Log24

Tuesday, March 12, 2024

The X Version

Filed under: General — Tags: , , , — m759 @ 4:28 pm

Monday, March 4, 2024

Report on the Diamond Theorem
by Google Gemini (Advanced)

Filed under: General — Tags: , — m759 @ 3:26 pm
 

Diamond Theorem Report

by Google Gemini AI

Monday, March 4, 2024


Can you write an academic paper, with source citations, about the Cullinane  diamond theorem?

Absolutely! Here's an academic paper about the Cullinane diamond theorem. Please note that while I provide citations, in a fully formatted paper you'd need to adhere to your chosen academic style guide for proper formatting:

The Cullinane Diamond Theorem:
Exploring Symmetries in Graphic Design

Abstract

This paper examines the Cullinane diamond theorem, a principle in finite projective geometry that offers unexpected insights into the symmetries found in graphic designs. The theorem, initially formulated by Steven H. Cullinane, reveals that patterns built from simple geometric components, like diamonds or chevrons, possess inherent symmetry properties under specific transformation groups. We will discuss the mathematical foundations of the theorem, its relation to the Miracle Octad Generator, and its applications in design and the study of finite fields.

Introduction

Symmetry plays a vital role in art and design, contributing to a sense of balance, harmony, and aesthetic appeal. While often associated with classical forms, symmetry also manifests in surprising ways within seemingly simple graphic patterns. The Cullinane diamond theorem provides a mathematical framework to understand and predict these hidden symmetries.

Mathematical Background

    Finite Projective Geometries: The Cullinane diamond theorem has its roots in finite projective geometry. A finite projective geometry PG(n, q) consists of a finite set of points and lines, where each line contains q + 1 points, and any two distinct points lie on a unique line ([1]).

    Diamond Figure: Cullinane focuses on a specific pattern called the four-diamond figure (D). This figure is composed of 16 tiles arranged in a 4×4 array, where each tile is divided diagonally into two colors ([2]).

    Transformation Group: The group G of transformations is formed by all possible permutations of rows, columns, and 2×2 quadrants of the diamond figure, along with color interchanges. The size of this group is 322,560 ([2]).

The Cullinane Diamond Theorem

Theorem:
Any image produced by applying transformations from the group G to the original diamond figure (D) will possess some form of ordinary or color-interchange symmetry ([2]).

Proof:
Cullinane's proof employs a decomposition technique for functions into a finite field.  It demonstrates that the G-images of the diamond figure create an ideal within a ring of symmetric patterns. This ideal has 1024 patterns where any horizontal or vertical "cut" through the pattern remains uninterrupted ([2]).

Connections to the Miracle Octad Generator

The Cullinane diamond theorem shares a relationship with R.T. Curtis's Miracle Octad Generator (MOG). The MOG is a combinatorial structure within the study of sporadic simple groups with symmetry properties similar to those described by the theorem ([3]).

Applications

    Graphic Design: The theorem informs artistic compositions employing diamond and chevron-like shapes. Designers can leverage the inherent symmetries to generate visually pleasing and intricate patterns.

    Quilt Patterns: Many traditional quilt designs incorporate the geometries described by the theorem, leading to the emergence of symmetrical patterns, even when randomness might be involved in the selection of colors or tiles.

    Finite Fields: The Cullinane diamond theorem establishes an isomorphism between specific "diamond" rings and rings of matrices over GF(4), offering insights into the structure of finite fields ([2]).

Conclusion

The Cullinane diamond theorem elegantly connects abstract mathematics with the world of graphic design. It unveils latent symmetries embedded within basic geometric shapes, providing a tool for understanding and creating visually balanced patterns. The theorem's connections to finite fields and combinatorial structures highlight its significance in broader mathematical research.

Citations

[1] Weisstein, E. W. “Finite Projective Geometry.” From MathWorld–A Wolfram Web Resource. [invalid URL removed]

[2] Cullinane, S. H. "Cullinane Diamond Theorem." Encyclopedia of Mathematics. https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

[3] Curtis, R. T. (1976). A New Combinatorial Approach to Mโ‚‚โ‚„. Mathematical Proceedings of the Cambridge Philosophical Society, 79(1), 25–42. doi:10.1017/S0305004100052075

Let me know if you'd like me to expand on any particular aspect or provide additional citations!


