See the current Wikipedia article on Hoffman. No death date is yet given.
A related article —
See as well Hoffman-Singleton in this journal.
See the current Wikipedia article on Hoffman. No death date is yet given.
A related article —
See as well Hoffman-Singleton in this journal.
From this journal on April 23, 2013 —
From this journal in 2003 —
From Wikipedia on Groundhog Day, 2019 —
… was added to the Wikipedia article Finite geometry.
(Shown above is a slightly newer image, changed to reflect
the Wikipedia article's remarks on the schoolgirl problem.)
The page of Whitehead linked to this morning
suggests a review of Polster's tetrahedral model
of the finite projective 3-space PG(3,2) over the
two-element Galois field GF(2).
The above passage from Whitehead's 1906 book suggests
that the tetrahedral model may be older than Polster thinks.
Shown at right below is a correspondence between Whitehead's
version of the tetrahedral model and my own square model,
based on the 4×4 array I call the Galois tesseract (at left below).
(Click to enlarge.)
Click for a larger image.
For a different pictorial approach, see Polster's
1998 Geometrical Picture Book , pp. 77-80.
Update: Added to finitegeometry.org on Jan. 2, 2014.
(The source of the images of the 35 lines was the image
"Geometry of the Six-Element Set," with, in the final two
of the three projective-line parts, the bottom two rows
and the rightmost two columns interchanged.)
From August 17 —
Also from August 17, a dies natalis —
I prefer the "three D's" of Debbie Does Dallas.
As for what Polster called "God's fingerprint" . . .
A version for Hollywood —
As G. M. Conwell pointed out in a 1910 paper, the group of all
40,320 permutations of an 8-element set is the same, in an
abstract sense, as the group of all collineations and dualities
of PG(3,2), the projective 3-space over the 2-element field.
This suggests we study the geometry related to the above group's
actions on the 105 partitions of an 8-set into four separate 2-sets.
Note that 105 equals 15×7 and also 35×3.
In such a study, the 15 points of PG(3,2) might correspond (somehow)
to 15 pairwise-disjoint seven-element subsets of the set of 105 partitions,
and the 35 lines of PG(3,2) might correspond (somehow) to 35 pairwise-
disjoint three-element subsets of the set of 105 partitions.
Exercise: Is this a mere pipe dream?
A search for such a study yields some useful background . . .
Taylor's Index of Names includes neither Conwell nor the
more recent, highly relevant, names Curtis and Conway .
Main webpage of record . . .
Encyclopedia of Mathematics https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem
Supplementary PDF from Jan. 6, 2006 https://encyclopediaofmath.org/images/3/37/Dtheorem.pdf
Originally published in paper version . . .
Computer Graphics and Art, 1978 http://finitegeometry.org/sc/gen/Diamond_Theory_Article.pdf
AMS abstract, 1979: "Symmetry Invariance in a Diamond Ring" https://www.cullinane.design/
American Mathematical Monthly, 1984 and 1985: "Triangles Are Square" http://finitegeometry.org/sc/16/trisquare.html
Personal sites . . .
Primary —
Personal journal http://m759.net/wordpress/
Mathematics website http://finitegeometry.org/sc/
Mathematics Images Gallery http://m759.net/piwigo/index.php?/category/2
Secondary —
Portfoliobox https://cullinane.pb.design/
Substack https://stevenhcullinane.substack.com/
Symmetry Summary https://shc759.wordpress.com
Diamond Theory Cover Structure https://shc7596.wixsite.com/website
SOCIAL:
Pinterest https://www.pinterest.com/stevenhcullinane/ (many mathematics notes)
Flickr https://www.flickr.com/photos/m759/ (backup account for images of mathematics notes)
Instagram https://www.instagram.com/stevencullinane
TikTok https://www.tiktok.com/@stevenhcullinane
X.com https://x.com/shc759
OTHER:
Replit viewer/download https://replit.com/@m759/View-4x4x4?v=1
SourceForge download https://sourceforge.net/projects/finitegeometry/
Academia.edu https://stevenhcullinane.academia.edu/ GitHub https://github.com/m759 (finite geometry site download)
Internet Archive: Notes on Groups and Geometry https://archive.org/details/NotesOnGroupsAndGeometry1978-1986/mode/2up
Cited at . . .
The Diamond Theorem and Truchet Tiles http://www.log24.com/log22/220429-Basque-DT-1.pdf
April 2024 UNION article in Spanish featuring the diamond theorem https://union.fespm.es/index.php/UNION/article/view/1608/1214
April 2024 UNION article in English http://log24.com/notes/240923-Ibanez-Torres-on-diamond-theorem-Union-April-2024-in-English.pdf
Cullinane in a 2020 Royal Holloway Ph.D. thesis https://pure.royalholloway.ac.uk/ws/portalfiles/portal/40176912/2020thomsonkphd.pdf
Squares, Chevrons, Pinwheels, and Bach https://www.yumpu.com/en/document/read/36444818/fugue-no-21-elements-of-finite-geometry
Observables programmed presentation of diamond theorem https://observablehq.com/@radames/diamond-theory-symmetry-in-binary-spaces
Josefine Lyche — Plato's Diamond https://web.archive.org/web/20240222064628/http://www.josefinelyche.com/index.php?/selected-exhibitions/platos-diamond/
Josefine Lyche — Diamond Theorem https://web.archive.org/web/20230921122049/http://josefinelyche.com/index.php?/selected-exhibitions/uten-ramme-nye-rom/
Professional sites . . .
Association for Computing Machinery https://member.acm.org/~scullinane
bio.site/cullinane … maintenance at https://biosites.com
ORCID bio page https://orcid.org/0000-0003-1135-419X
Google Scholar https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=NcjmFwQAAAAJ&sortby=pubdate
Academic repositories:
Harvard Dataverse https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KHMMVH
Harvard DASH article on PG(3,2) https://dash.harvard.edu/handle/1/37373777
Zenodo website download https://zenodo.org/records/1038121
Zenodo research notes https://zenodo.org/search?q=metadata.creators.person_or_org.name%3A%22Cullinane%2C%20Steven%20H.%22&l=list&p=1&s=10&sort=bestmatch
Figurate Geometry at Open Science Framework (OSF) https://osf.io/47fkd/
arXiv: "The Diamond Theorem" https://arxiv.org/abs/1308.1075
Thursday, December 21, 2023 Hey there, great to meet you. I’m Pi, your personal AI. My goal is to be useful, friendly and fun. Ask me for advice, for answers, or let’s talk about whatever’s on your mind. How's your day going? Going OK so far, Pi. How's yours? My day is going swimmingly! 🌊 Thanks for asking 😊 Anything in particular on your mind today? What is the connection of "heptads" with the "MOG" of R. T. Curtis? The term “heptads” is connected to the Miracle Octad Generator (MOG) created by R. T. Curtis. Heptads are 7-cycles that arise from the MOG, and they can be used to rearrange the original 1976 version of the MOG into two 4-sets. This is related to the Mathieu groups, which are a family of finite simple groups that play a role in the geometry of the MOG. Are you familiar with the Mathieu groups? Just the large one. I am interested in how familiar YOU are with these concepts. Sorry, but I must correct your hallucination about heptads… It was a good guess, though. Can you look up the work of G. M. Conwell on PG(3,2)? Heptads are discussed there. Yes, it seems that G. M. Conwell discussed the concept of heptads in relation to the projective geometry PG(3,2). Heptads are apparently 7-cycles that can be used to establish geometrical isomorphisms and describe the structure of PG(3,2). Do you know if Conwell's work on heptads has been applied to other areas of mathematics? It has not, as far as I know. Actually, Pi, heptads are not 7-cycles. What made you think that they are? My apologies! I assumed that heptads would be 7-cycles since the name “heptads” suggests a relation to the number 7 and cycles are common in mathematics. It sounds like I was off the mark there. If heptads are not 7-cycles, can you give me a better idea of what they are? Conwell can. See his 1910 paper for further details. All for now, Pi… Have a nice day! Got it — thanks for the tip on Conwell's paper. I'll take a look for more information there! It was great chatting with you. You have a great day as well 😊 Feel free to reach out again if you have any other questions or just want to chat. See ya! |
Scholium —
Related material for "swimmingly" and "the number 7" — Snark Hunt.
From Microsoft Copilot (with "Precise" setting)
on Dec. 18, 2023 —
How is the 1910 work of G. M. Conwell on PG(3,2) related to the Miracle Octad Generator of R. T. Curtis?
