Saturday, March 7, 2020

The “Octad Group” as Symmetries of the 4×4 Square

Filed under: General — m759 @ 6:32 PM

From “Mathieu Moonshine and Symmetry Surfing” —

(Submitted on 29 Sep 2016, last revised 22 Jan 2018)
by Matthias R. Gaberdiel (1), Christoph A. Keller (2),
and Hynek Paul (1)

(1)  Institute for Theoretical Physics, ETH Zurich
(2)  Department of Mathematics, ETH Zurich

https://arxiv.org/abs/1609.09302v2 —

“This presentation of the symmetry groups Gi  is
particularly well-adapted for the symmetry surfing
philosophy. In particular it is straightforward to
combine them into an overarching symmetry group G
by combining all the generators. The resulting group is
the so-called octad group

G = (Z2)4  A8 .

It can be described as a maximal subgroup of M24
obtained by the setwise stabilizer of a particular
‘reference octad’ in the Golay code, which we take
to be O= {3,5,6,9,15,19,23,24} ∈ 𝒢24. The octad
subgroup is of order 322560, and its index in M24
is 759, which is precisely the number of
different reference octads one can choose.”

This “octad group” is in fact the symmetry group of the affine 4-space over GF(2),
so described in 1979 in connection not with the Golay code but with the geometry
of the 4×4 square.* Its nature as an affine group acting on the Golay code was
known long before 1979, but its description as an affine group acting on
the 4×4 square may first have been published in connection with the
Cullinane diamond theorem and Abstract 79T-A37, “Symmetry invariance in a
diamond ring
,” by Steven H. Cullinane in Notices of the American Mathematical
, February 1979, pages A-193, 194.

* The Galois tesseract .

Update of March 15, 2020 —

Conway and Sloane on the “octad group” in 1993 —

Sunday, September 8, 2019

The Child-Resistant 4×4

Filed under: General — m759 @ 7:03 AM

Thursday, June 27, 2019

Group Actions on the 4x4x4 Cube

Filed under: General — Tags: — m759 @ 6:23 AM

For affine  group actions, see Ex Fano Appollinis  (June 24)
and Solomon's Cube.

For one approach to Mathieu  group actions on a 24-cube subset
of the 4x4x4 cube, see . . .

For a different sort of Mathieu cube, see Aitchison.

Thursday, February 7, 2019

Geometry of the 4×4 Square: The Kummer Configuration

Filed under: General — Tags: , — m759 @ 12:00 AM

From the series of posts tagged Kummerhenge

A Wikipedia article relating the above 4×4 square to the work of Kummer —

A somewhat more interesting aspect of the geometry of the 4×4 square
is its relationship to the 4×6 grid underlying the Miracle Octad Generator
(MOG) of R. T. Curtis.  Hudson's 1905 classic Kummer's Quartic Surface
deals with the Kummer properties above and also foreshadows, without
explicitly describing, the finite-geometry properties of the 4×4 square as
a finite affine 4-space — properties that are of use in studying the Mathieu
group M24  with the aid of the MOG.

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: General,Geometry — Tags: , , , — m759 @ 10:00 PM

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Friday, January 17, 2014

The 4×4 Relativity Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 PM

The sixteen-dot square array in yesterday’s noon post suggests
the following remarks.

“This is the relativity problem:  to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The 1977 matrix Q is echoed in the following from 2002—

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

A different representation of Cullinane’s 1977 square model of the
16-point affine geometry over the two-element Galois field GF(2)
is supplied by Conway and Sloane in Sphere Packings, Lattices and Groups   
(first published in 1988) :

IMAGE- The Galois tesseract as a four-dimensional vector space, from a diagram by Conway and Sloane in 'Sphere Packings, Lattices, and Groups'

Here a, b, c, d   are basis vectors in the vector 4-space over GF(2).
(For a 1979 version of this vector space, see AMS Abstract 79T-A37.)

