Log24

Tuesday, May 24, 2022

Playing the Palace

Filed under: General — m759 @ 9:54 am

From a Jamestown (NY) Post-Journal  article yesterday on
"the sold-out 10,000 Maniacs 40th anniversary concert at
The Reg Lenna Center Saturday" —

" 'The theater has a special place in our hearts. It’s played
a big part in my life,' Gustafson said.

Before being known as The Reg Lenna Center for The Arts,
it was formerly known as The Palace Theater. He recalled
watching movies there as a child…."

This, and the band's name, suggest some memories perhaps
better suited to the cinematic philosophy behind "Plan 9 from
Outer Space."

IMAGE- The Tablet of Ahkmenrah, from 'Night at the Museum'

 "With the Tablet of Ahkmenrah and the Cube of Rubik,
my power will know no bounds!"
— Kahmunrah in a novelization of Night at the Museum:
Battle of the Smithsonian , Barron's Educational Series

The above 3×3 Tablet of Ahkmenrah  image comes from
a Log24 search for the finite (i.e., Galois) field GF(3) that 
was, in turn, suggested by last night's post "Making Space."

See as well a mysterious document from a website in Slovenia
that mentions a 3×3 array "relating to nine halls of a mythical
palace where rites were performed in the 1st century AD" —

Monday, April 18, 2022

Iconic Simplicity

Filed under: General — Tags: , — m759 @ 11:38 am

An illustration from posts tagged Holy Field GF(3) —

IMAGE- Elementary Galois Geometry over GF(3)

See also a Log24 search for "Four Gods."

Saturday, March 26, 2022

Box Geometry: Space, Group, Art  (Work in Progress)

Filed under: General — Tags: — m759 @ 2:06 am

Many structures of finite geometry can be modeled by
rectangular or cubical arrays ("boxes") —
of subsquares or subcubes (also "boxes").

Here is a draft for a table of related material, arranged
as internet URL labels.

Finite Geometry Notes — Summary Chart
 

Name Tag .Space .Group .Art
Box4

2×2 square representing the four-point finite affine geometry AG(2,2).

(Box4.space)

S4 = AGL(2,2)

(Box4.group)

 

(Box4.art)

Box6 3×2 (3-row, 2-column) rectangular array
representing the elements of an arbitrary 6-set.
S6  
Box8 2x2x2 cube or  4×2 (4-row, 2-column) array. S8 or Aor  AGL(3,2) of order 1344, or  GL(3,2) of order 168  
Box9 The 3×3 square. AGL(2,3) or  GL(2,3)  
Box12 The 12 edges of a cube, or  a 4×3  array for picturing the actions of the Mathieu group M12. Symmetries of the cube or  elements of the group M12  
Box13 The 13 symmetry axes of the cube. Symmetries of the cube.  
Box15 The 15 points of PG(3,2), the projective geometry
of 3 dimensions over the 2-element Galois field.
Collineations of PG(3,2)  
Box16 The 16 points of AG(4,2), the affine geometry
of 4 dimensions over the 2-element Galois field.

AGL(4,2), the affine group of 
322,560 permutations of the parts
of a 4×4 array (a Galois tesseract)

 
Box20 The configuration representing Desargues's theorem.    
Box21 The 21 points and 21 lines of PG(2,4).    
Box24 The 24 points of the Steiner system S(5, 8, 24).    
Box25 A 5×5 array representing PG(2,5).    
Box27 The 3-dimensional Galois affine space over the
3-element Galois field GF(3).
   
Box28 The 28 bitangents of a plane quartic curve.    
Box32 Pair of 4×4 arrays representing orthogonal 
Latin squares.
Used to represent
elements of AGL(4,2)
 
Box35 A 5-row-by-7-column array representing the 35
lines in the finite projective space PG(3,2)
PGL(3,2), order 20,160  
Box36 Eurler's 36-officer problem.    
Box45 The 45 Pascal points of the Pascal configuration.    
Box48 The 48 elements of the group  AGL(2,3). AGL(2,3).  
Box56

The 56 three-sets within an 8-set or
56 triangles in a model of Klein's quartic surface or
the 56 spreads in PG(3,2).

   
Box60 The Klein configuration.    
Box64 Solomon's cube.    