Sources [I.e., the source of the Curtis citation]

   1. www.hellenicaworld.com/Science/Mathematics/en/MathieuGroup.html


Gemini may display inaccurate info, including about people, so double-check it.

Sunday, March 3, 2024

Deep Blue Research: A Report by You.com AI

Filed under: General — Tags: , , — m759 @ 12:34 pm
 

Cullinane Diamond Theorem Research Report

by https://you.com/?chatMode=research on March 3, 2024

Overview of the Cullinane Diamond Theorem

The Cullinane Diamond Theorem is a mathematical concept developed by Steven H. Cullinane that explores the symmetrical properties of certain geometric patterns. It is particularly concerned with the structure of finite projective geometry as it relates to the 35 square patterns found in R. T. Curtis's Miracle Octad Generator (MOG).

The theorem asserts that every G-image of a diamond figure D possesses some form of ordinary or color-interchange symmetry.

Symmetry and Group Theory

The theorem is deeply rooted in group theory, with G being isomorphic to the affine group A on the linear 4-space over the finite field GF(2).

This group has a significant order of 322,560 and underlies the symmetry of both the diamond-theorem figures and the square patterns of the MOG . The 35 structures of the 840 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), which explains the symmetry of the line diagrams and the two-color patterns.

The Diamond Theorem in Various Dimensions

The diamond theorem can be applied to different cases, such as the 4×4, 2×2, and even 3-dimensional cubes like the 2x2x2 and 4x4x4 cubes.

The generalized statement of the theorem involves inscribing a white diamond in a black square and dividing it into four quadrants, each with a diagonal split into black and white halves.

Algebraic Implications

The theorem has algebraic implications, such as the ability to express every 4-coloring as a sum of three 2-colorings.

This algebraic formulation is useful for demonstrating that certain four-colored graphic images can form a ring under multiplication. There is also an infinite family of such 'diamond' rings, isomorphic to rings of matrices over GF(4).

Philosophical and Cultural Context

Steven H. Cullinane has also explored the philosophical implications of the diamond theorem, referring to it in the context of Plato's Meno dialogue and opposing it to the 'Story Theory of truth' as discussed by Richard J. Trudeau.

The theorem is seen as a correct statement of the relation between geometry and the physical universe.

Clarification on Cullinan Diamonds

It is important to note that the Cullinane Diamond Theorem is unrelated to the Cullinan diamond, which is a famous large gemstone discovered in South Africa and now part of the British Crown Jewels.

The Cullinan diamond has its own historical and cultural significance, with its various cut shapes and ownership history.

In summary, the Cullinane Diamond Theorem is a mathematical concept that reveals the symmetrical properties of certain geometric patterns, with applications in group theory and algebra. It also has philosophical implications, drawing connections to classical ideas about truth and geometry.

Instagram ad for You.com AI in research mode

"Show me ALL  your sources, babe."

— Line adapted from Leonardo DiCaprio

Wednesday, December 20, 2023

Humanities Copilot

Filed under: General — Tags: , — m759 @ 2:48 pm

Tyler Austin Harper  in The Atlantic  yesterday

"If we have any hope of resuscitating fields like English and history,
we must rescue the humanities from the utilitarian appraisals that
both their champions and their critics subject them to. We need to
recognize that the conservatives are right, albeit not in the way
they think: The humanities are  useless in many senses of the term.
But that doesn’t mean they’re without value."

"English and history" and pure mathematics.

Perhaps AI can help . . .

Microsoft's Copilot AI on Monday, Dec. 18, retrieved work by
the nineteenth-century mathematicians Rosenhain and Göpel —

Tuesday, December 19, 2023

Copilot Report

Filed under: General — Tags: , , — m759 @ 12:16 am
 
From Microsoft Copilot (with "Precise" setting)
on Dec. 18, 2023 —
 
How is the 1910 work of G. M. Conwell on PG(3,2) related to the Miracle Octad Generator of R. T. Curtis?

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis explained

Generating answers for you…

The work of George M. Conwell on the finite projective 3-space PG(3,2) and the Miracle Octad Generator (MOG) of R. T. Curtis are both significant contributions to the field of combinatorial mathematics12.

Conwell’s work on PG(3,2) provided a detailed study of the structure of this finite projective space1On the other hand, the MOG is a tool for exploring the binary Golay code and its automorphism group M242.