See also a 2011 publication of the Mathematical Association of America —

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

Friday, June 12, 2020

Bullshit Studies: “Hyperseeing”

Filed under: General — m759 @ 12:13 AM

In memoriam —

Friedman co-edited the ISAMA journal  Hyperseeing .  See also . . .

See too the other articles in Volume 40 of  Kybernetes .

Related material —

Compare and contrast the discussion of the geometry
of the 4×4 square
in the diamond theorem (1976) with
Nat Friedman’s treatment of the same topic in 2001 —

Thursday, May 28, 2020

Finite Geometry at GitHub

Filed under: General — Tags: , , — m759 @ 5:04 PM

My website on finite geometry is now available
on GitHub at http://m759.github.io/ . The part
of greatest interest to coders is also at
https://repl.it/@m759/View-4x4x4#index.html .

Wednesday, February 19, 2020

Aitchison’s Octads

Filed under: General — Tags: , — m759 @ 11:36 AM

The 759 octads of the Steiner system S(5,8,24) are displayed
rather neatly in the Miracle Octad Generator of R. T. Curtis.

A March 9, 2018, construction by Iain Aitchison* pictures the
759 octads on the faces of a cube , with octad elements the
24 edges of a  cuboctahedron :

The Curtis octads are related to symmetries of the square.

See my webpage "Geometry of the 4×4 square" from March 2004.
Aitchison's p. 42 slide includes an illustration from that page —

Aitchison's  octads are instead related to symmetries of the cube.

Note that essentially the same model as Aitchison's can be pictured 
by using, instead of the 24 edges of a cuboctahedron, the 24 outer 
faces of subcubes in the eightfold cube .

The Eightfold Cube: The Beauty of Klein's Simple Group

   Image from Christmas Day 2005.

See also Aitchison in this journal.


Monday, February 10, 2020

Notes for Doctor Sleep

Filed under: General — Tags: , — m759 @ 2:40 PM

Or:  Plato's Cave.

See also this  journal on November 9, 2003

A post on Wittgenstein's "counting pattern"

4x4 array of dots

Tuesday, January 28, 2020

Very Stable Kool-Aid

Filed under: General — Tags: — m759 @ 2:16 PM

Two of the thumbnail previews
from yesterday's 1 AM  post

"Hum a few bars"

"For 6 Prescott Street"

Further down in the "6 Prescott St." post, the link 5 Divinity Avenue
leads to

A Letter from Timothy Leary, Ph.D., July 17, 1961

Harvard University
Department of Social Relations
Center for Research in Personality
Morton Prince House
5 Divinity Avenue
Cambridge 38, Massachusetts

July 17, 1961

Dr. Thomas S. Szasz
c/o Upstate Medical School
Irving Avenue
Syracuse 10, New York

Dear Dr. Szasz:

Your book arrived several days ago. I've spent eight hours on it and realize the task (and joy) of reading it has just begun.

The Myth of Mental Illness is the most important book in the history of psychiatry.

I know it is rash and premature to make this earlier judgment. I reserve the right later to revise and perhaps suggest it is the most important book published in the twentieth century.

It is great in so many ways–scholarship, clinical insight, political savvy, common sense, historical sweep, human concern– and most of all for its compassionate, shattering honesty.

. . . .

The small Morton Prince House in the above letter might, according to
the above-quoted remarks by Corinna S. Rohse, be called a "jewel box."
Harvard moved it in 1978 from Divinity Avenue to its current location at
6 Prescott Street.

Related "jewel box" material for those who
prefer narrative to mathematics —

"In The Electric Kool-Aid Acid Test , Tom Wolfe writes about encountering 
'a young psychologist,' 'Clifton Fadiman’s nephew, it turned out,' in the
waiting room of the San Mateo County jail. Fadiman and his wife were
'happily stuffing three I-Ching coins into some interminable dense volume*
of Oriental mysticism' that they planned to give Ken Kesey, the Prankster-
in-Chief whom the FBI had just nabbed after eight months on the lam.
Wolfe had been granted an interview with Kesey, and they wanted him to
tell their friend about the hidden coins. During this difficult time, they
explained, Kesey needed oracular advice."