— Steven H. Cullinane, March 26-27, 2022

Friday, December 31, 2021

Aesthetics in Academia

Filed under: General — Tags: — m759 @ 9:33 am

Related art — The non-Rubik 3x3x3 cube —

The above structure illustrates the affine space of three dimensions
over the three-element finite (i.e., Galois) field, GF(3). Enthusiasts
of Judith Brown's nihilistic philosophy may note the "radiance" of the
13 axes of symmetry within the "central, structuring" subcube.

I prefer the radiance  (in the sense of Aquinas) of the central, structuring 
eightfold cube at the center of the affine space of six dimensions over
the two-element field GF(2).

Tuesday, December 7, 2021

Tortoise Variations

Filed under: General — Tags: , — m759 @ 2:42 am

IMAGE- Herbert John Ryser, 'Combinatorial Mathematics' (1963), page 1

Fanciful version —

Less fanciful versions . . . 

Unmagic Squares

Consecutive positive integers:

1   2   3
4   5   6
7   8   9

Consecutive nonnegative integers:

0   1   2
3   4   5
6   7   8

Consecutive nonnegative integers
written in base 3:

00  01  02
10  11  12
20  21  22

This last square may be viewed as
coordinates, in the 3-element Galois
field GF(3), of the ninefold square.

Note that the ninefold square so viewed
embodies the 12 lines of the two-dimensional
affine space over GF(3)

As does, similarly, the ancient Chinese
"magic" square known as the "Lo Shu."

These squares are therefore equivalent under
affine transformations.

This method generalizes.

— Steven H. Cullinane, Nov. 20, 2021

 

The Lo Shu as a Finite Space

Saturday, November 20, 2021

The Unmagicking

Filed under: General — Tags: — m759 @ 11:51 am
 

Unmagic Squares

Consecutive positive integers:

1   2   3
4   5   6
7   8   9

Consecutive nonnegative integers:

0   1   2
3   4   5
6   7   8

Consecutive nonnegative integers
written in base 3:

00  01  02
10  11  12
20  21  22

This last square may be viewed as
coordinates, in the 3-element Galois
field GF(3), of the ninefold square.

Note that the ninefold square so viewed
embodies the 12 lines of the two-dimensional
affine space over GF(3)

As does, similarly, the ancient Chinese
"magic" square known as the "Lo Shu."

These squares are therefore equivalent under
affine transformations.

This method generalizes.

— Steven H. Cullinane, Nov. 20, 2021

Friday, May 27, 2016

Plan 9

Filed under: General — m759 @ 9:00 am

http://m759.net/wordpress/?tag=holy-field-gf3

Monday, May 9, 2016

Search for the Lost Theorem

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

The three Solomons of the previous post (LeWitt,
Marcus, and Golomb) suggest the three figures
-1, 0, and 1  symbols for the three elements
of the Galois field GF(3).  This in turn suggests a
Search for The Lost Theorem. Some cross-cultural
context:  The First of May, 2010.

Sunday, October 18, 2015

Sunday School

Filed under: General,Geometry — m759 @ 8:30 am

A Unified Field —

The Galois field GF(3)

Click the above image for further details.

See also a search in this journal for Jorie Graham.

Related dramatic dialogue for Emma Stone and 
Joaquin Phoenix, actors in "Irrational Man" —

"Are you  aware of what's going on at that  table?"

Philosophical backstory by Hans Christian Andersen

"He was quite frightened, and he tried to repeat the Lord's Prayer;
but all he could do, he was only able to remember the multiplication table."

Thursday, July 9, 2015

Man and His Symbols

Filed under: General,Geometry — m759 @ 2:24 pm

(Continued)

A post of July 7, Haiku for DeLillo, had a link to posts tagged "Holy Field GF(3)."

As the smallest Galois field based on an odd prime, this structure 
clearly is of fundamental importance.  

The Galois field GF(3)

It is, however, perhaps too  small  to be visually impressive.

A larger, closely related, field, GF(9), may be pictured as a 3×3 array

hence as the traditional Chinese  Holy Field.

Marketing the Holy Field

IMAGE- The Ninefold Square, in China 'The Holy Field'

The above illustration of China's  Holy Field occurred in the context of
Log24 posts on Child Buyers.   For more on child buyers, see an excellent
condemnation today by Diane Ravitch of the U. S. Secretary of Education.

Tuesday, July 7, 2015

Haiku for DeLillo*

Filed under: General — Tags: — m759 @ 4:23 pm

A music video that opens with remarks by Lawrence Ferlinghetti
at the Last Waltz concert (Thanksgiving Day, Nov. 25, 1976):

"Our Father, whose art's in heaven…" —

For other religious remarks from the above upload date,
Sept. 9, 2011, see Holy Field GF(3).