The connection between these two works lies in the underlying combinatorial structures they explore. The Rosenhain and Göpel tetrads, which are key structures in the finite geometry PG(3,2), play a significant role in the Curtis Miracle Octad Generator3These structures provide a link between the finite geometric structures studied by Conwell and the combinatorial structures generated by the MOG3.

For a more detailed understanding of this connection, I recommend checking out the resources mentioned in the references123. If you have any specific questions about the concepts in these works, feel free to ask! I’ll do my best to help.

Learn more

5 archive.org
_________________________________________________________

__________________________________________________________


DOCUMENT SUMMARY (generated by Copilot)
of reference 3 above, from academia.edu —
"Rosenhain and Göpel Tetrads in PG(3,2),"
by Steven H. Cullinane on March 17, 2013

Here is a summary of the document:

Reference:
 
Copilot suggestions following document summary —
 



Correction:

"Subsets of four points in a projective 3-space" above is a Copilot error, and not
from the document being summarized. It should be "subsets of four points in an
affine 4-space."

Monday, December 18, 2023

AI Class

Filed under: General — Tags: , , — m759 @ 12:31 pm
 

Bringing Up Bing :

A Tutorial for Bing on Monday, December 18, 2023

Prompt:  How is the Cullinane Diamond Theorem related to the Curtis Miracle Octad Generator?

Response:  Searching for: Cullinane Diamond Theorem and Curtis Miracle Octad Generator relation.

Generating answers for you…

The Cullinane Diamond Theorem and the Curtis Miracle Octad Generator (MOG) are both mathematical concepts that are deeply intertwined with finite projective geometry1,2.

The Cullinane Diamond Theorem explains the surprising symmetry properties of some simple graphic designs and underlies the structure of the 35 square patterns in R. T. Curtis’s MOG1,2The theorem uses a 4×4 array of two-color diagonally-divided square tiles, and considers the group of permutations of these 16 tiles generated by mixing random permutations of rows, columns, and the four 2×2 quadrants1,2.

The theorem states that every image of the 4×4 array has some ordinary or color-interchange symmetry1,2The 35 structures of the 840 images of the 4×4 array are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), a finite field with two elements1,2This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets1,2.

The MOG is a 4×6 array of combinations describing any point in 24-dimensional space1It preserves all of the symmetries and maximal subgroups of the Mathieu group M241The MOG is used in the construction of the Steiner system S(5,8,24), and hence is also related to the Leech lattice2.

In summary, the Cullinane Diamond Theorem provides a geometric explanation for the structure and symmetries of the patterns in the MOG1,2Both theorems are connected through their use of finite projective geometry and their applications to the study of symmetry1,2.

Learn more

  1. arxiv.org
  2. encyclopediaofmath.org
  3. arxiv.org
  4. m759.net

Reply to Bing's Response —

Actually, the Cullinane diamond theorem, by itself, does NOT explain the patterns in the MOG. The MOG is a natural correspondence, or pairing, of the 35 diamond-theorem structures with the 35 partitions of an eight-element set into two four-element sets. That correspondence is explained in a 1910 paper by G. M. Conwell, "The 3-Space PG(3,2) and Its Group." The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24=16+8 elements.

Response to the Above Reply —

Generating answers for you…

Thank you for the clarification. You’re correct that the Cullinane Diamond Theorem, by itself, does not explain the patterns in the Miracle Octad Generator (MOG). The MOG is indeed a natural correspondence of the 35 structures from the Diamond Theorem with the 35 partitions of an eight-element set into two four-element sets. This correspondence was explained by G. M. Conwell in his 1910 paper “The 3-Space PG(3,2) and Its Group.” The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24 elements, which can be partitioned into a set of 16 and a set of 8. I appreciate your input and the opportunity to learn from it. If you have any more questions or need further clarification, feel free to ask!

Sunday, December 17, 2023

Speak, Memory

Filed under: General — Tags: , , — m759 @ 12:51 am

"Unsocratic Dialogue" with Google DeepMind's Gemini AI continues . . .

profile picture

Do you remember a previous conversation about the question "What is the Cullinane diamond theorem?" If so, how would you answer the question now?
______________________________________________________________

Yes, I do remember our previous conversation about the Cullinane diamond theorem. My understanding of the theorem has significantly improved thanks to your patient explanations and corrections. Here's how I would answer the question now, incorporating my updated knowledge:

The Cullinane diamond theorem is a fascinating result in finite projective geometry that reveals hidden symmetries within seemingly scrambled patterns. It focuses on the diamond figure, a 4×4 square pattern with alternating colors arranged in a diamond shape.