— Tim Doody in The Morning News  web 'zine on July 26, 2012**

Oracular advice related to yesterday evening's
"jewel box" post …

A 4-dimensional hypercube H (a tesseract ) has 24 square
2-dimensional faces
.  In its incarnation as a Galois  tesseract
(a 4×4 square array of points for which the appropriate transformations
are those of the affine 4-space over the finite (i.e., Galois) two-element
field GF(2)), the 24 faces transform into 140 4-point "facets." The Galois 
version of H has a group of 322,560 automorphisms. Therefore, by the
orbit-stabilizer theorem, each of the 140 facets of the Galois version has
a stabilizer group of  2,304 affine transformations.

Similar remarks apply to the I Ching  In its incarnation as  
a Galois hexaract , for which the symmetry group — the group of
affine transformations of the 6-dimensional affine space over GF(2) —
has not 322,560 elements, but rather 1,290,157,424,640.

* The volume Wolfe mentions was, according to Fadiman, the I Ching.

** See also this  journal on that date — July 26, 2012.

Saturday, November 16, 2019

Logic in the Spielfeld

Filed under: General — Tags: , — m759 @ 8:03 PM

"A great many other properties of  E-operators
have been found, which I have not space
to examine in detail."

— Sir Arthur EddingtonNew Pathways in Science ,
Cambridge University Press, 1935, page 271.

The following 4×4 space, from a post of Aug. 30, 2015,
may help:

The next time she visits an observatory, Emma Stone
may like to do a little dance to

'The Eddington Song'

Tuesday, October 8, 2019

Kummer at Noon

Filed under: General — Tags: — m759 @ 12:00 PM

The Hudson array mentioned above is as follows —

See also Whitehead and the
Relativity Problem
(Sept. 22).

For coordinatization  of a 4×4
array, see a note from 1986
in the Feb. 26 post Citation.

Saturday, September 14, 2019

Landscape Art

Filed under: General — Tags: — m759 @ 11:18 AM

From "Six Significant Landscapes," by Wallace Stevens (1916) —

 Rationalists, wearing square hats,
 Think, in square rooms,
 Looking at the floor,
 Looking at the ceiling.
 They confine themselves
 To right-angled triangles.
 If they tried rhomboids,
 Cones, waving lines, ellipses —
 As, for example, the ellipse of the half-moon —
 Rationalists would wear sombreros.

The mysterious 'ellipse of the half-moon'?

But see "cones, waving lines, ellipses" in Kummer's Quartic Surface 
(by R. W. H. T. Hudson, Cambridge University Press, 1905) and their
intimate connection with the geometry of the 4×4 square.

Sunday, September 8, 2019

A Harvard*-Resistant Book Search

Filed under: General — m759 @ 7:36 PM

(The above title was suggested by today's "Child-Resistant 4×4.")

* Specifically, resistant to the above revelation attributed to Barbara Johnson
   by  Harvard University Press

   "Deconstruction calls attention to gaps and reveals
    that their claims upon us are fraudulent."

    A related search at Amazon.com:

Barbara Johnson explains Lacan:

" The 'gap' in the real is the leap 
from the empirical to 
the signifying articulation 
of the object of desire
it cannot be perceived empirically. 
It is 'nothing.' "

Persons and Things , paperback (2010),
  Harvard University Press, page 213

Saturday, September 7, 2019

Fashion Calendar

Filed under: General — m759 @ 9:12 PM

"New York Fashion Week is scheduled Friday, September 6 through
Wednesday, September 11. View the preliminary schedule here. 

UPDATED AS OF: Thu 08/29/19"

— https://cfda.com/fashion-calendar/official-nyfw-schedule

View also a fashion photo from this  journal on 08/29/19 —

I do not know where the above tank top can be purchased.

Thursday, August 29, 2019

As Well

Filed under: General — Tags: , — m759 @ 12:45 PM

For some backstory, see 
http://m759.net/wordpress/?s="I+Ching"+48+well .

See as well  "elegantly packaged" in this journal.

"Well" in written Chinese is the hashtag symbol,
i.e., the framework of a 3×3 array.

My own favorite 3×3 array is the ABC subsquare
at lower right in the figure below —

'Desargues via Rosenhain'- April 1, 2013- The large Desargues configuration mapped canonically to the 4x4 square


For Carol Danvers* (Battle Angel )**

Filed under: General — Tags: — m759 @ 12:00 AM

* See Wikipedia and the previous post.

** See Into the Sunset (Aug. 24).

Saturday, July 6, 2019

Mythos and Logos

Filed under: General — m759 @ 8:56 AM



The six square patterns which, applied as above to the faces of a cube,
form "diamond" and "whirl" patterns, appear also in the logo of a coal-
mining company —


Related material —

Monday, June 3, 2019

Jar Story

Filed under: General — Tags: , — m759 @ 3:41 PM


  ". . . Only by the form, the pattern,
Can words or music reach
The stillness, as a Chinese jar still
Moves perpetually in its stillness.”

— T. S. Eliot, Four Quartets

From Writing Chinese Characters:

“It is practical to think of a character centered
within an imaginary square grid . . . .
The grid can be subdivided, usually to
9 or 16 squares. . . ."

The image “http://www.log24.com/log/pix04B/041119-ZhongGuo.jpg” cannot be displayed, because it contains errors.

These “Chinese jars” (as opposed to their contents)
are as follows:    

Grids, 3x3 and 4x4 .

See as well Eliot's 1922 remarks on "extinction of personality"
and the phrase "ego-extinction" in Weyl's Philosophy of Mathematics

Saturday, May 4, 2019

The Chinese Jars of Shing-Tung Yau

Filed under: General — Tags: , , — m759 @ 11:00 AM

The title refers to Calabi-Yau spaces.

T. S. Eliot —

Four Quartets

. . . Only by the form, the pattern,
Can words or music reach
The stillness, as a Chinese jar still
Moves perpetually in its stillness.

A less "cosmic" but still noteworthy code — The Golay code.

This resides in a 12-dimensional space over GF(2).

Related material from Plato and R. T. Curtis

Counting symmetries with the orbit-stabilizer theorem

A related Calabi-Yau "Chinese jar" first described in detail in 1905

Illustration of K3 surface related to Mathieu moonshine

A figure that may or may not be related to the 4x4x4 cube that
holds the classical  Chinese "cosmic code" — the I Ching


Monday, March 11, 2019

Ant-Man Meets Doctor Strange

Filed under: General — m759 @ 1:22 PM

IMAGE- Concepts of Space

The 4×4 square may also be called the Galois Tesseract .
By analogy, the 4x4x4 cube may be called the Galois Hexeract .

"Think outside the tesseract.

Thursday, February 28, 2019

Wikipedia Scholarship

Filed under: General — Tags: , , — m759 @ 12:31 PM

Cullinane's Square Model of PG(3,2)

Besides omitting the name Cullinane, the anonymous Wikipedia author
also omitted the step of representing the hypercube by a 4×4 array —
an array called in this  journal a Galois  tesseract.

Tuesday, February 26, 2019


Filed under: General — Tags: , , , — m759 @ 12:00 PM

Some related material in this journal — See a search for k6.gif.

Some related material from Harvard —

Elkies's  "15 simple transpositions" clearly correspond to the 15 edges of
the complete graph K6 and to the 15  2-subsets of a 6-set.

For the connection to PG(3,2), see Finite Geometry of the Square and Cube.

The following "manifestation" of the 2-subsets of a 6-set might serve as
the desired Wikipedia citation —

See also the above 1986 construction of PG(3,2) from a 6-set
in the work of other authors in 1994 and 2002 . . .

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Wednesday, December 12, 2018

An Inscape for Douthat

Some images, and a definition, suggested by my remarks here last night
on Apollo and Ross Douthat's remarks today on "The Return of Paganism" —

Detail of Feb. 20, 1986, note by Steven H. Cullinane on Weyl's 'relativity problem'

Kibler's 2008 'Variations on a theme' illustrated.

In finite geometry and combinatorics,
an inscape  is a 4×4 array of square figures,
each figure picturing a subset of the overall 4×4 array:


Related material — the phrase
"Quantum Tesseract Theorem" and  

A.  An image from the recent
      film "A Wrinkle in Time" — 

B.  A quote from the 1962 book —

"There's something phoney
in the whole setup, Meg thought.
There is definitely something rotten
in the state of Camazotz."

Thursday, November 22, 2018

Rosenhain and Göpel Meet Kummer in Projective 3-Space

Filed under: General,Geometry — Tags: — m759 @ 2:07 PM

For further details, see finitegeometry.org/sc/35/hudson.html.

Geometric Incarnation

Filed under: General,Geometry — Tags: — m759 @ 6:00 AM

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

Note also the four 4×4 arrays surrounding the central diamond
in the chi  of the chi-rho  page of the Book of Kells

From a Log24 post
of March 17, 2012

"Interlocking, interlacing, interweaving"

— Condensed version of page 141 in Eddington's
1939 Philosophy of Physical Science

Thursday, November 8, 2018

Geometry Lesson

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 12:00 AM

From "The Trials of Device" (April 24, 2017) —

Wittgenstein's pentagram and 4x4 'counting-pattern'

Pentagon with pentagram    

See also Wittgenstein in a search for "Ein Kampf " in this journal.

Monday, July 16, 2018

Greatly Exaggerated Report

Filed under: General,Geometry — Tags: — m759 @ 1:21 PM

"The novel has a parallel narrative that eventually
converges with the main story."

— Wikipedia on a book by Foer's novelist brother

Public Squares

An image from the online New York Times 
on the date, July 6,
of  the above Atlantic  article —

An image from "Blackboard Jungle," 1955 —

IMAGE- Richard Kiley in 'Blackboard Jungle,' with grids and broken records

"Through the unknown, remembered gate . . . ."

— T. S. Eliot, Four Quartets

Saturday, July 14, 2018

Expanding the Spiel

Filed under: General,Geometry — m759 @ 1:15 PM


Cube Dance

The walkerart.org passage above is from Feb. 17, 2011.

See also this  journal on Feb. 17, 2011

"…  Only by the form, the pattern,      
Can words or music reach
The stillness…."

— T. S. Eliot,
Four Quartets

For further details, see Time Fold.

Thursday, July 12, 2018

Kummerhenge Illustrated

Filed under: General,Geometry — Tags: , — m759 @ 11:00 AM


“… the utterly real thing in writing is the only thing that counts…."

— Maxwell Perkins to Ernest Hemingway, Aug. 30, 1935

"Omega is as real  as we need it to be."

— Burt Lancaster in "The Osterman Weekend"

Thursday, July 5, 2018


Filed under: General,Geometry — Tags: — m759 @ 1:44 PM

Some context for what Heidegger called
das Spiegel-Spiel des Gevierts

From Helen Lane's translation of El Mono Gramático ,
a book by Nobel winner Octavio Paz first published
in Barcelona by Seix Barral in 1974 —

Simultaneous perspective does not look upon language as a path because it is not the search for meaning that orients it. Poetry does not attempt to discover what there is at the end of the road; it conceives of the text as a series of transparent strata within which the various parts—the different verbal and semantic currents—produce momentary configurations as they intertwine or break apart, as they reflect each other or efface each other. Poetry contemplates itself, fuses with itself, and obliterates itself in the crystallizations of language. Apparitions, metamorphoses, volatilizations, precipitations of presences. These configurations are crystallized time: although they are perpetually in motion, they always point to the same hour—the hour of change. Each one of them contains all the others, each one is inside the others: change is only the oft-repeated and ever-different metaphor of identity.