Click the above "ripple" image for a Grateful Dead haiku
quoted here on Sunday, July 5, 2015.

For another meditation from the second upload date above,
March 19, 2012, see some thoughts on the word "field."

IMAGE- Japanese character for 'field'

* For the title, see an excerpt from Point Omega .

Tuesday, November 25, 2014

Euclidean-Galois Interplay

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 am

For previous remarks on this topic, as it relates to
symmetry axes of the cube, see previous posts tagged Interplay.

The above posts discuss, among other things, the Galois
projective plane of order 3, with 13 points and 13 lines.

Oxley's 2004 drawing of the 13-point projective plane

These Galois points and lines may be modeled in Euclidean geometry
by the 13 symmetry axes and the 13 rotation planes
of the Euclidean cube. They may also be modeled in Galois geometry
by subsets of the 3x3x3 Galois cube (vector 3-space over GF(3)).

http://www.log24.com/log/pix11A/110427-Cube27.jpg

   The 3×3×3 Galois Cube 

Exercise: Is there any such analogy between the 31 points of the
order-5 Galois projective plane and the 31 symmetry axes of the
Euclidean dodecahedron and icosahedron? Also, how may the
31 projective points  be naturally pictured as lines  within the 
5x5x5 Galois cube (vector 3-space over GF(5))?

Update of Nov. 30, 2014 —

For background to the above exercise, see
pp. 16-17 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998), esp.
the citation to a 1983 article by Lemay.

Saturday, October 18, 2014

Educational Series

Filed under: General,Geometry — Tags: , — m759 @ 1:01 pm

Barron's Educational Series (click to enlarge):

The Tablet of Ahkmenrah:

IMAGE- The Tablet of Ahkmenrah, from 'Night at the Museum'

 "With the Tablet of Ahkmenrah and the Cube of Rubik,
my power will know no bounds!"
— Kahmunrah in a novelization of Night at the Museum:
Battle of the Smithsonian , Barron's Educational Series

Another educational series (this journal):

Image-- Rosalind Krauss and The Ninefold Square

Art theorist Rosalind Krauss and The Ninefold Square

IMAGE- Elementary Galois Geometry over GF(3)

Monday, February 20, 2012

Coxeter and the Relativity Problem

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

In the Beginning…

"As is well known, the Aleph is the first letter of the Hebrew alphabet."
– Borges, "The Aleph" (1945)

From some 1949 remarks of Weyl—

"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."

Hermann Weyl, "Relativity Theory as a Stimulus in Mathematical Research," Proceedings of the American Philosophical Society , Vol. 93, No. 7, Theory of Relativity in Contemporary Science: Papers Read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949  (Dec. 30, 1949), pp. 535-541

Weyl in 1946—:

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

Coxeter in 1950 described the elements of the Galois field GF(9) as powers of a primitive root and as ordered pairs of the field of residue-classes modulo 3—

"… the successive powers of  the primitive root λ or 10 are

λ = 10,  λ2 = 21,  λ3 = 22,  λ4 = 02,
λ5 = 20,  λ6 = 12,  λ7 = 11,  λ8 = 01.

These are the proper coordinate symbols….

(See Fig. 10, where the points are represented in the Euclidean plane as if the coordinate residue 2 were the ordinary number -1. This representation naturally obscures the collinearity of such points as λ4, λ5, λ7.)"

http://www.log24.com/log/pix12/120220-CoxeterFig10.jpg

Coxeter's Figure 10 yields...

http://www.log24.com/log/pix11/110107-The1950Aleph-Sm.jpg

The Aleph

The details:

(Click to enlarge)

http://www.log24.com/log/pix11/110107-Aleph-Sm.jpg

Coxeter's phrase "in the Euclidean plane" obscures the noncontinuous nature of the transformations that are automorphisms of the above linear 2-space over GF(3).

Friday, September 9, 2011

Galois vs. Rubik

(Continued from Abel Prize, August 26)

IMAGE- Elementary Galois Geometry over GF(3)

The situation is rather different when the
underlying Galois field has two rather than
three elements… See Galois Geometry.