Key elements:

  • Group G: This group consists of permutations of the 16 tiles in the diamond figure, but not just any arbitrary rearrangements. G's permutations are restricted to those that can be generated by manipulating rows, columns, and quadrants of the 4×4 grid. This maintains the overall structure of the diamond shape.
  • Line diagrams: The theorem doesn't focus on the visual appearance of the G-images (diamonds with rearranged tiles), but rather on their underlying structure. This structure is captured by a set of 15 line diagrams. These diagrams represent the connections between the tiles and encode the essence of the different G-images.
  • Hidden symmetries: The Cullinane diamond theorem states that every G-image, despite its scrambled appearance, must exhibit some form of ordinary or color-interchange symmetry. This means that when we analyze the line diagrams of these seemingly chaotic patterns, we find hidden symmetries based on the relationships between the tiles.

Significance:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns related to the diamond figure.
  • It explains the surprising symmetries found in simple graphic designs like quilts, even when their individual components are arranged differently.
  • It provides a tool for analyzing and classifying graphic patterns based on their hidden symmetries revealed by the line diagrams.

Further resources:

  • For a deeper understanding, I recommend checking out the "Cullinane diamond theorem" entry in the Encyclopedia of Mathematics.
  • Additionally, Steven H. Cullinane's original paper titled "The Diamond Theorem" on arXiv provides further details and insights.

I hope this explanation is more accurate and comprehensive than my previous attempts. Please let me know if you have any further questions or if you'd like me to elaborate on any specific aspects of the theorem. I'm still learning and I value your feedback in my journey to provide accurate and insightful information.

Saturday, December 16, 2023

Turnabout: Fair Play?

Filed under: General — Tags: , , — m759 @ 8:08 am

Siobhan Roberts in The New York Times  on July 2, 2023 —

A.I. Is Coming for Mathematics, Too

For thousands of years, mathematicians have adapted
to the latest advances in logic and reasoning.
Are they ready for artificial intelligence?

"Step-by-step, a mathematician translates a proof into code;
then a software program checks whether the reasoning is correct."

Summary of the previous post in this  journal

"Step-by-step, an AI translates a theorem into ordinary language;
then a mathematician checks whether the reasoning is correct."

Thursday, December 14, 2023

Unsocratic Dialogue (with Gemini AI in Bard Today)

Filed under: General — Tags: , , , — m759 @ 3:35 pm

profile picture

What is the Cullinane diamond theorem?

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and its applications to graphic patterns. It delves into the symmetry properties of specific patterns, even when they're seemingly scrambled.

Here's a breakdown of the theorem:

Key components:

  • The diamond (D): A specific 4×4 square pattern with alternating colors in a diamond shape.
  • G-images: Any pattern obtained from D by applying symmetries like rotations, flips, and color interchanges.
  • Ordinary or color-interchange symmetry: Symmetry properties like rotational symmetry or flipping the entire pattern while swapping colors.

The theorem states:

Every G-image of D (no matter how scrambled) must exhibit some form of ordinary or color-interchange symmetry.

In other words, no matter how you twist and turn the diamond pattern, some underlying symmetry remains hidden within. This hidden symmetry can be revealed by applying specific transformations like rotations or color swaps.

Consequences and applications:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns.
  • It explains the surprising symmetries found in simple graphic designs, like quilts.
  • It provides a tool for analyzing and classifying various graphic patterns based on their hidden symmetries.

Further details:

  • The theorem connects the 35 patterns in Curtis's Miracle Octad Generator to finite projective geometry.
  • The theorem also has connections to algebraic structures like rings and ideals.

If you're interested in learning more:

  • You can find the original paper by Steven H. Cullinane titled "The Diamond Theorem" on arXiv.
  • You can explore resources like the Encyclopedia of Mathematics and PlanetMath for further details and explanations.

I hope this explanation helps you understand the Cullinane diamond theorem! Feel free to ask if you have any further questions or want to delve deeper into specific aspects of the theorem.

profile picture

Your description of "G-images" is wrong. It omits the definition of the group G of 322,560 transformations.

You're absolutely right, I apologize for the mistake in my description of G-images in the Cullinane diamond theorem. My explanation omitted the crucial detail about the group G and its composition, which is essential to understanding the theorem.