— Paz, Octavio. The Monkey Grammarian 
(Kindle Locations 1185-1191). 
Arcade Publishing. Kindle Edition. 

A related 1960 meditation from Claude Lévi-Strauss taken from a 
Log24 post of St. Andrew's Day 2017,  "The Matrix for Quantum Mystics":

The Matrix of Lévi-Strauss —

"In Vol. I of Structural Anthropology , p. 209, I have shown that
this analysis alone can account for the double aspect of time
representation in all mythical systems: the narrative is both
'in time' (it consists of a succession of events) and 'beyond'
(its value is permanent)." — Claude Lévi-Strauss

I prefer the earlier, better-known, remarks on time by T. S. Eliot
in Four Quartets , and the following four quartets
(from The Matrix Meets the Grid) —


Monday, July 2, 2018

In Memoriam

Filed under: General,Geometry — m759 @ 9:10 PM

This post is in memory of dancer-choreographer Gillian Lynne,
who reportedly died at 92 on Sunday, July 1, 2018.

For a scene from her younger days, click on Errol Flynn above.
The cube contemplated by Flynn is from Log24 on Sunday.

"This is how we enter heaven, enter dancing."
— Paraphrase of Lorrie Moore (See Oct. 18, 2003.)

Saturday, June 23, 2018

Plan 9 from Inner Space

Filed under: General,Geometry — Tags: , — m759 @ 9:00 AM

From Nanavira Thera, "Early Letters," in Seeking the Path —

"nine  possibilities arising quite naturally" —

Compare and contrast with Hudson's parametrization of the
4×4 square by means of 0 and the 15  2-subsets of a 6-set —

Monday, May 28, 2018


Filed under: General,Geometry — m759 @ 1:16 PM

A piece co-written by Ivanov, the author noted in the previous post, was cited
in my "Geometry of the 4×4 Square."

Also cited there —  A paper by Pasini and Van Maldeghem that mentions
the Klein quadric.

Those sources suggested a search —

The link is to some geometry recently described by Tabachnikov
that seems rather elegant:

For another, more direct, connection to the geometry of the 4×4 square,
see Richard Evan Schwartz in this  journal.

This same Schwartz appears also in the above Tabachnikov paper:

Saturday, April 7, 2018


Filed under: General,Geometry — Tags: , — m759 @ 11:47 AM

The FBI holding cube in "The Blacklist" —

" 'The Front' is not the whole story . . . ."

— Vincent Canby, New York Times  film review, 1976,
     as quoted in Wikipedia.

See also Solomon's Cube in this  journal.

IMAGE- 'Solomon's Cube'

Webpage demonstrating symmetries of 'Solomon's Cube'

Some may view the above web page as illustrating the
Glasperlenspiel  passage quoted here in Summa Mythologica 

“"I suddenly realized that in the language, or at any rate
in the spirit of the Glass Bead Game, everything actually
was all-meaningful, that every symbol and combination of
symbols led not hither and yon, not to single examples,
experiments, and proofs, but into the center, the mystery
and innermost heart of the world, into primal knowledge.
Every transition from major to minor in a sonata, every
transformation of a myth or a religious cult, every classical
or artistic formulation was, I realized in that flashing moment,
if seen with a truly meditative mind, nothing but a direct route
into the interior of the cosmic mystery, where in the alternation
between inhaling and exhaling, between heaven and earth,
between Yin and Yang, holiness is forever being created.”

A less poetic meditation on the above 4x4x4 design cube —

"I saw that in the alternation between front and back,
between top and bottom, between left and right,
symmetry is forever being created."

See also a related remark by Lévi-Strauss in 1955

"…three different readings become possible:
left to right, top to bottom, front to back."

Saturday, February 24, 2018

The Ugly Duck

Filed under: General,Geometry — Tags: — m759 @ 7:11 PM

"What of the night
That lights and dims the stars?
Do you know, Hans Christian,
Now that you see the night?"

— The concluding lines of
"Sonatina to Hans Christian,"
by Wallace Stevens
(in Harmonium  (second edition, 1931))

From "Mathmagic Land" (May 22, 2015)

Donald Duck with Pythagorean pentagram on hand

Donald in Mathmagic Land

From "The Trials of Device" (April 24, 2017)

Wittgenstein's pentagram and 4x4 'counting-pattern'

Pentagon with pentagram    

Saturday, February 17, 2018

The Binary Revolution

Filed under: General,Geometry — Tags: , , — m759 @ 5:00 PM

Michael Atiyah on the late Ron Shaw

Phrases by Atiyah related to the importance in mathematics
of the two-element Galois field GF(2) —

  • “The digital revolution based on the 2 symbols (0,1)”
  • “The algebra of George Boole”
  • “Binary codes”
  • “Dirac’s spinors, with their up/down dichotomy”

These phrases are from the year-end review of Trinity College,
Cambridge, Trinity Annual Record 2017 .

I prefer other, purely geometric, reasons for the importance of GF(2) —

  • The 2×2 square
  • The 2x2x2 cube
  • The 4×4 square
  • The 4x4x4 cube

See Finite Geometry of the Square and Cube.

See also today’s earlier post God’s Dice and Atiyah on the theology of
(Boolean) algebra vs. (Galois) geometry:

Friday, February 16, 2018

Two Kinds of Symmetry

Filed under: General,Geometry — m759 @ 11:29 PM

The Institute for Advanced Study (IAS) at Princeton in its Fall 2015 Letter 
revived "Beautiful Mathematics" as a title:

This ugly phrase was earlier used by Truman State University
professor Martin Erickson as a book title. See below. 

In the same IAS Fall 2015 Letter appear the following remarks
by Freeman Dyson —

". . . a special case of a much deeper connection that Ian Macdonald 
discovered between two kinds of symmetry which we call modular and affine.
The two kinds of symmetry were originally found in separate parts of science,
modular in pure mathematics and affine in physics. Modular symmetry is
displayed for everyone to see in the drawings of flying angels and devils
by the artist Maurits Escher. Escher understood the mathematics and got the
details right. Affine symmetry is displayed in the peculiar groupings of particles
created by physicists with high-energy accelerators. The mathematician
Robert Langlands was the first to conjecture a connection between these and
other kinds of symmetry. . . ." (Wikipedia link added.)

The adjective "modular"  might aptly be applied to . . .

The adjective "affine"  might aptly be applied to . . .

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

The geometry of the 4×4 square combines modular symmetry
(i.e., related to theta functions) with the affine symmetry above.

Hudson's 1905 discussion of modular symmetry (that of Rosenhain
tetrads and Göpel tetrads) in the 4×4 square used a parametrization
of that square by the digit 0 and the fifteen 2-subsets of a 6-set, but 
did not discuss the 4×4 square as an affine space.

For the connection of the 15 Kummer modular 2-subsets with the 16-
element affine space over the two-element Galois field GF(2), see my note
of May 26, 1986, "The 2-subsets of a 6-set are the points of a PG(3,2)" —

— and the affine structure in the 1979 AMS abstract
"Symmetry invariance in a diamond ring" —

For some historical background on the symmetry investigations by
Dyson and Macdonald, see Dyson's 1972 article "MIssed Opportunities."

For Macdonald's own  use of the words "modular" and "affine," see
Macdonald, I. G., "Affine Lie algebras and modular forms," 
Séminaire N. Bourbaki , Vol. 23 (1980-1981), Talk no. 577, pp. 258-276.