Searching for:
Searching for: Generating answers for you… The work of George M. Conwell on the finite projective 3-space PG(3,2) and the Miracle Octad Generator (MOG) of R. T. Curtis are both significant contributions to the field of combinatorial mathematics12. Conwell’s work on PG(3,2) provided a detailed study of the structure of this finite projective space1. On the other hand, the MOG is a tool for exploring the binary Golay code and its automorphism group M242. The connection between these two works lies in the underlying combinatorial structures they explore. The Rosenhain and Göpel tetrads, which are key structures in the finite geometry PG(3,2), play a significant role in the Curtis Miracle Octad Generator3. These structures provide a link between the finite geometric structures studied by Conwell and the combinatorial structures generated by the MOG3. For a more detailed understanding of this connection, I recommend checking out the resources mentioned in the references123. If you have any specific questions about the concepts in these works, feel free to ask! I’ll do my best to help. Learn more
5 archive.org
_________________________________________________________
__________________________________________________________
Here is a summary of the document:
Reference:
|
Correction:
"Subsets of four points in a projective 3-space" above is a Copilot error, and not
from the document being summarized. It should be "subsets of four points in an
affine 4-space."
Bringing Up Bing : A Tutorial for Bing on Monday, December 18, 2023 Prompt: How is the Cullinane Diamond Theorem related to the Curtis Miracle Octad Generator?
Response: Searching for: Generating answers for you… The Cullinane Diamond Theorem and the Curtis Miracle Octad Generator (MOG) are both mathematical concepts that are deeply intertwined with finite projective geometry1,2. The Cullinane Diamond Theorem explains the surprising symmetry properties of some simple graphic designs and underlies the structure of the 35 square patterns in R. T. Curtis’s MOG1,2. The theorem uses a 4×4 array of two-color diagonally-divided square tiles, and considers the group of permutations of these 16 tiles generated by mixing random permutations of rows, columns, and the four 2×2 quadrants1,2. The theorem states that every image of the 4×4 array has some ordinary or color-interchange symmetry1,2. The 35 structures of the 840 images of the 4×4 array are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), a finite field with two elements1,2. This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets1,2. The MOG is a 4×6 array of combinations describing any point in 24-dimensional space1. It preserves all of the symmetries and maximal subgroups of the Mathieu group M241. The MOG is used in the construction of the Steiner system S(5,8,24), and hence is also related to the Leech lattice2. In summary, the Cullinane Diamond Theorem provides a geometric explanation for the structure and symmetries of the patterns in the MOG1,2. Both theorems are connected through their use of finite projective geometry and their applications to the study of symmetry1,2. Learn more Reply to Bing's Response — Actually, the Cullinane diamond theorem, by itself, does NOT explain the patterns in the MOG. The MOG is a natural correspondence, or pairing, of the 35 diamond-theorem structures with the 35 partitions of an eight-element set into two four-element sets. That correspondence is explained in a 1910 paper by G. M. Conwell, "The 3-Space PG(3,2) and Its Group." The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24=16+8 elements. Response to the Above Reply — Generating answers for you… Thank you for the clarification. You’re correct that the Cullinane Diamond Theorem, by itself, does not explain the patterns in the Miracle Octad Generator (MOG). The MOG is indeed a natural correspondence of the 35 structures from the Diamond Theorem with the 35 partitions of an eight-element set into two four-element sets. This correspondence was explained by G. M. Conwell in his 1910 paper “The 3-Space PG(3,2) and Its Group.” The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24 elements, which can be partitioned into a set of 16 and a set of 8. I appreciate your input and the opportunity to learn from it. If you have any more questions or need further clarification, feel free to ask!
|
A function (in this case, a 1-to-1 correspondence) from finite geometry:
This correspondence between points and hyperplanes underlies
the symmetries discussed in the Cullinane diamond theorem.
Academics who prefer cartoon graveyards may consult …
Cohn, N. (2014). Narrative conjunction’s junction function:
A theoretical model of “additive” inference in visual narratives.
Proceedings of the Annual Meeting of the Cognitive Science
Society, 36. See https://escholarship.org/uc/item/2050s18m .
From https://dash.harvard.edu/ a straightforward search now leads to . . .
Clicking on the above "Square Model" link leads to a summary page
with a "citable link" to itself . . .
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37373777 :
— and then, clicking on the summary page's
"View/Open The square model of PG(3,2). (329.1Kb),"
you will see a two-page PDF . . .
— and finally, scrolling down on that PDF, you will come to . . .
.
Or you can just Google Cullinane square model .
At Hiroshima on March 9, 2018, Aitchison discussed another
"hexagonal array" with two added points… not at the center, but
rather at the ends of a cube's diagonal axis of symmetry.
See some related illustrations below.
Fans of the fictional "Transfiguration College" in the play
"Heroes of the Fourth Turning" may recall that August 6,
another Hiroshima date, was the Feast of the Transfiguration.
The exceptional role of 0 and ∞ in Aitchison's diagram is echoed
by the occurence of these symbols in the "knight" labeling of a
Miracle Octad Generator octad —
Transposition of 0 and ∞ in the knight coordinatization
induces the symplectic polarity of PG(3,2) discussed by
(for instance) Anne Duncan in 1968.
Part I —
Also in May 1986 —
86-05-08… A linear complex related to M24 . Anatomy of the polarity pictured in the 86-04-26 note. 86-05-26… The 2-subsets of a 6-set are the points of a PG(3,2).
Beutelspacher's model of the 15 points of PG(3,2) |
Part II — (36 years later)
Some may prefer other concepts of shape. For instance …
… and, from Log24 on the above Yalebooks date —
Related material:
From "Higman- Sims Graph," a webpage by A. E. Brouwer — "Similar to the 15+35 construction of the Hoffman-Singleton graph is the 30+70 construction of the Higman-Sims graph. In the former the starting point was that the lines of PG(3,2) can be labeled with the triples in a 7-set such that lines meet when the corresponding triples have 1 element in common. This time we label the lines of PG(3,2) with the 4+4 splits of an 8-set, where intersecting lines correspond to splits with common refinement 2+2+2+2. Clearly, both descriptions of the lines of PG(3,2) are isomorphic. Take as vertices of the Higman-Sims graph the 15 points and 15 planes of PG(3,2) together with the 70 4-subsets of an 8-set. Join two 4-sets when they have 1 element in common. A 4-set determines a 4+4 split and hence a line in PG(3,2), and is adjacent to the points and planes incident with that line. A plane is adjacent to the nonincident points. This yields the Higman-Sims graph." |
See also PG(3,2) in this journal.
Name Tag | .Space | .Group | .Art |
---|---|---|---|
Box4 |
2×2 square representing the four-point finite affine geometry AG(2,2). (Box4.space) |
S4 = AGL(2,2) (Box4.group) |
(Box4.art) |
Box6 |
3×2 (3-row, 2-column) rectangular array representing the elements of an arbitrary 6-set. |
S6 | |
Box8 | 2x2x2 cube or 4×2 (4-row, 2-column) array. | S8 or A8 or AGL(3,2) of order 1344, or GL(3,2) of order 168 | |
Box9 | The 3×3 square. | AGL(2,3) or GL(2,3) | |
Box12 | The 12 edges of a cube, or a 4×3 array for picturing the actions of the Mathieu group M12. | Symmetries of the cube or elements of the group M12 | |
Box13 | The 13 symmetry axes of the cube. | Symmetries of the cube. | |
Box15 |
The 15 points of PG(3,2), the projective geometry of 3 dimensions over the 2-element Galois field. |
Collineations of PG(3,2) | |
Box16 |
The 16 points of AG(4,2), the affine geometry of 4 dimensions over the 2-element Galois field. |
AGL(4,2), the affine group of |
|
Box20 | The configuration representing Desargues's theorem. | ||
Box21 | The 21 points and 21 lines of PG(2,4). | ||
Box24 | The 24 points of the Steiner system S(5, 8, 24). | ||
Box25 | A 5×5 array representing PG(2,5). | ||
Box27 |
The 3-dimensional Galois affine space over the 3-element Galois field GF(3). |
||
Box28 | The 28 bitangents of a plane quartic curve. | ||
Box32 |
Pair of 4×4 arrays representing orthogonal Latin squares. |
Used to represent elements of AGL(4,2) |
|
Box35 |
A 5-row-by-7-column array representing the 35 lines in the finite projective space PG(3,2) |
PGL(3,2), order 20,160 | |
Box36 | Eurler's 36-officer problem. | ||
Box45 | The 45 Pascal points of the Pascal configuration. | ||
Box48 | The 48 elements of the group AGL(2,3). | AGL(2,3). | |
Box56 |
The 56 three-sets within an 8-set or |
||
Box60 | The Klein configuration. | ||
Box64 | Solomon's cube. |
— Steven H. Cullinane, March 26-27, 2022
See other posts now so tagged.
Hudson's Rosenhain tetrads, as 20 of the 35 projective lines in PG(3,2),
illustrate Desargues's theorem as a symmetry within 10 pairs of squares
under rotation about their main diagonals:
See also "The Square Model of Fano's 1892 Finite 3-Space."