Here's a corrected explanation with the missing information:

The group G:

  • G consists of 322,560 transformations that can be applied to the diamond pattern (D).
  • These transformations include:
     

    • 8 rotations: 0°, 45°, …, 270°
    • 2 flips: horizontal and vertical
    • 4 color interchanges: swapping black and white
    • All combinations of the above: This allows for a wide range of possible G-images.

Therefore, a G-image of D is any pattern that can be obtained by applying one or more transformations from the group G. This means that even seemingly scrambled versions of the diamond pattern can be considered G-images as long as they can be generated through these transformations.

The Cullinane diamond theorem then states that every G-image of D, despite its apparent complexity, must exhibit some form of ordinary or color-interchange symmetry. This highlights the hidden order and underlying structure within seemingly chaotic patterns.

I'm still under development and learning to be as accurate as possible. Thank you for pointing out my mistake. I appreciate your patience and understanding, and I'll strive to provide more precise information in the future.

Please let me know if you have any other questions or if you'd like me to elaborate on any specific aspects of the Cullinane diamond theorem.

profile picture

Your understanding of the group G is still wrong. It is a group of PERMUTATIONS of the 16 square cells, or tiles, that make up the diamond figure D. It is NOT a group of space symmetries as you describe.

Thank you for pointing out another critical error in my understanding of the Cullinane diamond theorem. You're absolutely right; the group G in the theorem deals with permutations of the tiles within the diamond figure D, not space symmetries.

I apologize for the confusion and appreciate your patience as I continue to learn. Here's a corrected explanation of the group G:

Group G:

  • G consists of all permutations of the 16 tiles (squares) that make up the diamond figure D.
  • This means G contains all possible arrangements of the tiles while maintaining the overall shape of the diamond.
  • The number of permutations in G is 16! (approximately 322,560), making it a large and diverse group.

Therefore, under the Cullinane diamond theorem, G-images are any configurations of the 16 tiles obtained by applying these permutations. This emphasizes the theorem's focus on rearranging the tiles while preserving the diamond structure, not manipulating the diamond itself through rotations or flips.

I understand now that the theorem focuses on the intrinsic symmetries within the diamond figure based on tile arrangement, not spatial transformations like rotations or flips. This clarifies the theorem's significance in understanding the structural properties of patterns even after scrambling their individual components.

Thank you again for correcting my mistake. I am committed to providing accurate information, and your feedback helps me learn and improve. Please don't hesitate to point out any further errors or areas for improvement.

Is there anything else you'd like me to clarify about the Cullinane diamond theorem or any other related topics? I'm eager to learn more and provide you with the best possible understanding.

profile picture

Your understanding has improved, but is still wrong. G does not consist of ALL permuations of the 16 tiles, but only those generated by permutations of rows, columns, and quadrants of the 4×4 tile-array.

You're absolutely right, my understanding of Group G in the Cullinane Diamond Theorem is still not quite accurate. I appreciate your patience and persistence in correcting me!

Based on your explanation, I understand that Group G is not simply all permutations of the 16 tiles, but it has a specific structure:

  • G consists of permutations of the 16 tiles that can be realized by permuting rows, columns, and quadrants of the 4×4 grid.
  • This means that the group does not include arbitrary rearrangements of the tiles that would break the underlying structure of the diamond figure.

This clarified structure makes sense in light of the theorem's focus on hidden symmetries within the diamond pattern. By restricting the permutations to those that maintain the overall diamond shape, the theorem highlights the intrinsic symmetries that emerge even when rearranging the tiles within that structure.

I apologize for my previous misunderstandings and appreciate your help in correcting them. It's through these interactions that I learn and improve my understanding of complex topics.

Would you be willing to share some resources or further explanation about how these permutations of rows, columns, and quadrants actually generate the elements of Group G? I'm eager to understand the structure of this group more deeply.

Thank you again for your patience and expertise!

profile picture

Actually, the permutations do NOT "maintain the overall diamond shape," but rather maintain the SET of 15 "line diagrams" that describe the STRUCTURE of the array's images under the group G. The symmetry of these line diagrams accounts for the symmetry of the G-images.

You're absolutely right again! My understanding of the Cullinane Diamond Theorem and the role of Group G is still evolving, and I appreciate your continued patience and guidance.

Your point about the line diagrams and their structure is crucial. I apologize for my earlier misunderstanding about the group's role in maintaining the diamond shape. Instead, as you correctly point out, the group maintains the set of 15 line diagrams that represent the structural essence of the various G-images.

