegger's 1964 essay, "The End of Philosophy
and the Task of Thinking" —

"The forest clearing [ Lichtung ] is experienced
in contrast to dense forest, called Dickung  
in our older language." 
— Heidegger's Basic Writings 
edited by David Farrell Krell, 
Harper Collins paperback, 1993, page 441

Monday, November 23, 2015

Dirac and Line Geometry

Filed under: Uncategorized — Tags: — m759 @ 2:29 AM

Some background for my post of Nov. 20,
"Anticommuting Dirac Matrices as Skew Lines" —

First page of 'Configurations in Quantum Mechanics,' by E.M. Bruins, 1959

His earlier paper that Bruins refers to, "Line Geometry
and Quantum Mechanics," is available in a free PDF.

For a biography of Bruins translated by Google, click here.

For some additional historical background going back to
Eddington, see Gary W. Gibbons, "The Kummer
Configuration and the Geometry of Majorana Spinors,"
pages 39-52 in Oziewicz et al., eds., Spinors, Twistors,
Clifford Algebras, and Quantum Deformations:
Proceedings of the Second Max Born Symposium held
near Wrocław, Poland, September 1992
 . (Springer, 2012,
originally published by Kluwer in 1993.)

For more-recent remarks on quantum geometry, see a
paper by Saniga cited in today's update to my Nov. 20 post

Saturday, November 21, 2015

The Zero System

Filed under: Uncategorized — Tags: — m759 @ 12:00 AM

For the title phrase, see Encyclopedia of Mathematics .
The zero system  illustrated in the previous post*
should not be confused with the cinematic Zero Theorem .

* More precisely, in the part showing the 15 lines fixed under
   a zero-system polarity in PG(3,2).  For the zero system 
   itself, see diamond-theorem correlation.

Friday, November 20, 2015

Anticommuting Dirac Matrices as Skew Lines

Filed under: Uncategorized — Tags: — m759 @ 11:45 PM

(Continued from November 13)

The work of Ron Shaw in this area, ca. 1994-1995, does not
display explicitly the correspondence between anticommutativity
in the set of Dirac matrices and skewness in a line complex of
PG(3,2), the projective 3-space over the 2-element Galois field.

Here is an explicit picture —

Anticommuting Dirac matrices as spreads of projective lines

References:  

Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Shaw, Ron, "Finite Geometry, Dirac Groups, and the Table of
Real Clifford Algebras," undated article at ResearchGate.net

Update of November 23:

See my post of Nov. 23 on publications by E. M. Bruins
in 1949 and 1959 on Dirac matrices and line geometry,
and on another author who gives some historical background
going back to Eddington.

Some more-recent related material from the Slovak school of
finite geometry and quantum theory —

Saniga, 'Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits,' excerpt

The matrices underlying the Saniga paper are those of Pauli, not
those of Dirac, but these two sorts of matrices are closely related.

Thursday, November 19, 2015

Highlights of the Dirac-Mathieu Connection

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

For the connection of the title, see the post of Friday, November 13th, 2015.

For the essentials of this connection, see the following two documents —

Friday, November 13, 2015

A Connection between the 16 Dirac Matrices and the Large Mathieu Group

Filed under: Uncategorized — Tags: — m759 @ 2:45 AM



Note that the six anticommuting sets of Dirac matrices listed by Arfken
correspond exactly to the six spreads in the above complex of 15 projective
lines of PG(3,2) fixed under a symplectic polarity (the diamond theorem
correlation
 
). As I noted in 1986, this correlation underlies the Miracle
Octad Generator of R. T. Curtis, hence also the large Mathieu group.

References:

Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Related material:

The 6-set in my 1986 note above also appears in a 1996 paper on
the sixteen Dirac matrices by David M. Goodmanson —

Background reading:

Ron Shaw on finite geometry, Clifford algebras, and Dirac groups 
(undated compilation of publications from roughly 1994-1995)—

Saturday, September 21, 2013

Geometric Incarnation

The  Kummer 166  configuration  is the configuration of sixteen
6-sets within a 4×4 square array of points in which each 6-set
is determined by one of the 16 points of the array and
consists of the 3 other points in that point's row and the
3 other points in that point's column.

See Configurations and Squares.

The Wikipedia article Kummer surface  uses a rather poetic
phrase* to describe the relationship of the 166 to a number
of other mathematical concepts — "geometric incarnation."

Geometric Incarnation in the Galois Tesseract

Related material from finitegeometry.org —

IMAGE- 4x4 Geometry: Rosenhain and Göpel Tetrads and the Kummer Configuration

* Apparently from David Lehavi on March 18, 2007, at Citizendium .

Thursday, December 5, 2002

Thursday December 5, 2002

Filed under: Geometry — Tags: , — m759 @ 3:17 AM

Sacerdotal Jargon

From the website

Abstracts and Preprints in Clifford Algebra [1996, Oct 8]:

Paper:  clf-alg/good9601
From:  David M. Goodmanson
Address:  2725 68th Avenue S.E., Mercer Island, Washington 98040

Title:  A graphical representation of the Dirac Algebra

Abstract:  The elements of the Dirac algebra are represented by sixteen 4×4 gamma matrices, each pair of which either commute or anticommute. This paper demonstrates a correspondence between the gamma matrices and the complete graph on six points, a correspondence that provides a visual picture of the structure of the Dirac algebra.  The graph shows all commutation and anticommutation relations, and can be used to illustrate the structure of subalgebras and equivalence classes and the effect of similarity transformations….

Published:  Am. J. Phys. 64, 870-880 (1996)


The following is a picture of K6, the complete graph on six points.  It may be used to illustrate various concepts in finite geometry as well as the properties of Dirac matrices described above.


From
"The Relations between Poetry and Painting,"
by Wallace Stevens:

"The theory of poetry, that is to say, the total of the theories of poetry, often seems to become in time a mystical theology or, more simply, a mystique. The reason for this must by now be clear. The reason is the same reason why the pictures in a museum of modern art often seem to become in time a mystical aesthetic, a prodigious search of appearance, as if to find a way of saying and of establishing that all things, whether below or above appearance, are one and that it is only through reality, in which they are reflected or, it may be, joined together, that we can reach them. Under such stress, reality changes from substance to subtlety, a subtlety in which it was natural for Cézanne to say: 'I see planes bestriding each other and sometimes straight lines seem to me to fall' or 'Planes in color. . . . The colored area where shimmer the souls of the planes, in the blaze of the kindled prism, the meeting of planes in the sunlight.' The conversion of our Lumpenwelt went far beyond this. It was from the point of view of another subtlety that Klee could write: 'But he is one chosen that today comes near to the secret places where original law fosters all evolution. And what artist would not establish himself there where the organic center of all movement in time and space—which he calls the mind or heart of creation— determines every function.' Conceding that this sounds a bit like sacerdotal jargon, that is not too much to allow to those that have helped to create a new reality, a modern reality, since what has been created is nothing less."

Powered by WordPress