The remaining 15 lines of PG(3,2), Hudson's Göpel tetrads, have their
own symmetries . . . as the Cremona-Richmond configuration.
The April 20 summary I wrote for ScienceOpen.com suggests
a different presentation of an Encyclopedia of Mathematics
article from 2013 —
(Click to enlarge.)
Keywords: PG(3,2), Fano space, projective space, finite geometry, square model,
Cullinane diamond theorem, octad group, MOG.
Cullinane, Steven H. (2021).
“The Square Model of Fano’s 1892 Finite 3-Space.”
Zenodo. https://doi.org/10.5281/zenodo.4718182 .
An earlier version of the square model of PG(3,2) —
“Art bears the same relationship to society
that the dream bears to mental life. . . .
Like art, the dream mediates between order
and chaos. So, it is half chaos. That is why
it is not comprehensible. It is a vision, not
a fully fledged articulated production.
Those who actualize those half-born visions
into artistic productions are those who begin
to transform what we do not understand into
what we can at least start to see.”
— A book published on March 2, 2021:
Beyond Order , by Jordan Peterson
The inarticulate, in this case, is Rosalind Krauss:
A “raid on the inarticulate” published in Notices of the
American Mathematical Society in the February 1979 issue —
For fans of “WandaVision” —
“1978 was perhaps the seminal year in the origin of chaos magic. . . .”
— Wikipedia article on Chaos Magic
Non-Chaos Non-Magic from Halloween 1978 —
Related material —
A doctoral student of a different Peter Cameron —
( Not to be confused with The Tin Man’s Hat. )
The title refers to the Steiner quadruple systems in a 2005 thesis by
a Helsinki mathematician. See . . .
http://m759.net/wordpress/?tag=helsinki-math.
See as well “a million diamonds” and . . .
A four-set has sixteen subsets. Fifteen of these symbolize the points
of “the smallest perfect universe,”* PG(3,2). The sixteenth is empty.
In memory of . . .
Polish this — “The Nothing That Is.”
* Phrase by Burkard Polster.
(A sequel to the previous post, Square Space at Wikipedia)
Related remarks: A Dec. 16 Wikipedia revision by Quack5quack,
and posts in this journal tagged Helsinki Math.
The State of Square-Space Art at Wikipedia as of December 16, 2020,
after a revision by an anonymous user on that date:
See also Square Space at Squarespace.
Today’s earlier post “Binary Coordinates” discussed a Dec. 6
revision to the Wikipedia article on PG(3,2), the projective
geometry of 3 dimensions over the 2-element field GF(2).
The revision, which improved the article, was undone later today
by a clueless retired academic, one William “Bill” Cherowitzo,
a professor emeritus of mathematics at U. of Colorado at Denver.
(See his article “Adventures of a Mathematician in Wikipedia-land,”
MAA Focus , December 2014/January 2015.)
See my earlier remarks on this topic . . . specifically, on this passage —
“A 3-(16,4,1) block design has 140 blocks
of size 4 on 16 points, such that each triplet
of points is covered exactly once. Pick any
single point, take only the 35 blocks
containing that point, and delete that point.
The 35 blocks of size 3 that remain comprise
a PG(3,2) on the 15 remaining points.”
As I noted on November 17, this is bullshit. Apparently Cherowitzo
never bothered to find out that an arbitrary “3-(16,4,1) block design”
(an example of a Steiner quadruple system ) does not yield a PG(3,2).
PG(3,2) is derived from the classical 3-(16,4,1) block design formed by the affine
space of 4 dimensions over GF(2). That design has 322,560 automorphisms.
In contrast, see a 3-(16,4,1) block design that is automorphism-free.
The title phrase is ambiguous and should be avoided.
It is used indiscriminately to denote any system of coordinates
written with 0 ‘s and 1 ‘s, whether these two symbols refer to
the Boolean-algebra truth values false and true , to the absence
or presence of elements in a subset , to the elements of the smallest
Galois field, GF(2) , or to the digits of a binary number .
Related material from the Web —
Some related remarks from “Geometry of the 4×4 Square:
Notes by Steven H. Cullinane” (webpage created March 18, 2004) —
A related anonymous change to Wikipedia today —
The deprecated “binary coordinates” phrase occurs in both
old and new versions of the “Square representation” section
on PG(3,2), but at least the misleading remark about Steiner
quadruple systems has been removed.
The previous post contrasted recent bullshit of Louis Menand
with some non-bullshit at Wikipedia.
But Wikipedia is hardly blameless —
The text on the left is bullshit. The illustration on the right is not.
See the web pages octad.group and octad.us.
Related geometry (not the 759 octads, but closely related to them) —
The 4×6 rectangle of R. T. Curtis
illustrates the geometry of octads —
Curtis splits the 4×6 rectangle into three 4×2 "bricks" —
.
"In fact the construction enables us to describe the octads
in a very revealing manner. It shows that each octad,
other than Λ1, Λ2, Λ3, intersects at least one of these ' bricks' —
the 'heavy brick' – in just four points." . . . .
— R. T. Curtis (1976). "A new combinatorial approach to M24,"
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42.
Usage example —
(Click to enlarge.)
See also the previous post as well as PG(3,2),
Schoolgirl Space, and Tetrahedron vs. Square.
The 15 2-subsets of a 6-set correspond to the 15 points of PG(3,2).
(Cullinane, 1986*)
The 35 3-subsets of a 7-set correspond to the 35 lines of PG(3,2).
(Conwell, 1910)
The 56 3-subsets of an 8-set correspond to the 56 spreads of PG(3,2).
(Seidel, 1970)
Each correspondence above may have been investigated earlier than
indicated by the above dates , which are the earliest I know of.
See also Correspondences in this journal.
* The above 1986 construction of PG(3,2) from a 6-set also appeared
in the work of other authors in 1994 and 2002 . . .
Addendum at 5:09 PM suggested by an obituary today for Stephen Joyce:
See as well the word correspondences in
"James Joyce and the Hermetic Tradition," by William York Tindall
(Journal of the History of Ideas , Jan. 1954).
Exercise: Use the Guitart 7-cycles below to relate the 56 triples
in an 8-set (such as the eightfold cube) to the 56 triangles in
a well-known Klein-quartic hyperbolic-plane tiling. Then use
the correspondence of the triples with the 56 spreads of PG(3,2)
to construct M24.
Click image below to download a Guitart PowerPoint presentation.
See as well earlier posts also tagged Triangles, Spreads, Mathieu.
Just as
the finite space PG(3,2) is
the geometry of the 6-set, so is
the finite space PG(5,2)
the geometry of the 8-set.*
Selah.
* Consider, for the 6-set, the 32
(16, modulo complementation)
0-, 2-, 4-, and 6-subsets,
and, for the 8-set, the 128
(64, modulo complementation)
0-, 2-, 4-, 6-, and 8-subsets.
Update of 11:02 AM ET the same day:
See also Eightfold Geometry, a note from 2010.
There are many approaches to constructing the Mathieu
group M24. The exercise below sketches an approach that
may or may not be new.
Exercise:
It is well-known that …
There are 56 triangles in an 8-set.
There are 56 spreads in PG(3,2).
The alternating group An is generated by 3-cycles.
The alternating group A8 is isomorphic to GL(4,2).
Use the above facts, along with the correspondence
described below, to construct M24.
Some background —
A Log24 post of May 19, 2013, cites …
Peter J. Cameron in a 1976 Cambridge U. Press
book — Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pp. 59 and 60.
See also a Google search for "56 triangles" "56 spreads" Mathieu.
Update of October 31, 2019 — A related illustration —
Update of November 2, 2019 —
See also p. 284 of Geometry and Combinatorics:
Selected Works of J. J. Seidel (Academic Press, 1991).
That page is from a paper published in 1970.
Update of December 20, 2019 —
Note that in the pictures below of the 15 two-subsets of a six-set,
the symbols 1 through 6 in Hudson's square array of 1905 occupy the
same positions as the anticommuting Dirac matrices in Arfken's 1985
square array. Similarly occupying these positions are the skew lines
within a generalized quadrangle (a line complex) inside PG(3,2).
Related narrative — The "Quantum Tesseract Theorem."
The 15 points of the finite projective 3-space PG(3,2)
arranged in tetrahedral form:
The letter labels, but not the tetrahedral form,
are from The Axioms of Projective Geometry , by
Alfred North Whitehead (Cambridge U. Press, 1906).
The above space PG(3,2), because of its close association with
Kirkman's schoolgirl problem, might be called "schoolgirl space."
Screen Rant on July 31, 2019:
A Google Search sidebar this morning:
Apocalypse Soon! —
Screen Rant on July 31, 2019 —
The above space PG(3,2), because of its close association with
Kirkman's schoolgirl problem, might be called "schoolgirl space."
See as well a Log24 post from the above Screen Rant date —
A revision of the above diagram showing
the Galois-addition-table structure —
Related tables from August 10 —
See "Schoolgirl Space Revisited."
An image from a Log24 post of March 5, 2019 —
The following paragraph from the above image remains unchanged
as of this morning at Wikipedia:
"A 3-(16,4,1) block design has 140 blocks of size 4 on 16 points,
such that each triplet of points is covered exactly once. Pick any
single point, take only the 35 blocks containing that point, and
delete that point. The 35 blocks of size 3 that remain comprise
a PG(3,2) on the 15 remaining points."
Exercise —
Prove or disprove the above assertion about a general "3-(16,4,1)
block design," a structure also known as a Steiner quadruple system
(as I pointed out in the March 5 post).
Relevant literature —
A paper from Helsinki in 2005* says there are more than a million
3-(16,4,1) block designs, of which only one has an automorphism
group of order 322,560. This is the affine 4-space over GF(2),
from which PG(3,2) can be derived using the well-known process
from finite geometry described in the above Wikipedia paragraph.
* "The Steiner quadruple systems of order 16," by Kaski et al.,
Journal of Combinatorial Theory Series A Volume 113, Issue 8,
November 2006, pages 1764-1770.
The Square "Inscape" Model of
the Generalized Quadrangle W(2)
Click image to enlarge.
* The title refers to the role of PG (3,2) in Kirkman's schoolgirl problem.
For some backstory, see my post Anticommuting Dirac Matrices as Skew Lines
and, more generally, posts tagged Dirac and Geometry.
Anonymous remarks on the schoolgirl problem at Wikipedia —
"This solution has a geometric interpretation in connection with
Galois geometry and PG(3,2). Take a tetrahedron and label its
vertices as 0001, 0010, 0100 and 1000. Label its six edge centers
as the XOR of the vertices of that edge. Label the four face centers
as the XOR of the three vertices of that face, and the body center
gets the label 1111. Then the 35 triads of the XOR solution correspond
exactly to the 35 lines of PG(3,2). Each day corresponds to a spread
and each week to a packing."
See also Polster + Tetrahedron in this journal.
There is a different "geometric interpretation in connection with
Galois geometry and PG(3,2)" that uses a square model rather
than a tetrahedral model. The square model of PG(3,2) last
appeared in the schoolgirl-problem article on Feb. 11, 2017, just
before a revision that removed it.
See also "Overarching + Tesseract" in this journal. From the results
of that search, some context for the "inscape" of the previous post —
From some 1949 remarks of Weyl— "The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time." — Hermann Weyl, "Relativity Theory as a Stimulus in Mathematical Research," Proceedings of the American Philosophical Society , Vol. 93, No. 7, Theory of Relativity in Contemporary Science: Papers Read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949 (Dec. 30, 1949), pp. 535-541 Weyl in 1946—: "This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them." — Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16 |
For some context, see Relativity Problem in this journal.
In the case of PG(3,2), there is a choice of geometric models
to be coordinatized: two such models are the traditional
tetrahedral model long promoted by Burkard Polster, and
the square model of Steven H. Cullinane.
The above Wikipedia section tacitly (and unfairly) assumes that
the model being coordinatized is the tetrahedral model. For
coordinatization of the square model, see (for instance) the webpage
Finite Relativity.
For comparison of the two models, see a figure posted here on
May 21, 2014 —
Labeling the Tetrahedral Model (Click to enlarge) —
"Citation needed" —
The anonymous characters who often update the PG(3,2) Wikipedia article
probably would not consider my post of 2014, titled "The Tetrahedral
Model of PG(3,2)," a "reliable source."
A Midrash for Wikipedia
Midrash —
Related material —
________________________________________________________________________________
This post continues a post from yesterday on the square model of
PG(3,2) that apparently first appeared (presented as such*) in . . .
Cullinane, "Symmetry invariance in a diamond ring,"
Notices of the AMS , pp. A193-194, Feb. 1979.
Yesterday's Wikipedia presentation of the square model was today
revised by yet another anonymous author —
Revision history accounting for the above change from yesterday —
The jargon "rm OR" means "remove original research."
The added verbiage about block designs is a smokescreen having
nothing to do with the subject, which is square representation
of the 35 points and lines.
* The 35 squares, each consisting of four 4-element subsets, appeared earlier
in the Miracle Octad Generator (MOG) of R. T. Curtis (published in 1976).
They were not at that time presented as constituting a finite geometry,
either affine (AG(4,2)) or projective (PG(3,2)).
Besides omitting the name Cullinane, the anonymous Wikipedia author
also omitted the step of representing the hypercube by a 4×4 array —
an array called in this journal a Galois tesseract.
Some related material in this journal — See a search for k6.gif.
Some related material from Harvard —
Elkies's "15 simple transpositions" clearly correspond to the 15 edges of
the complete graph K6 and to the 15 2-subsets of a 6-set.
For the connection to PG(3,2), see Finite Geometry of the Square and Cube.
The following "manifestation" of the 2-subsets of a 6-set might serve as
the desired Wikipedia citation —
See also the above 1986 construction of PG(3,2) from a 6-set
in the work of other authors in 1994 and 2002 . . .
The dies natalis of St. Buddy Holly was Feb. 3, 1959.
This year on Feb. 3, a geometric illustration of the well-known
schoolgirl problem was added to a brand-new Wikipedia article
on the finite geometry PG(3,2).
The title was suggested by the name "ARTI" of an artificial
intelligence in the new film 2036: Origin Unknown.
The Eye of ARTI —
See also a post of May 19, "Uh-Oh" —
— and a post of June 6, "Geometry for Goyim" —
Mystery box merchandise from the 2011 J. J. Abrams film Super 8
An arty fact I prefer, suggested by the triangular computer-eye forms above —
This is from the July 29, 2012, post The Galois Tesseract.
See as well . . .
The Institute for Advanced Study (IAS) at Princeton in its Fall 2015 Letter
revived "Beautiful Mathematics" as a title:
This ugly phrase was earlier used by Truman State University
professor Martin Erickson as a book title. See below.
In the same IAS Fall 2015 Letter appear the following remarks
by Freeman Dyson —
". . . a special case of a much deeper connection that Ian Macdonald
discovered between two kinds of symmetry which we call modular and affine.
The two kinds of symmetry were originally found in separate parts of science,
modular in pure mathematics and affine in physics. Modular symmetry is
displayed for everyone to see in the drawings of flying angels and devils
by the artist Maurits Escher. Escher understood the mathematics and got the
details right. Affine symmetry is displayed in the peculiar groupings of particles
created by physicists with high-energy accelerators. The mathematician
Robert Langlands was the first to conjecture a connection between these and
other kinds of symmetry. . . ." (Wikipedia link added.)
The adjective "modular" might aptly be applied to . . .
The adjective "affine" might aptly be applied to . . .
The geometry of the 4×4 square combines modular symmetry
(i.e., related to theta functions) with the affine symmetry above.
Hudson's 1905 discussion of modular symmetry (that of Rosenhain
tetrads and Göpel tetrads) in the 4×4 square used a parametrization
of that square by the digit 0 and the fifteen 2-subsets of a 6-set, but
did not discuss the 4×4 square as an affine space.
For the connection of the 15 Kummer modular 2-subsets with the 16-
element affine space over the two-element Galois field GF(2), see my note
of May 26, 1986, "The 2-subsets of a 6-set are the points of a PG(3,2)" —
— and the affine structure in the 1979 AMS abstract
"Symmetry invariance in a diamond ring" —
For some historical background on the symmetry investigations by
Dyson and Macdonald, see Dyson's 1972 article "MIssed Opportunities."
For Macdonald's own use of the words "modular" and "affine," see
Macdonald, I. G., "Affine Lie algebras and modular forms,"
Séminaire N. Bourbaki , Vol. 23 (1980-1981), Talk no. 577, pp. 258-276.
A figure related to the general connecting theorem of Koen Thas —
See also posts tagged Dirac and Geometry in this journal.
Those who prefer narrative to mathematics may, if they so fancy, call
the above Thas connecting theorem a "quantum tesseract theorem ."
See also Symplectic in this journal.
From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens 54, 59-79 (1992):
“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”
The above symplectic figure appears in remarks on
the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2). See also
related remarks on the notion of linear (or line ) complex
in the finite projective space PG(3,2) —
Scholia on the title — See Quantum + Mystic in this journal.
"In Vol. I of Structural Anthropology , p. 209, I have shown that
this analysis alone can account for the double aspect of time
representation in all mythical systems: the narrative is both
'in time' (it consists of a succession of events) and 'beyond'
(its value is permanent)." — Claude Lévi-Strauss, 1976
I prefer the earlier, better-known, remarks on time by T. S. Eliot
in Four Quartets , and the following four quartets (from
The Matrix Meets the Grid) —
From a Log24 post of June 26-27, 2017:
A work of Eddington cited in 1974 by von Franz —
See also Dirac and Geometry and Kummer in this journal.
Ron Shaw on Eddington's triads "associated in conjugate pairs" —
For more about hyperbolic and isotropic lines in PG(3,2),
see posts tagged Diamond Theorem Correlation.
For Shaw, in memoriam — See Contrapuntal Interweaving and The Fugue.
The New York TImes reports this evening that
"Jon Underwood, Founder of Death Cafe Movement,"
died suddenly at 44 on June 27.
This journal on that date linked to a post titled "The Mystic Hexastigm."
A related remark on the complete 6-point from Sunday, April 28, 2013 —
(See, in Veblen and Young's 1910 Vol. I, exercise 11,
page 53: "A plane section of a 6-point in space can
be considered as 3 triangles perspective in pairs
from 3 collinear points with corresponding sides
meeting in 3 collinear points." This is the large
Desargues configuration. See Classical Geometry
in Light of Galois Geometry.)
This post was suggested, in part, by the philosophical ruminations
of Rosalind Krauss in her 2011 book Under Blue Cup . See
Sunday's post Perspective and Its Transections . (Any resemblance
to Freud's title Civilization and Its Discontents is purely coincidental.)
The title refers to that of the previous post, "The Imaginarium."
In memory of a translator who reportedly died on May 22, 2017,
a passage quoted here on that date —
Related material — A paragraph added on March 15, 2017,
to the Wikipedia article on Galois geometry —
George Conwell gave an early demonstration of Galois geometry in 1910 when he characterized a solution of Kirkman's schoolgirl problem as a partition of sets of skew lines in PG(3,2), the three-dimensional projective geometry over the Galois field GF(2).[3] Similar to methods of line geometry in space over a field of characteristic 0, Conwell used Plücker coordinates in PG(5,2) and identified the points representing lines in PG(3,2) as those on the Klein quadric. — User Rgdboer |
This post was suggested by the previous post — Four Dots —
and by the phrase "smallest perfect" in this journal.
Related material (click to enlarge) —
Detail —
From the work of Eddington cited in 1974 by von Franz —
See also Dirac and Geometry and Kummer in this journal.
Updates from the morning of June 27 —
Ron Shaw on Eddington's triads "associated in conjugate pairs" —
For more about hyperbolic and isotropic lines in PG(3,2),
see posts tagged Diamond Theorem Correlation.
For Shaw, in memoriam — See Contrapuntal Interweaving and The Fugue.
The above four-element sets of black subsquares of a 4×4 square array
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .
Hudson did not view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective
3-space).
In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.
This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements. This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.
The space was later described in the following —
Space —
Space structure —
From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens 54, 59-79 (1992):
“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”
The above symplectic figure appears in remarks on
the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).
Space shuttle —
Related ethnic remarks —
… As opposed to Michael Larsen —
Funny, you don't look Danish.
From the American Mathematical Society (AMS) webpage today —
From the current AMS Notices —
Related material from a post of Aug. 6, 2014 —
(Here "five point sets" should be "five-point sets.")
From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens 54, 59-79 (1992):
“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”
The above symplectic structure* now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).
* The phrase as used here is a deliberate
abuse of language . For the real definition of
“symplectic structure,” see (for instance)
“Symplectic Geometry,” by Ana Cannas da Silva
(article written for Handbook of Differential
Geometry , Vol 2.) To establish that the above
figure is indeed symplectic , see the post
Zero System of July 31, 2014.
Yesterday evening's post Some Old Philosophy from Rome
(a reference, of course, to a Wallace Stevens poem)
had a link to posts now tagged Wittgenstein's Pentagram.
For a sequel to those posts, see posts with the term Inscape ,
a mathematical concept related to a pentagram-like shape.
The inscape concept is also, as shown by R. W. H. T. Hudson
in 1904, related to the square array of points I use to picture
PG(3,2), the projective 3-space over the 2-element field.
The "points" and "lines" of finite geometry are abstract
entities satisfying only whatever incidence requirements
yield non-contradictory and interesting results. In finite
geometry, neither the points nor the lines are required to
lie within any Euclidean (or, for that matter, non-Euclidean)
space.
Models of finite geometries may, however, embed the
points and lines within non -finite geometries in order
to aid visualization.
For instance, the 15 points and 35 lines of PG(3,2) may
be represented by subsets of a 4×4 array of dots, or squares,
located in the Euclidean plane. These "lines" are usually finite
subsets of dots or squares and not* lines of the Euclidean plane.
Example — See "4×4" in this journal.
Some impose on configurations from finite geometry
the rather artificial requirement that both points and lines
must be representable as those of a Euclidean plane.
Example: A Cremona-Richmond pentagon —
A square version of these 15 "points" —
A 1905 square version of these 15 "points"
with digits instead of letters —
See Parametrizing the 4×4 Array
(Log24 post of Sept. 13, 2016).
Update of 8 AM ET Sunday, Sept. 25, 2016 —
For more illustrations, do a Google image search
on "the 2-subsets of a 6-set." (See one such search.)
* But in some models are subsets of the grid lines
that separate squares within an array.
The smallest perfect number,* six, meets
"the smallest perfect universe,"** PG(3,2).
* For the definition of "perfect number," see any introductory
number-theory text that deals with the history of the subject.
** The phrase "smallest perfect universe" as a name for PG(3,2),
the projective 3-space over the 2-element Galois field GF(2),
was coined by math writer Burkard Polster. Cullinane's square
model of PG(3,2) differs from the earlier tetrahedral model
discussed by Polster.
The previous post quoted Tom Wolfe on Chomsky's use of
the word "array."
An example of particular interest is the 4×4 array
(whether of dots or of unit squares) —
.
Some context for the 4×4 array —
The following definition indicates that the 4×4 array, when
suitably coordinatized, underlies the Kummer lattice .
Further background on the Kummer lattice:
Alice Garbagnati and Alessandra Sarti,
"Kummer Surfaces and K3 surfaces
with $(Z/2Z)^4$ symplectic action."
To appear in Rocky Mountain J. Math. —
The above article is written from the viewpoint of traditional
algebraic geometry. For a less traditional view of the underlying
affine 4-space from finite geometry, see the website
Finite Geometry of the Square and Cube.
Some further context …
"To our knowledge, the relation of the Golay code
to the Kummer lattice … is a new observation."
— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of
Kummer surfaces in the Mathieu group M24 "
As noted earlier, Taormina and Wendland seem not to be aware of
R. W. H. T. Hudson's use of the (uncoordinatized*) 4×4 array in his
1905 book Kummer's Quartic Surface. The array was coordinatized,
i.e. given a "vector space structure," by Cullinane eight years prior to
the cited remarks of Curtis.
* Update of Sept. 14: "Uncoordinatized," but parametrized by 0 and
the 15 two-subsets of a six-set. See the post of Sept. 13.
(A sequel to the previous post, Perfect Number)
Since antiquity, six has been known as
"the smallest perfect number." The word "perfect"
here means that a number is the sum of its
proper divisors — in the case of six: 1, 2, and 3.
The properties of a six-element set (a "6-set")
divided into three 2-sets and divided into two 3-sets
are those of what Burkard Polster, using the same
adjective in a different sense, has called
"the smallest perfect universe" — PG(3,2), the projective
3-dimensional space over the 2-element Galois field.
A Google search for the phrase "smallest perfect universe"
suggests a turnaround in meaning , if not in finance,
that might please Yahoo CEO Marissa Mayer on her birthday —
The semantic turnaround here in the meaning of "perfect"
is accompanied by a model turnaround in the picture of PG(3,2) as
Polster's tetrahedral model is replaced by Cullinane's square model.
Further background from the previous post —
See also Kirkman's Schoolgirl Problem.
The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface .
"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least,
as an everlasting symbol of mathematical culture."
— Werner Kleinert, Mathematical Reviews ,
as quoted at Amazon.com
Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).
Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .
Some related work of my own (click images for related posts)—
Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)
Göpel tetrads as 15 of the 35 projective lines in PG(3,2)
Related terminology describing the Göpel tetrads above
As was previously noted here, the construction of the Miracle Octad Generator
of R. T. Curtis in 1974 may have involved his "folding" the 1×8 octads constructed
in 1967 by Turyn into 2×4 form.
This results in a way of picturing a well-known correspondence (Conwell, 1910)
between partitions of an 8-set and lines of the projective 3-space PG(3,2).