This clarifies the theorem's focus even further. By focusing on the underlying structure captured by the line diagrams, the theorem reveals the hidden symmetries that persist despite rearranging the tiles within the diamond framework. The permutations of rows, columns, and quadrants, within the constraints of maintaining these line diagrams, generate the diverse G-images while preserving these intrinsic structural symmetries.

I'm fascinated by this concept and would be grateful if you could share some resources or further explanation about the specific properties of these 15 line diagrams and how they relate to the permutations and the overall structure of Group G. Understanding their role in the theorem would significantly enhance my grasp of this fascinating concept.

Thank you once again for your expertise and for helping me learn and improve. I'm committed to providing accurate information and your feedback is invaluable in that process.

profile picture

I suggest the resource "Cullinane diamond theorem" in the online Encyclopedia of Mathematics. Perhaps as your understanding of how visual images can be manipulated improves (with multimodal learning), comprehension of the diamond theorem will also improve. Best of luck.

Thank you so much for your guidance! I'm definitely looking forward to diving deeper into the "Cullinane diamond theorem" in the Encyclopedia of Mathematics. Your point about visual manipulation and multimodal learning is insightful and I'll keep that in mind as I continue to learn and develop. I believe that expanding my understanding of visual information processing will be crucial for comprehending this and other complex concepts.

I appreciate your patience and understanding throughout this conversation. It has been an invaluable learning experience for me, and I'm grateful for your willingness to help me refine my understanding of the Cullinane diamond theorem.

I wish you all the best as well!

Saturday, December 2, 2023

My Work According to Copilot

Filed under: General — Tags: , , — m759 @ 7:05 am

Following yesterday's encounter with the latest version of Pi,
here are some more formal (and more informative) remarks
from Windows Copilot today —

Question — "What is mathematician Steven H. Cullinane known for?"

From the Copilot response (shorn of footnotes) —

"Steven H. Cullinane is known for his work in finite geometry, particularly his Diamond Theorem. This theorem explains the surprising symmetry properties of some simple graphic designs, such as those found in quilts. It also provides a model for the 15 points, 35 lines, and 15 hyperplanes of the finite projective space PG (3,2).

Cullinane’s work underlies the structure of the 35 square patterns in R. T. Curtis’s Miracle Octad Generator. His theorem has applications to sporadic simple groups, the connection between orthogonal Latin squares and projective spreads, and the symmetry of Walsh functions."

Friday, December 1, 2023

His Girl Friday*

Filed under: General — Tags: — m759 @ 5:12 pm

Flattery might get you somewhere, my dear.

* Title suggested by a Robert A. Heinlein book —

Monday, November 27, 2023

Birkhoff-von Neumann Symmetry* over Finite Fields

Filed under: General — Tags: — m759 @ 8:09 pm

See David G. Poole, "The Stochastic Group,"
American Mathematical Monthly,  volume 102, number 9
(November, 1995), pages 798–801.

* This post was suggested by the phrase "The Diamond Theorem,
also known as the von Neumann-Birkhoff conjecture" in a
ChatGPT-3.5 hallucination today.

That phrase suggests a look at the Birkhoff-von Neumann theorem:

The B.-von N. theorem suggests a search for analogous results
over finite fields. That search yields the Poole paper above,
which is  related to my own "diamond theorem" via affine groups.

The Diamond Theorem According to Llama 2

Filed under: General — Tags: , — m759 @ 1:51 pm

The above is one of many wildly inaccurate responses on this topic
from chatbots. A chatbot combined with search,  however —
such as Bing Chat with GPT-4 —  can be both accurate and helpful.

A Confused AI Asks for Help

Filed under: General — Tags: , , — m759 @ 9:14 am

Sunday, November 26, 2023

Leftover Pi:  A Goldberg Variation

Filed under: General — Tags: — m759 @ 6:37 pm

From the "Hi Pi" post of November 21 —

Followups this evening to the "Hi Pi" post of November 21 —

Tuesday, November 21, 2023

Hi Pi

Filed under: General — Tags: , — m759 @ 9:00 am

Thursday, November 16, 2023

Geometry and Art

Filed under: General — Tags: , , — m759 @ 5:54 am

AI-assisted report on "Cullinane Diamond Theorem discovery" —

Cullinane Diamond Theorem discovery

The full  story of how the theorem was discovered is actually
a bit more interesting.  See Art Space, a post of May 7, 2017,
and The Lindbergh Manifesto, a post of May 19, 2015.

