Sunday, July 28, 2013


Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

(Simplicity continued)

"Understanding a metaphor is like understanding a geometrical
truth. Features of various geometrical figures or of various contexts
are pulled into revealing alignment with one another by  the
demonstration or the metaphor.

What is 'revealed' is not that the alignment is possible; rather,
that the alignment is possible reveals the presence of already-
existing shapes or correspondences that lay unnoticed. To 'see' a
proof or 'get' a metaphor is to experience the significance of the
correspondence for what the thing, concept, or figure is ."

— Jan Zwicky, Wisdom & Metaphor , page 36 (left)

Zwicky illustrates this with Plato's diamond figure
​from the Meno  on the facing page— her page 36 (right).

A more sophisticated geometrical figure—

Galois-geometry key to
Desargues' theorem:

   D   E   F
 S'  P Q R
 S  P' Q' R'
 O  P1 Q1 R1

For an explanation, see 
Classical Geometry in Light of Galois Geometry.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress