Log24

Wednesday, September 23, 2020

Geometry of Even Subsets

Filed under: General — Tags: , — m759 @ 12:06 am

Various posts here on the geometry underlying the Mathieu group M24
are now tagged with the phrase “Geometry of Even Subsets.”

For example, a post with this diagram . . .

Friday, February 7, 2020

Correspondences

The 15  2-subsets of a 6-set correspond to the 15 points of PG(3,2).
(Cullinane, 1986*)

The 35  3-subsets of a 7-set correspond to the 35 lines of PG(3,2).
(Conwell, 1910)

The 56  3-subsets of an 8-set correspond to the 56 spreads of PG(3,2).
(Seidel, 1970)

Each correspondence above may have been investigated earlier than
indicated by the above dates , which are the earliest I know of.

See also Correspondences in this journal.

* The above 1986 construction of PG(3,2) from a 6-set also appeared
in the work of other authors in 1994 and 2002 . . .

Addendum at 5:09 PM suggested by an obituary today for Stephen Joyce:

See as well the word correspondences  in
"James Joyce and the Hermetic Tradition," by William York Tindall
(Journal of the History of Ideas , Jan. 1954).

Saturday, December 28, 2019

Caballo Blanco

Filed under: General — Tags: , , , — m759 @ 9:02 am

The key  is the cocktail that begins the proceedings.”

– Brian Harley, Mate in Two Moves

http://www.log24.com/log/pix18/180809-The_EIght-and-coordinates-for-PSL(2,7)-actions-500w.jpg

“Just as these lines that merge to form a key
Are as chess squares . . . .” — Katherine Neville, The Eight

“The complete projective group of collineations and dualities of the
[projective] 3-space is shown to be of order [in modern notation] 8! ….
To every transformation of the 3-space there corresponds
a transformation of the [projective] 5-space. In the 5-space, there are
determined 8 sets of 7 points each, ‘heptads’ ….”

— George M. Conwell, “The 3-space PG (3, 2) and Its Group,”
The Annals of Mathematics , Second Series, Vol. 11, No. 2 (Jan., 1910),
pp. 60-76.

“It must be remarked that these 8 heptads are the key  to an elegant proof….”

— Philippe Cara, “RWPRI Geometries for the Alternating Group A8,” in
Finite Geometries: Proceedings of the Fourth Isle of Thorns Conference
(July 16-21, 2000), Kluwer Academic Publishers, 2001, ed. Aart Blokhuis,
James W. P. Hirschfeld, Dieter Jungnickel, and Joseph A. Thas, pp. 61-97.

Sunday, December 22, 2019

M24 from the Eightfold Cube

Filed under: General — Tags: , , — m759 @ 12:01 pm

Exercise:  Use the Guitart 7-cycles below to relate the 56 triples
in an 8-set (such as the eightfold cube) to the 56 triangles in
a well-known Klein-quartic hyperbolic-plane tiling. Then use
the correspondence of the triples with the 56 spreads of PG(3,2)
to construct M24.

Click image below to download a Guitart PowerPoint presentation.

See as well earlier posts also tagged Triangles, Spreads, Mathieu.

Friday, December 20, 2019

Triangles, Spreads, Mathieu…

Filed under: General — Tags: , , — m759 @ 1:38 am

Continued.

An addendum for the post "Triangles, Spreads, Mathieu" of Oct. 29:

Wednesday, December 11, 2019

Miracle Octad Generator Structure

Miracle Octad Generator — Analysis of Structure

(Adapted from Eightfold Geometry, a note of April 28, 2010.
See also the recent post Geometry of 6 and 8.)

Sunday, December 8, 2019

Geometry of 6 and 8

Filed under: General — Tags: , , — m759 @ 4:03 am

Just as
the finite space PG(3,2) is
the geometry of the 6-set, so is
the finite space PG(5,2)
the geometry of the 8-set.*

Selah.

* Consider, for the 6-set, the 32
(16, modulo complementation)
0-, 2-, 4-, and 6-subsets,
and, for the 8-set, the 128
(64, modulo complementation)
0-, 2-, 4-, 6-, and 8-subsets.

Update of 11:02 AM ET the same day:

See also Eightfold Geometry, a note from 2010.

Friday, November 22, 2019

Triangles, Spreads, Mathieu …

Filed under: General — Tags: , — m759 @ 4:39 pm

Continued from October 29, 2019.

More illustrations (click to enlarge) —

Thursday, October 31, 2019

56 Triangles

The post “Triangles, Spreads, Mathieu” of October 29 has been
updated with an illustration from the Curtis Miracle Octad Generator.

Related material — A search in this journal for “56 Triangles.”

Tuesday, October 29, 2019

Triangles, Spreads, Mathieu

Filed under: General — Tags: , — m759 @ 8:04 pm

There are many approaches to constructing the Mathieu
group M24. The exercise below sketches an approach that
may or may not be new.

Exercise:

It is well-known that

 There are 56 triangles in an 8-set.
There are 56 spreads in PG(3,2).
The alternating group An is generated by 3-cycles.
The alternating group Ais isomorphic to GL(4,2).

Use the above facts, along with the correspondence
described below, to construct M24.

Some background —

A Log24 post of May 19, 2013, cites

Peter J. Cameron in a 1976 Cambridge U. Press
book — Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pp. 59 and 60.

See also a Google search for “56 triangles” “56 spreads” Mathieu.

Update of October 31, 2019 — A related illustration —

Update of November 2, 2019 —

See also p. 284 of Geometry and Combinatorics:
Selected Works of J. J. Seidel
  (Academic Press, 1991).
That page is from a paper published in 1970.

Update of December 20, 2019 —

Thursday, December 6, 2018

The Mathieu Cube of Iain Aitchison

This journal ten years ago today —

Surprise Package

Santa and a cube
From a talk by a Melbourne mathematician on March 9, 2018 —

The Mathieu group cube of Iain Aitchison (2018, Hiroshima)

The source — Talk II below —

Search Results

pdf of talk I  (March 8, 2018)

www.math.sci.hiroshima-u.ac.jp/branched/…/Aitchison-Hiroshima-2018-Talk1-2.pdf

Iain Aitchison. Hiroshima  University March 2018 … Immediate: Talk given last year at Hiroshima  (originally Caltech 2010).

pdf of talk II  (March 9, 2018)  (with model for M24)

www.math.sci.hiroshima-u.ac.jp/branched/files/…/Aitchison-Hiroshima-2-2018.pdf

Iain Aitchison. Hiroshima  University March 2018. (IRA: Hiroshima  03-2018). Highly symmetric objects II.

Abstract

www.math.sci.hiroshima-u.ac.jp/branched/files/2018/abstract/Aitchison.txt

Iain AITCHISON  Title: Construction of highly symmetric Riemann surfaces , related manifolds, and some exceptional objects, I, II Abstract: Since antiquity, some …

Related material — 

The 56 triangles of  the eightfold cube . . .

The Eightfold Cube: The Beauty of Klein's Simple Group

   Image from Christmas Day 2005.

Sunday, July 1, 2018

Deutsche Ordnung

The title is from a phrase spoken, notably, by Yul Brynner
to Christopher Plummer in the 1966 film “Triple Cross.”

Related structures —

Greg Egan’s animated image of the Klein quartic —

For a smaller tetrahedral arrangement, within the Steiner quadruple
system of order 8 modeled by the eightfold cube, see a book chapter
by Michael Huber of Tübingen

Steiner quadruple system in eightfold cube

For further details, see the June 29 post Triangles in the Eightfold Cube.

See also, from an April 2013 philosophical conference:

Abstract for a talk at the City University of New York:

The Experience of Meaning
Jan Zwicky, University of Victoria
09:00-09:40 Friday, April 5, 2013

Once the question of truth is settled, and often prior to it, what we value in a mathematical proof or conjecture is what we value in a work of lyric art: potency of meaning. An absence of clutter is a feature of such artifacts: they possess a resonant clarity that allows their meaning to break on our inner eye like light. But this absence of clutter is not tantamount to ‘being simple’: consider Eliot’s Four Quartets  or Mozart’s late symphonies. Some truths are complex, and they are simplified  at the cost of distortion, at the cost of ceasing to be  truths. Nonetheless, it’s often possible to express a complex truth in a way that precipitates a powerful experience of meaning. It is that experience we seek — not simplicity per se , but the flash of insight, the sense we’ve seen into the heart of things. I’ll first try to say something about what is involved in such recognitions; and then something about why an absence of clutter matters to them.

For the talk itself, see a YouTube video.

The conference talks also appear in a book.

The book begins with an epigraph by Hilbert

Friday, June 29, 2018

Triangles in the Eightfold Cube

From a post of July 25, 2008, “56 Triangles,” on the Klein quartic
and the eightfold cube

Baez’s discussion says that the Klein quartic’s 56 triangles
can be partitioned into 7 eight-triangle Egan ‘cubes’ that
correspond to the 7 points of the Fano plane in such a way
that automorphisms of the Klein quartic correspond to
automorphisms of the Fano plane. Show that the
56 triangles within the eightfold cube can also be partitioned
into 7 eight-triangle sets that correspond to the 7 points of the
Fano plane in such a way that (affine) transformations of the
eightfold cube induce (projective) automorphisms of the Fano plane.”

Related material from 1975 —

More recently

Wednesday, December 7, 2016

Spreads and Conwell’s Heptads

Filed under: General,Geometry — Tags: , , , — m759 @ 7:11 pm

For a concise historical summary of the interplay between
the geometry of an 8-set and that of a 16-set that is
involved in the the Miracle Octad Generator approach
to the large Mathieu group M24, see Section 2 of 

Alan R. Prince
A near projective plane of order 6 (pp. 97-105)
Innovations in Incidence Geometry
Volume 13 (Spring/Fall 2013).

This interplay, notably discussed by Conwell and
by Edge, involves spreads and Conwell’s heptads .

Update, morning of the following day (7:07 ET) — related material:

See also “56 spreads” in this  journal.

Friday, July 25, 2008

Friday July 25, 2008

56 Triangles

Greg Egan's drawing of the 56 triangles on the Klein quartic 3-hole torus

John Baez on
Klein's quartic:

"This wonderful picture was drawn by Greg Egan with the help of ideas from Mike Stay and Gerard Westendorp. It's probably the best way for a nonmathematician to appreciate the symmetry of Klein's quartic. It's a 3-holed torus, but drawn in a way that emphasizes the tetrahedral symmetry lurking in this surface! You can see there are 56 triangles: 2 for each of the tetrahedron's 4 corners, and 8 for each of its 6 edges."

Exercise:

The Eightfold Cube: The Beauty of Klein's Simple Group

Click on image for further details.

Note that if eight points are arranged
in a cube (like the centers of the
eight subcubes in the figure above),
there are 56 triangles formed by
the 8 points taken 3 at a time.

Baez's discussion says that the Klein quartic's 56 triangles can be partitioned into 7 eight-triangle Egan "cubes" that correspond to the 7 points of the Fano plane in such a way that automorphisms of the Klein quartic correspond to automorphisms of the Fano plane. Show that the 56 triangles within the eightfold cube can also be partitioned into 7 eight-triangle sets that correspond to the 7 points of the Fano plane in such a way that (affine) transformations of the eightfold cube induce (projective) automorphisms of the Fano plane.

Powered by WordPress