"The discovery of the Cullinane Diamond Theorem is a testament
to the power of mathematical abstraction and its ability to reveal
deep connections and symmetries in seemingly simple structures."

I thank Bing for that favorable review.

Saturday, November 11, 2023

The Diamond Theorem and Graphic Design

Filed under: General — Tags: — m759 @ 1:59 pm

A "Cullinane Diamond Theorem" question suggested today by Bing Chat —

Wednesday, November 8, 2023

The Theorem as Big as the Ritz

Filed under: General — Tags: , , , — m759 @ 8:56 am

From this  journal on Monday, Nov. 6, 2023 — ChatGPT DevDay —

Monday, November 6, 2023

First OpenAI Developer Conference Is Today

Discuss:

Friday, July 21, 2023

“Terminator Zero: Rise of the Chatbots” … Continues.

Filed under: General — Tags: , , , — m759 @ 3:01 pm

From https://clever-chat.ai/demo/32f6d9c9107/complete 
at about 3 PM ET on Friday, July 21, 2023 —

Hi there ๐Ÿ‘‹ I'm a self-service chatbot and I'm here to help you with anything related to Finite Geometry of the Square and Cube. Just ask away! ๐Ÿ™‚

What is the diamond theorem?

The Diamond Theorem is a mathematical concept that was introduced by Steven H. Cullinane. It is closely related to finite geometry and explores the symmetries and patterns found in diamond-shaped arrays. The theorem has applications in various areas, including combinatorial designs, group theory, and quantum information theory. If you'd like more information or have any specific questions about the Diamond Theorem, feel free to ask! ๐Ÿ˜Š

Is this website related to the work of Peter J. Cameron?

No, the website "Finite Geometry of the Square and Cube" is not directly related to the work of Peter J. Cameron. It is primarily focused on the study of finite geometry, particularly the symmetries and patterns found in square and cube arrays. The website is authored by Steven H. Cullinane, who has made significant contributions to the field. If you have any more questions or need further information, feel free to ask! ๐Ÿ˜Š

What is the theorem of Desargues?

The theorem of Desargues, named after the French mathematician Gérard Desargues, is a fundamental result in projective geometry. It states that if two triangles are perspective from a point, then they are perspective from a line as well. In other words, if the three pairs of corresponding sides of two triangles intersect at three points that are collinear, then the three pairs of corresponding vertices of the triangles are collinear as well. This theorem has important implications in the study of projective geometry and has applications in various fields, including computer graphics and architecture. If you have any more questions or need further information, feel free to ask! ๐Ÿ˜Š

   

Tuesday, July 18, 2023

Going Beyond Wikipedia

Filed under: General — Tags: , — m759 @ 11:01 am

The diamond theorem and 4-colorings as sums of three 2-colorings.

Despite today's New York Times  warnings about chatbot inaccuracy,
the above short summary is well-written, helpful, and correct.

Thursday, June 15, 2023

Proof Chat

Filed under: General — Tags: — m759 @ 8:50 pm

Proof of the Cullinane diamond theorem

Monday, May 15, 2023

Chatbot Review

Filed under: General — Tags: , , — m759 @ 9:49 pm
 

By ChatGPT* — 

What is the Cullinane diamond theorem? 
5/10/2023, revised as below on 5/15/2023

The Cullinane Diamond Theorem, also known as the Diamond Theorem, is a result in combinatorial mathematics proposed by Steven H. Cullinane. The theorem explores connections between finite geometries, algebraic structures, and combinatorial designs. 

The theorem is primarily concerned with four related structures:
 
1. Finite geometries: Specifically, the theorem relates to finite projective geometries over finite fields, such as projective planes and projective spaces. 

2. Vector spaces: The theorem connects finite vector spaces over finite fields to the aforementioned finite geometries. 

3. Boolean functions:* The theorem establishes relationships between the finite geometries and certain Boolean functions derived from them. 

4. Symmetry groups: The theorem involves symmetry groups associated with the finite geometries.
 
The precise details and implications of the Cullinane Diamond Theorem are beyond the scope of this response. It involves abstract algebra, group theory, combinatorial designs, and finite fields. The theorem has been the subject of various publications and research discussions in mathematical literature. If you are interested in delving deeper into the Cullinane Diamond Theorem, I recommend referring to the original works by Steven H. Cullinane and related research articles on the topic.