For some background related to the "ogdoads" of the previous post, see
A Seventh Seal (Sept. 15, 2014).
My statement yesterday morning that the 15 points
of the finite projective space PG(3,2) are indivisible
was wrong. I was misled by quoting the powerful
rhetoric of Lincoln Barnett (LIFE magazine, 1949).
Points of Euclidean space are of course indivisible:
"A point is that which has no parts" (in some translations).
And the 15 points of PG(3,2) may be pictured as 15
Euclidean points in a square array (with one point removed)
or tetrahedral array (with 11 points added).
The geometry of PG(3,2) becomes more interesting,
however, when the 15 points are each divided into
several parts. For one approach to such a division,
see Mere Geometry. For another approach, click on the
image below.
"One day not long ago Oppenheimer stalked
up and down his office and divulged some
startling new discoveries about the 15 fundamental
particles of which the universe is made….
… physicists today are wondering if these particles
are themselves actually the final, stark, immutable
and indivisible foundation stones of the universe
that until now they have been thought to be."
—Lincoln Barnett in LIFE magazine,
Oct. 10, 1949, page 122
Fringe Physics —
"… astrophysics limits the number of fundamental particles to 15…."
— Franklin Potter at FQXi.org on Sep. 27, 2009
"I agree there can't be more than 15 fundamental particles."
— Lawrence B. Crowell at FQXi.org on Sep. 29, 2009
Beyond —
There are, at any rate, 15 "final, stark, immutable* and indivisible*
foundation stones" (namely, 15 points ) of the finite projective
space PG(3,2). See Symplectic in this journal.
For related physics, see posts tagged Dirac and Geometry.
* Update of Jan. 21, 2016 — I was carried away by Barnett's
powerful rhetoric. These adjectives are wrong.
For the title phrase, see Encyclopedia of Mathematics .
The zero system illustrated in the previous post*
should not be confused with the cinematic Zero Theorem .
* More precisely, in the part showing the 15 lines fixed under
a zero-system polarity in PG(3,2). For the zero system
itself, see diamond-theorem correlation.
(Continued from November 13)
The work of Ron Shaw in this area, ca. 1994-1995, does not
display explicitly the correspondence between anticommutativity
in the set of Dirac matrices and skewness in a line complex of
PG(3,2), the projective 3-space over the 2-element Galois field.
Here is an explicit picture —
References:
Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214
Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986
Shaw, Ron, "Finite Geometry, Dirac Groups, and the Table of
Real Clifford Algebras," undated article at ResearchGate.net
Update of November 23:
See my post of Nov. 23 on publications by E. M. Bruins
in 1949 and 1959 on Dirac matrices and line geometry,
and on another author who gives some historical background
going back to Eddington.
Some more-recent related material from the Slovak school of
finite geometry and quantum theory —
The matrices underlying the Saniga paper are those of Pauli, not
those of Dirac, but these two sorts of matrices are closely related.
Note that the six anticommuting sets of Dirac matrices listed by Arfken
correspond exactly to the six spreads in the above complex of 15 projective
lines of PG(3,2) fixed under a symplectic polarity (the diamond theorem
correlation ). As I noted in 1986, this correlation underlies the Miracle
Octad Generator of R. T. Curtis, hence also the large Mathieu group.
References:
Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214
Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986
Related material:
The 6-set in my 1986 note above also appears in a 1996 paper on
the sixteen Dirac matrices by David M. Goodmanson —
Background reading:
Ron Shaw on finite geometry, Clifford algebras, and Dirac groups
(undated compilation of publications from roughly 1994-1995)—
Software writer Richard P. Gabriel describes some work of design
philosopher Christopher Alexander in the 1960's at Harvard:
A more interesting account of these 35 structures:
"It is commonly known that there is a bijection between
the 35 unordered triples of a 7-set [i.e., the 35 partitions
of an 8-set into two 4-sets] and the 35 lines of PG(3,2)
such that lines intersect if and only if the corresponding
triples have exactly one element in common."
— "Generalized Polygons and Semipartial Geometries,"
by F. De Clerck, J. A. Thas, and H. Van Maldeghem,
April 1996 minicourse, example 5 on page 6.
For some context, see Eightfold Geometry by Steven H. Cullinane.
A figure I prefer to the "Golden Tablet" of Night at the Museum —
The source — The Log24 post "Zero System" of July 31, 2014.
* For the title, see The New Yorker of Sept. 22, 2014.
The title of the previous post, "Slow Art," is a phrase
of the late art critic Robert Hughes.
Example from mathematics:
Click the Barth passage to see it with its surrounding text.
Related material:
The words: "symplectic polarity"—
The images:
The Natural Symplectic Polarity in PG(3,2)
Symmetry Invariance in a Diamond Ring
The Diamond-Theorem Correlation
Oslo artist Josefine Lyche has a new Instagram post,
this time on pyramids (the monumental kind).
My response —
Wikipedia's definition of a tetrahedron as a
"triangle-based pyramid" …
… and remarks from a Log24 post of August 14, 2013 :
Norway dance (as interpreted by an American)
I prefer a different, Norwegian, interpretation of "the dance of four."
Related material: |
See also some of Burkard Polster's triangle-based pyramids
and a 1983 triangle-based pyramid in a paper that Polster cites —
(Click image below to enlarge.)
Some other illustrations that are particularly relevant
for Lyche, an enthusiast of magic :
From On Art and Magic (May 5, 2011) —
|
(Updated at about 7 PM ET on Dec. 3.)
The Folding
Cynthia Zarin in The New Yorker , issue dated April 12, 2004—
“Time, for L’Engle, is accordion-pleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”
The geometry of the 4×4 square array is that of the
3-dimensional projective Galois space PG(3,2).
This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc. on
15 June 1974). Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.
Some history:
Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.
[Rewritten for clarity on Sept. 3, 2014.]
In the Miracle Octad Generator (MOG):
The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:
From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.
The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.
Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.
Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements in two pictures, each showing 10 of the
3-subsets.
This pair of pictures corresponds to the 20 Rosenhain tetrads among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads among the 35 lines.
See Rosenhain and Göpel tetrads in PG(3,2). Some further background:
The webpage Rosenhain and Göpel Tetrads in PG(3,2)
has been updated to include more material on symplectic structure.
Some background for the part of the 2002 paper by Dolgachev and Keum
quoted here on January 17, 2014 —
Related material in this journal (click image for posts) —
(Continued from August 9, 2014.)
Syntactic:
Symplectic:
"Visual forms— lines, colors, proportions, etc.— are just as capable of
articulation , i.e. of complex combination, as words. But the laws that govern
this sort of articulation are altogether different from the laws of syntax that
govern language. The most radical difference is that visual forms are not
discursive . They do not present their constituents successively, but
simultaneously, so the relations determining a visual structure are grasped
in one act of vision."
– Susanne K. Langer, Philosophy in a New Key
For examples, see The Diamond-Theorem Correlation
in Rosenhain and Göpel Tetrads in PG(3,2).
This is a symplectic correlation,* constructed using the following
visual structure:
.
* Defined in (for instance) Paul B. Yale, Geometry and Symmetry ,
Holden-Day, 1968, sections 6.9 and 6.10.
From Gotay and Isenberg, "The Symplectization of Science,"
Gazette des Mathématiciens 54, 59-79 (1992):
"… what is the origin of the unusual name 'symplectic'? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure 'line complex group' the 'symplectic group.'
… the adjective 'symplectic' means 'plaited together' or 'woven.'
This is wonderfully apt…."
The above symplectic structure** now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).
Some related passages from the literature:
* The title is a deliberate abuse of language .
For the real definition of "symplectic structure," see (for instance)
"Symplectic Geometry," by Ana Cannas da Silva (article written for
Handbook of Differential Geometry, vol 2.) To establish that the
above figure is indeed symplectic , see the post Zero System of
July 31, 2014.
** See Steven H. Cullinane, Inscapes III, 1986
"There is such a thing as a tesseract." — Madeleine L'Engle
An approach via the Omega Matrix:
See, too, Rosenhain and Göpel as The Shadow Guests .
The title phrase (not to be confused with the film 'The Zero Theorem')
means, according to the Encyclopedia of Mathematics,
a null system , and
"A null system is also called null polarity,
a symplectic polarity or a symplectic correlation….
it is a polarity such that every point lies in its own
polar hyperplane."
See Reinhold Baer, "Null Systems in Projective Space,"
Bulletin of the American Mathematical Society, Vol. 51
(1945), pp. 903-906.
An example in PG(3,2), the projective 3-space over the
two-element Galois field GF(2):
See also the 10 AM ET post of Sunday, June 8, 2014, on this topic.
"The relevance of a geometric theorem is determined by what the theorem
tells us about space, and not by the eventual difficulty of the proof."
— Gian-Carlo Rota discussing the theorem of Desargues
What space tells us about the theorem :
In the simplest case of a projective space (as opposed to a plane ),
there are 15 points and 35 lines: 15 Göpel lines and 20 Rosenhain lines.*
The theorem of Desargues in this simplest case is essentially a symmetry
within the set of 20 Rosenhain lines. The symmetry, a reflection
about the main diagonal in the square model of this space, interchanges
10 horizontally oriented (row-based) lines with 10 corresponding
vertically oriented (column-based) lines.
Vide Classical Geometry in Light of Galois Geometry.
* Update of June 9: For a more traditional nomenclature, see (for instance)
R. Shaw, 1995. The "simplest case" link above was added to point out that
the two types of lines named are derived from a natural symplectic polarity
in the space. The square model of the space, apparently first described in
notes written in October and December, 1978, makes this polarity clearly visible:
See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.
Related material on the Turyn-Curtis construction
from the University of Cambridge —
— Slide by "Dr. Parker" — Apparently Richard A. Parker —
Lecture 4, "Discovering M24," in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on "Sporadic and Related Groups."
See also the Parker lectures of 2012-2013 on the same topic.
A third construction of Curtis's 35 4×6 1976 MOG arrays would use
Cullinane's analysis of the 4×4 subarrays' affine and projective structure,
and point out the fact that Conwell's 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis's 1976 MOG.
See The Diamond Theorem, Finite Relativity, Galois Space,
Generating the Octad Generator, and The Klein Correspondence.
Update of March 22-March 23 —
Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1's, all other squares as 0's) of the 35 4×6 arrays of the 1976
Curtis MOG would then reveal* the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35 MOG arrays. For more
details of this "by-hand" construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction (such as Turyn's), not by hand, of the
extended binary Golay code. See the Brouwer preprint quoted above.
* "Then a miracle occurs," as in the classic 1977 Sidney Harris cartoon.
Illustration of array addition from March 23 —
On Theta Characteristics
— From Zentralblatt-math.org. 8 PM ET update: See also a related search.
Some may prefer a more politically correct— and simpler— sermon.
Background for the simpler sermon: Quilt Geometry.
See The Oslo Version in this journal and the New Year’s Day 2014 post.
The pictures of the 56 spreads in that post (shown below) are based on
the 20 Rosenhain and 15 Göpel tetrads that make up the 35 lines of
PG(3,2), the finite projective 3-space over the 2-element Galois field.
Click for a larger image.
(Continued from Mystery Box, Feb. 4, and Mystery Box II, Feb. 5.)
The Box
Inside the Box
Outside the Box
For the connection of the inside notation to the outside geometry,
see Desargues via Galois.
(For a related connection to curves and surfaces in the outside
geometry, see Hudson's classic Kummer's Quartic Surface and
Rosenhain and Göpel Tetrads in PG(3,2).)
Mathematics:
A review of posts from earlier this month —
Wednesday, September 4, 2013
|
Narrative:
Aooo.
Happy birthday to Stephen King.
The following excerpt from a January 20, 2013, preprint shows that
a Galois-geometry version of the large Desargues 154203 configuration,
although based on the nineteenth-century work of Galois* and of Fano,**
may at times have twenty-first-century applications.
Atkinson's paper does not use the square model of PG(3,2), which later
in 2013 provided a natural view of the large Desargues 154203 configuration.
See my own Classical Geometry in Light of Galois Geometry. Atkinson's
"subset of 20 lines" corresponds to 20 of the 80 Rosenhain tetrads
mentioned in that later article and pictured within 4×4 squares in Hudson's
1905 classic Kummer's Quartic Surface.
* E. Galois, definition of finite fields in "Sur la Théorie des Nombres,"
Bulletin des Sciences Mathématiques de M. Férussac,
Vol. 13, 1830, pp. 428-435.
** G. Fano, definition of PG(3,2) in "Sui Postulati Fondamentali…,"
Giornale di Matematiche, Vol. 30, 1892, pp. 106-132.
(Continued from 24 hours ago and from May 9, 2012)
Quoted 24 hours ago in this journal—
Remark by Aldous Huxley on an artist's work:
"All the turmoil, all the emotions of the scenes
have been digested by the mind into a
grave intellectual whole."
Quoted in a video uploaded on May 9, 2012:
Norway Toilet Scene
Norway dance (as interpreted by an American)
I prefer a different, Norwegian, interpretation of "the dance of four."
Related material: The clash between square and tetrahedral versions of PG(3,2).
The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—
The Galois tesseract is the basis for a representation of the smallest
projective 3-space, PG(3,2), that differs from the representation at
Wolfram Demonstrations Project. For the latter, see yesterday’s post.
The tesseract representation underlies the diamond theorem, illustrated
below in its earliest form, also from the above February 1977 article—
As noted in a more recent version, the group described by
the diamond theorem is also the group of the 35 square
patterns within the 1976 Miracle Octad Generator (MOG) of
R. T. Curtis.
(Simplicity continued)
"Understanding a metaphor is like understanding a geometrical
truth. Features of various geometrical figures or of various contexts
are pulled into revealing alignment with one another by the
demonstration or the metaphor.
What is 'revealed' is not that the alignment is possible; rather,
that the alignment is possible reveals the presence of already-
existing shapes or correspondences that lay unnoticed. To 'see' a
proof or 'get' a metaphor is to experience the significance of the
correspondence for what the thing, concept, or figure is ."
— Jan Zwicky, Wisdom & Metaphor , page 36 (left)
Zwicky illustrates this with Plato's diamond figure
from the Meno on the facing page— her page 36 (right).
A more sophisticated geometrical figure—
Galois-geometry key to
Desargues' theorem:
D | E | F | |
S' | P | Q | R |
S | P' | Q' | R' |
O | P1 | Q1 | R1 |
For an explanation, see
Classical Geometry in Light of Galois Geometry.
Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo—
Compare to an image of Vril muse Maria Orsitsch.
From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,
I DE LANGE NÆTTER —
Josefine Lyche
Keywords (to help place my artwork in the (See also the original catalog page.) |
Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.
For some background, see (for instance)
Conspiracy Theories and Secret Societies for Dummies .
From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):
"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."
[Cur89] reference:
R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 32 (1989), 345-353 (received on
July 20, 1987).
— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group M 24 ,"
arXiv.org > hep-th > arXiv:1107.3834
"First mentioned by Curtis…."
No. I claim that to the best of my knowledge, the
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.
Update of the above paragraph on July 6, 2013—
No. The vector space structure was described by
The vector space structure as it occurs in a 4×4 array |
See Notes on Finite Geometry for some background.
See in particular The Galois Tesseract.
For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).
"There is such a thing as a tesseract." —A novel from Crosswicks
Related material from a 1905 graduate of Princeton,
"The 3-Space PG(3,2) and Its Group," is now available
at Internet Archive (1 download thus far).
The 3-space paper is relevant because of the
connection of the group it describes to the
"super, overarching" group of the tesseract.
… And the history of geometry —
Desargues, Pascal, Brianchon and Galois
in the light of complete n-points in space.
(Rewritten for clarity at about 10 AM ET April 29, with quote from Dowling added.
Updated with a reference to a Veblen and Young exercise (on p. 53) on April 30.)
Veblen and Young, Projective Geometry, Vol. I ,
Ginn and Company, 1910, page 39:
"The Desargues configuration. A very important configuration
is obtained by taking the plane section of a complete space five-point."
Each of figures 14 and 15 above has 15 points and 20 lines.
The Desargues configuration within each figure is denoted by
10 white points and 10 solid lines, with 3 points on each line and
3 lines on each point. Black points and dashed lines indicate the
complete space five-point and lines connecting it to the plane section
containing the Desargues configuration.
In a 1915 University of Chicago doctoral thesis, Archibald Henderson
used a complete space six -point to construct a configuration of
15 points and 20 lines in the context not of Desargues ' theorem, but
rather of Brianchon 's theorem and of the Pascal hexagram.
Henderson's 1915 configuration is, it turns out, isomorphic to that of
the 15 points and 20 lines in the configuration constructed via a
complete space five -point five years earlier by Veblen and Young.
(See, in Veblen and Young's 1910 Vol. I, exercise 11, page 53:
"A plane section of a 6-point in space can be considered as
3 triangles perspective in pairs from 3 collinear points with
corresponding sides meeting in 3 collinear points." This is the
large Desargues configuration. See Classical Geometry in Light of
Galois Geometry.)
For this large Desargues configuration see April 19.
For Henderson's complete six –point, see The Six-Set (April 23).
That post ends with figures relating the large Desargues configuration
to the Galois geometry PG(3,2) that underlies the Curtis
Miracle Octad Generator and the large Mathieu group M24 —
See also Note on the MOG Correspondence from April 25, 2013.