Image-- Sugar cube in coffee, from 'Bleu'

The coffee scene from “Bleu”

Related material from this journal:

The Dream of
the Expanded Field

Image-- 4x4 square and 4x4x4 cube

Saturday, August 7, 2010

The Matrix Reloaded

Filed under: General,Geometry — m759 @ 12:00 am

   For aficionados of mathematics and narrative

Illustration from
"The Galois Quaternion— A Story"

The Galois Quaternion

This resembles an attempt by Coxeter in 1950 to represent
a Galois geometry in the Euclidean plane—
Coxeter's 1950 representation in the Euclidean plane of the 9-point affine plane over GF(3)

The quaternion illustration above shows a more natural way to picture this geometry—
not with dots representing points in the Euclidean  plane, but rather with unit squares
representing points in a finite Galois  affine plane. The use of unit squares to
represent points in Galois space allows, in at least some cases, the actions
of finite groups to be represented more naturally than in Euclidean space.

See Galois Geometry, Geometry Simplified, and
Finite Geometry of the Square and Cube.

Sunday, July 29, 2007

Sunday July 29, 2007

Filed under: General,Geometry — m759 @ 9:00 am
The Ninefold Square

“This translation plane is defined by
a spreadset in a 2-dimensional
vector space over the field GF(3),
consisting of the following matrices.”


 

Priv.-Doz. Dr. H. Klein,
Arbeitsgruppe Geometrie,
Mathematical Seminar of
Christian-Albrechts University

(See Log24, The Nine
and Translation Plane
for Rosh Hashanah
.)

Thursday, January 26, 2006

Thursday January 26, 2006

Filed under: General,Geometry — m759 @ 9:00 am
In honor of Paul Newman’s age today, 81:

On Beauty

Elaine Scarry, On Beauty (pdf), page 21:

“Something beautiful fills the mind yet invites the search for something beyond itself, something larger or something of the same scale with which it needs to be brought into relation. Beauty, according to its critics, causes us to gape and suspend all thought. This complaint is manifestly true: Odysseus does stand marveling before the palm; Odysseus is similarly incapacitated in front of Nausicaa; and Odysseus will soon, in Book 7, stand ‘gazing,’ in much the same way, at the season-immune orchards of King Alcinous, the pears, apples, and figs that bud on one branch while ripening on another, so that never during the cycling year do they cease to be in flower and in fruit. But simultaneously what is beautiful prompts the mind to move chronologically back in the search for precedents and parallels, to move forward into new acts of creation, to move conceptually over, to bring things into relation, and does all this with a kind of urgency as though one’s life depended on it.”

The image “http://www.log24.com/theory/images/grid3x3.gif” cannot be displayed, because it contains errors.

The above symbol of Apollo suggests, in accordance with Scarry’s remarks, larger structures.   Two obvious structures are the affine 4-space over GF(3), with 81 points, and the affine plane over GF(32), also with 81 points.  Less obvious are some related projective structures.  Joseph Malkevitch has discussed the standard method of constructing GF(32) and the affine plane over that field, with 81 points, then constructing the related Desarguesian projective plane of order 9, with 92 + 9 + 1 = 91 points and 91 lines.  There are other, non-Desarguesian, projective planes of order 9.  See Visualizing GL(2,p), which discusses a spreadset construction of the non-Desarguesian translation plane of order 9.  This plane may be viewed as illustrating deeper properties of the 3×3 array shown above. To view the plane in a wider context, see The Non-Desarguesian Translation Plane of Order 9 and a paper on Affine and Projective Planes (pdf). (Click to enlarge the excerpt beow).

The image “http://www.log24.com/theory/images/060126-planes2.jpg” cannot be displayed, because it contains errors.

See also Miniquaternion Geometry: The Four Projective Planes of Order 9 (pdf), by Katie Gorder (Dec. 5, 2003), and a book she cites:

Miniquaternion geometry: An introduction to the study of projective planes, by T. G. Room and P. B. Kirkpatrick. Cambridge Tracts in Mathematics and Mathematical Physics, No. 60. Cambridge University Press, London, 1971. viii+176 pp.

For “miniquaternions” of a different sort, see my entry on Visible Mathematics for Hamilton’s birthday last year:

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

 

Thursday, August 4, 2005

Thursday August 4, 2005

Filed under: General,Geometry — Tags: , — m759 @ 1:00 pm
Visible Mathematics, continued

 

Today's mathematical birthdays:
Saunders Mac Lane, John Venn,
and Sir William Rowan Hamilton.

