Log24

Friday, October 25, 2024

The Space Structures Underlying M24

Filed under: General — Tags: , , — m759 @ 12:24 am

The structures of the title are the even subsets of a six-set and of
an eight-set, viewed modulo set complementation.

The "Brick Space" model of PG(5,2) —

Brick space: The 2x4 model of PG(5,2)

For the M24 relationship between these spaces, of 15 and of 63 points,
see G. M. Conwell's 1910 paper "The 3-Space PG (3,2) and Its Group,"
as well as Conwell heptads in this  journal.

Thursday, October 24, 2024

Space Structure

Filed under: General — Tags: , , — m759 @ 6:31 pm

Description of a book to be published in November —

Note the phrase "underlying combinatorial structure." AI scholium —

Wednesday, October 23, 2024

The Delta Transform

Filed under: General — Tags: , , , — m759 @ 7:04 am

Rothko — "… the elimination of all obstacles between the painter and
the idea, and between the idea and the observer."

Walker Percy has similarly discussed elimination of obstacles between
the speaker and the word, and between the word and the hearer.

Walker Percy's chapter on 'The Delta Factor' from 'Message in the Bottle'

Click images to enlarge.

Related mathematics —

The source: http://finitegeometry.org/sc/gen/typednotes.html.

A document from the above image —

AN INVARIANCE OF SYMMETRY

BY STEVEN H. CULLINANE

We present a simple, surprising, and beautiful combinatorial
invariance of geometric symmetry, in an algebraic setting.

DEFINITION. A delta transform of a square array over a 4-set is
any pattern obtained from the array by a 1-to-1 substitution of the
four diagonally-divided two-color unit squares for the 4-set elements.

THEOREM. Every delta transform of the Klein group table has
ordinary or color-interchange symmetry, and remains symmetric under
the group G of 322,560 transformations generated by combining
permutations of rows and colums with permutations of quadrants.

PROOF (Sketch). The Klein group is the additive group of GF (4);
this suggests we regard the group's table  T as a matrix over that
field. So regarded, T is a linear combination of three (0,1)-matrices
that indicate the locations, in  T, of the 2-subsets of field elements.
The structural symmetry of these matrices accounts for the symmetry
of the delta transforms of  T, and is invariant under G.

All delta transforms of the 45 matrices in the algebra generated by
the images of  T under G are symmetric; there are many such algebras. 

THEOREM. If 1 m ≤ n2+2, there is an algebra of 4m
2n x 2n matrices over GF(4) with all delta transforms symmetric.

An induction proof constructs sets of basis matrices that yield
the desired symmetry and ensure closure under multiplication.

REFERENCE

S. H. Cullinane, Diamond theory (preprint).

Update of 1:12 AM ET on Friday, Oct. 25, 2024 —

The above "invariance of symmetry" document was written in 1978
for submission to the "Research Announcements" section of the
Bulletin of the American Mathematical Society .  This pro forma 
submission was, of course, rejected.  Though written before
I learned of similar underlying structures in the 1974 work of
R. T. Curtis on his "Miracle Octad Generator," it is not without
relevance to his work.

Powered by WordPress