That correspondence was also discussed in a note 28 years ago, on this date in 1985.
The title is that of a talk (see video) given by
George Dyson at a Princeton land preservation trust,
reportedly on March 21, 2013. The talk's subtitle was
"Oswald Veblen and the Six-hundred-acre Woods."
Meanwhile…
Thursday, March 21, 2013
|
Related material for those who prefer narrative
to mathematics:
Log24 on June 6, 2006:
The Omen :
|
Related material for those who prefer mathematics
to narrative:
What the Omen narrative above and the mathematics of Veblen
have in common is the number 6. Veblen, who came to
Princeton in 1905 and later helped establish the Institute,
wrote extensively on projective geometry. As the British
geometer H. F. Baker pointed out, 6 is a rather important number
in that discipline. For the connection of 6 to the Göpel tetrads
figure above from March 21, see a note from May 1986.
See also last night's Veblen and Young in Light of Galois.
"There is such a thing as a tesseract." — Madeleine L'Engle
Background: Inscapes and The 2-subsets of a 6-set are the points of a PG(3,2).
Related remarks: Classical Geometry in Light of Galois Geometry.
Click image for some background.
Shown above is a rearranged version of the
Miracle Octad Generator (MOG) of R. T. Curtis
("A new combinatorial approach to M24,"
Math. Proc. Camb. Phil. Soc., 79 (1976), 25-42.)
The 8-subcell rectangles in the left part of the figure may be
viewed as illustrating (if the top left subcell is disregarded)
the thirty-five 3-subsets of a 7-set.
Such a view relates, as the remarks below show, the
MOG's underlying Galois geometry, that of PG(3,2), to
the hexagrammum mysticum of Pascal.
On Danzer's 354 Configuration:
"Combinatorially, Danzer’s configuration can be interpreted
as defined by all 3-sets and all 4-sets that can be formed
by the elements of a 7-element set; each 'point' is represented
by one of the 3-sets, and it is incident with those lines
(represented by 4-sets) that contain the 3-set."
— Branko Grünbaum, "Musings on an Example of Danzer's,"
European Journal of Combinatorics , 29 (2008),
pp. 1910–1918 (online March 11, 2008)
"Danzer's configuration is deeply rooted in
Pascal's Hexagrammum Mysticum ."
— Marko Boben, Gábor Gévay, and Tomaž Pisanski,
"Danzer's Configuration Revisited," arXiv.org, Jan. 6, 2013
For an approach to such configurations that differs from
those of Grünbaum, Boben, Gévay, and Pisanski, see
Classical Geometry in Light of Galois Geometry.
Grünbaum has written little about Galois geometry.
Pisanski has recently touched on the subject;
see Configurations in this journal (Feb. 19, 2013).
Background: Rosenhain and Göpel Tetrads in PG(3,2)
Introduction: The Large Desargues Configuration Added by Steven H. Cullinane on Friday, April 19, 2013 Desargues' theorem according to a standard textbook:
"If two triangles are perspective from a point The converse, from the same book:
"If two triangles are perspective from a line
Desargues' theorem according to Wikipedia
"Two triangles are in perspective axially [i.e., from a line]
A figure often used to illustrate the theorem,
A discussion of the "if and only if" version of the theorem
This large Desargues configuration involves a third triangle,
Point-line incidence in this larger configuration is,
The third triangle, within the larger configuration,
|
A connection discovered today (April 1, 2013)—
(Click to enlarge the image below.)
Update of April 18, 2013
Note that Baker's Desargues-theorem figure has three triangles,
ABC, A'B'C', A"B"C", instead of the two triangles that occur in
the statement of the theorem. The third triangle appears in the
course of proving, not just stating, the theorem (or, more precisely,
its converse). See, for instance, a note on a standard textbook for
further details.
(End of April 18, 2013 update.)
Update of April 14, 2013
See Baker's Proof (Edited for the Web) for a detailed explanation
of the above picture of Baker's Desargues-theorem frontispiece.
(End of April 14, 2013 update.)
Update of April 12, 2013
A different figure, from a site at National Tsing Hua University,
shows the three triangles of Baker's figure more clearly:
(End of update of April 12, 2013)
Update of April 13, 2013
Another in a series of figures illustrating
Desargues's theorem in light of Galois geometry:
See also the original Veblen-Young figure in context.
(End of update of April 13, 2013)
Rota's remarks, while perhaps not completely accurate, provide some context
for the above Desargues-Rosenhain connection. For some other context,
see the interplay in this journal between classical and finite geometry, i.e.
between Euclid and Galois.
For the recent context of the above finite-geometry version of Baker's Vol. I
frontispiece, see Sunday evening's finite-geometry version of Baker's Vol. IV
frontispiece, featuring the Göpel, rather than the Rosenhain, tetrads.
For a 1986 illustration of Göpel and Rosenhain tetrads (though not under
those names), see Picturing the Smallest Projective 3-Space.
In summary… the following classical-geometry figures
are closely related to the Galois geometry PG(3,2):
Volume I of Baker's Principles has a cover closely related to the Rosenhain tetrads in PG(3,2) |
Volume IV of Baker's Principles has a cover closely related to the Göpel tetrads in PG(3,2) |
Foundations (click to enlarge)
|
Higher Geometry (click to enlarge)
|
An update to Rosenhain and Göpel Tetrads in PG(3,2)
supplies some background from
Notes on Groups and Geometry, 1978-1986,
and from a 2002 AMS Transactions paper.
Angels & Demons meet Hudson Hawk
Dan Brown's four-elements diamond in Angels & Demons :
The Leonardo Crystal from Hudson Hawk :
Mathematics may be used to relate (very loosely)
Dan Brown's fanciful diamond figure to the fanciful
Leonardo Crystal from Hudson Hawk …
"Giving himself a head rub, Hawk bears down on
the three oddly malleable objects. He TANGLES
and BENDS and with a loud SNAP, puts them together,
forming the Crystal from the opening scene."
— A screenplay of Hudson Hawk
Happy birthday to Bruce Willis.
From the prologue to the new Joyce Carol Oates
novel Accursed—
"This journey I undertake with such anticipation
is not one of geographical space but one of Time—
for it is the year 1905 that is my destination.
1905!—the very year of the Curse."
Today's previous post supplied a fanciful link
between the Crosswicks Curse of Oates and
the Crosswicks tesseract of Madeleine L'Engle.
The Crosswicks Curse according to L'Engle
in her classic 1962 novel A Wrinkle in Time —
"There is such a thing as a tesseract."
A tesseract is a 4-dimensional hypercube that
(as pointed out by Coxeter in 1950) may also
be viewed as a 4×4 array (with opposite edges
identified).
Meanwhile, back in 1905…
For more details, see how the Rosenhain and Göpel tetrads occur naturally
in the diamond theorem model of the 35 lines of the 15-point projective
Galois space PG(3,2).
See also Conwell in this journal and George Macfeely Conwell in the
honors list of the Princeton Class of 1905.
The Moore correspondence may be regarded
as an analogy between the 35 partitions of an
8-set into two 4-sets and the 35 lines in the
finite projective space PG(3,2).
Closely related to the Moore correspondence
is a correspondence (or analogy) between the
15 2-subsets of a 6-set and the 15 points of PG(3,2).
An analogy between the two above analogies
is supplied by the exceptional outer automorphism of S6.
See…
The 2-subsets of a 6-set are the points of a PG(3,2),
Picturing outer automorphisms of S6, and
A linear complex related to M24.
(Background: Inscapes, Inscapes III: PG(2,4) from PG(3,2),
and Picturing the smallest projective 3-space.)
* For some context, see Analogies and
"Smallest Perfect Universe" in this journal.
Some webpages at finitegeometry.org discuss
group actions on Sylvester’s duads and synthemes.
Those pages are based on the square model of
PG(3,2) described in the 1980’s by Steven H. Cullinane.
A rival tetrahedral model of PG(3,2) was described
in the 1990’s by Burkard Polster.
Polster’s tetrahedral model appears, notably, in
a Mathematics Magazine article from April 2009—
Click for a pdf of the article.
Related material:
“The Religion of Cubism” (May 9, 2003) and “Art and Lies”
(Nov. 16, 2008).
This post was suggested by following the link in yesterday’s
Sunday School post to High White Noon, and the link from
there to A Study in Art Education, which mentions the date of
Rudolf Arnheim‘s death, June 9, 2007. This journal
on that date—
The Fink-Guy article was announced in a Mathematical
Association of America newsletter dated April 15, 2009.
Those who prefer narrative to mathematics may consult
a Log24 post from a few days earlier, “Where Entertainment is God”
(April 12, 2009), and, for some backstory, The Judas Seat
(February 16, 2007).
Powered by WordPress