It is well known that the quaternion group is a subgroup of GL(2,3), the general linear group on the 2-space over GF(3), the 3-element Galois field.

The figures below illustrate this fact.

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

 

Related material: Visualizing GL(2,p)

"The typical example of a finite group is GL(n,q), the general linear group of n dimensions over the field with q elements. The student who is introduced to the subject with other examples is being completely misled."

 

 — J. L. Alperin, book review,
    Bulletin (New Series) of the American
    Mathematical Society 10 (1984), 121

 

Wednesday, September 15, 2004

Wednesday September 15, 2004

Filed under: General,Geometry — m759 @ 11:30 am

Translation Plane
for Rosh Hashanah

Figure A

From the website of

Priv.-Doz. Dr. H. Klein,
Arbeitsgruppe Geometrie,
Mathematisches Seminar der
Christian-Albrechts-Universität zu Kiel —

The Translation Plane of Order Nine

There are exactly four projective planes of order nine, and one of these planes is a non-Desarguesian translation plane.

Theorem. Up to isomorphism, there exists exactly one non-Desarguesian translation plane of order 9.

This translation plane is defined by a spreadset in a 2-dimensional vector space over the field GF(3), consisting of the following matrices.


 

As it turns out, the coordinatizing quasifield is a nearfield. Moreover the non-Desarguesian translation plane of order 9 has Lenz-Barlotti type IVa.3.

Two versions of the defining spreadset for this plane are shown in Figure A.  In the left part of Fig. A, the matrices of Dr. Klein are altered by the use of “2” instead of “-1” (since these are the same, modulo 3).  In the right part of Fig. A, the corresponding figures from my 1985 note Visualizing GL(2, p) are shown.

Monday, May 26, 2003

Monday May 26, 2003

Filed under: General,Geometry — m759 @ 7:00 pm

Mental Health Month, Day 26:

Many Dimensions,

Part III — Why 26?

At first blush, it seems unlikely that the number 26=2×13, as a product of only two small primes (and those distinct) has any purely mathematical properties of interest. (On the other hand, consider the number 6.)  Parts I and II of “Many Dimensions,” notes written earlier today, deal with the struggles of string theorists to justify their contention that a space of 26 dimensions may have some significance in physics.  Let them struggle.  My question is whether there are any interesting purely mathematical properties of 26, and it turns out, surprisingly, that there are some such properties. All this is a longwinded way of introducing a link to the web page titled “Info on M13,” which gives details of a 1997 paper by J. H. Conway*.

Info on M13

“Conway describes the beautiful construction of a discrete mathematical structure which he calls ‘M13.’  This structure is a set of 1,235,520 permutations of 13 letters. It is not a group. However, this structure represents the answer to the following group theoretic question:

Why do the simple groups M12 and L3(3) share some subgroup structure?

In fact, both the Mathieu group M12 and the automorphism group L3(3) of the projective plane PG(2,3) over GF(3) can be found as subsets of M13.  In addition, M13 is 6-fold transitive, in the sense that it contains enough permutations to map any two 6-tuples made from the thirteen letters into each other.  In this sense, M13 could pass as a parent for both M12 and L3(3).  As it is known from the classification of primitive groups that there is no finite group which qualifies as a parent in this sense.  Yet, M13 comes close to being a group.

To understand the definition of M13 let us have a look at the projective geometry PG(2,3)….

The points and the lines and the “is-contained-in” relation form an incidence structure over PG(2,3)….

…the 26 objects of the incidence structure [are] 13 points and 13 lines.”

Conway’s construction involves the arrangement, in a circular Levi graph, of 26 marks representing these points and lines, and chords representing the “contains/is contained in” relation.  The resulting diagram has a pleasingly symmetric appearance.

For further information on the geometry of the number 26, one can look up all primitive permutation groups of degree 26.  Conway’s work suggests we look at sets (not just groups) of permutations on n elements.  He has shown that this is a fruitful approach for n=13.  Whether it may also be fruitful for n=26, I do not know.

There is no obvious connection to physics, although the physics writer John Baez quoted in my previous two entries shares Conway’s interest in the Mathieu groups. 

 * J. H. Conway, “M13,” in Surveys in Combinatorics, 1997, edited by R. A. Bailey, London Mathematical Society Lecture Note Series, 241, Cambridge University Press, Cambridge, 1997. 338 pp. ISBN 0 521 59840 0.

Powered by WordPress