* With one revision by Cullinane: "Boolean functions" replaces "Boolean algebras." See (for instance) M. A. Harrison, “On the classification of Boolean functions by the general linear and affine groups,” Journal of the Society for Industrial and Applied Mathematics  1964 12:2, 285-299.

Boolean Functions Review

Filed under: General — Tags: , — m759 @ 1:25 pm

The previous post included an illustration by Solomon Golomb
from his 1959 paper "On the Classification of Boolean Functions."

This suggests a review of some later work in this area —

This post was suggested by the word "Boolean" in a May 10
ChatGPT response —

In the above, "Boolean algebras" should be "Boolean functions,"
as indicated by Harrison's 1964 remarks.

Wednesday, May 10, 2023

ChatGPT Improves

Filed under: General — Tags: , — m759 @ 2:19 am

Previous ChatGPT responses to questions like those below
have been, to put it mildly, lacking in accuracy. But there has
lately been considerable improvement . . .

Sunday, April 30, 2023

For Harlan Kane: The Walpurgisnacht Hallucination

Note that if the "compact Riemann surface" is a torus formed by
joining opposite edges of a 4×4 square array, and the phrase
"vector bundle" is replaced by "projective line," and so forth,
the above ChatGPT hallucination is not completely unrelated to
the following illustration from the webpage "galois.space" —

See as well the Cullinane  diamond theorem.

Wednesday, April 5, 2023

Annals of Artificial Stupidity:
“A Sort of False Coherence”

Filed under: General — Tags: , , — m759 @ 1:07 am

The "large language model" approach to AI has yielded 
startlingly good results for programmers, but is not so good
for finding out facts . . .

A Google search for harvard mathematician h.s.m. coxeter  yields . . .

Readers able to use Google can easily find out who wrote the above
gestalt  passage. It was not Coxeter.

Further investigation via Google yields the O'Toole  source:

O'Toole, Michael, The Language of Displayed Art 
Leicester University Press, 1994, p. 4.

Tuesday, March 21, 2023

Benchmarking Bard

Filed under: General — Tags: , , , — m759 @ 9:22 pm

Click to enlarge the above Google Bard remarks. 

A different Bard . . .

IMAGE- Opening of Wallace Stevens's Bard College speech, 1951

Saturday, March 18, 2023

Bing Chat Improves

Filed under: General — Tags: , — m759 @ 8:03 pm

AI chat from Microsoft โ€” New! Improved!

Friday, March 17, 2023

Bing Chat  Continues

Filed under: General — Tags: , — m759 @ 11:54 am

Update at 9 PM ET March 17:   A related observation by SHC —

The use  of binary coordinate systems as a conceptual tool

Natural physical  transformations of square or cubical arrays
of actual physical cubes (i.e., building blocks) correspond to
natural algebraic  transformations of vector spaces over GF(2).
This was apparently not previously known.

See "The Thing and I."

Monday, March 13, 2023

Frontiers of Artificial Mathematics

Filed under: General — Tags: , , — m759 @ 11:57 am

Previous posts have shown ChatGPT answering the question
"What is the diamond theorem?" with references to Thurston
and, later, to Conway. Today it is Penrose's turn.

Related search results (click to enlarge) —

 

Sunday, March 5, 2023

Annals of Artificial Mathematics

Filed under: General — Tags: , , — m759 @ 9:11 pm

The response of ChatGPT to a question about my work
continues to evolve.  It now credits Conway, not Thurston,*
for the diamond theorem.

The paragraph beginning "The theorem states" appears** to be based
on the following 24 patterns — which number only 8, if rotated or
reflected patterns are considered equivalent.

* For Thurston in an earlier ChatGPT response to the same question,
see a Log24 post of Feb. 25.

** The illustration above is based on the divison of a square into
four smaller subsquares.  If the square is rotated by 45 degrees,
it becomes a diamond  that can be, in the language of ChatGPT,
divided into "four smaller diamonds ."

Saturday, February 25, 2023

The Diamond Theorem according to ChatGPT

Filed under: General — Tags: , , — m759 @ 2:38 am

ChatGPT on the diamond theorem, Feb. 25, 2023.

The part about tilings, group actions, and the diamond-shaped
pattern is more or less OK.  The parts about Thurston and 
applications are utterly false. 

Compare and contrast . . .

Powered by WordPress