Thursday, December 21, 2017

For Winter Solstice 2017

Filed under: G-Notes,General,Geometry — m759 @ 10:30 AM

A review —

Some context —

Webpage demonstrating symmetries of 'Solomon's Cube'

Friday, December 1, 2017

The Architect and the Matrix

Filed under: General,Geometry — m759 @ 1:00 PM

In memory of Yale art historian Vincent Scully, who reportedly
died at 97 last night at his home in Lynchburg, Va., some remarks
from the firm of architect John Outram and from Scully —

Update from the morning of December 2 —

The above 3×3 figure is of course not unrelated to
the 4×4 figure in The Matrix for Quantum Mystics:


See as well Tsimtsum in this journal.

Harold Bloom on tsimtsum as sublimation

Thursday, November 30, 2017

The Matrix for Quantum Mystics

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 10:29 PM

Scholia on the title — See Quantum + Mystic in this journal.

The Matrix of Lévi-Strauss

"In Vol. I of Structural Anthropology , p. 209, I have shown that
this analysis alone can account for the double aspect of time
representation in all mythical systems: the narrative is both
'in time' (it consists of a succession of events) and 'beyond'
(its value is permanent)." — Claude Lévi-Strauss, 1976

I prefer the earlier, better-known, remarks on time by T. S. Eliot
in Four Quartets , and the following four quartets (from
The Matrix Meets the Grid) —


From a Log24 post of June 26-27, 2017:

A work of Eddington cited in 1974 by von Franz

See also Dirac and Geometry and Kummer in this journal.

Ron Shaw on Eddington's triads "associated in conjugate pairs" —

For more about hyperbolic  and isotropic  lines in PG(3,2),
see posts tagged Diamond Theorem Correlation.

For Shaw, in memoriam — See Contrapuntal Interweaving and The Fugue.

Friday, November 24, 2017

The Matrix Meets the Grid

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 2:00 PM

The Matrix —

  The Grid —

  Picturing the Witt Construction

     "Read something that means something." — New Yorker  ad

Tuesday, October 24, 2017

Visual Insight

Filed under: G-Notes,General,Geometry — m759 @ 1:00 PM

The most recent post in the "Visual Insight" blog of the
American Mathematical Society was by John Baez on Jan. 1, 2017

A visually  related concept — See Solomon's Cube in this  journal.
Chronologically  related — Posts now tagged New Year's Day 2017.
Solomon's cube is the 4x4x4 case of the diamond theorem — 

Saturday, October 14, 2017

In Principio:

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Red October  continues …

See also Molloy in this  journal.

Related art  theory —

Geometry of the 4×4 Square 

Tuesday, September 5, 2017

Florence 2001

Filed under: General,Geometry — Tags: — m759 @ 4:44 AM

Or:  Coordinatization for Physicists

This post was suggested by the link on the word "coordinatized"
in the previous post.

I regret that Weyl's term "coordinatization" perhaps has
too many syllables for the readers of recreational mathematics —
for example, of an article on 4×4 magic squares by Conway, Norton,
and Ryba to be published today by Princeton University Press.

Insight into the deeper properties of such squares unfortunately
requires both the ability to learn what a "Galois field" is and the
ability to comprehend seven-syllable words.

Sunday, September 3, 2017

Broomsday Revisited

Filed under: General,Geometry — m759 @ 9:29 AM

Ivars Peterson in 2000 on a sort of conceptual art —

" Brill has tried out a variety of grid-scrambling transformations
to see what happens. Aesthetic sensibilities govern which
transformation to use, what size the rectangular grid should be,
and which iteration to look at, he says. 'Once a fruitful
transformation, rectangle size, and iteration number have been
found, the artist is in a position to create compelling imagery.' "

"Scrambled Grids," August 28, 2000

Or not.

If aesthetic sensibilities lead to a 23-cycle on a 4×6 grid, the results
may not be pretty —

From "Geometry of the 4×4 Square."

See a Log24 post, Noncontinuous Groups, on Broomsday 2009.

Saturday, September 2, 2017

A Touchstone

Filed under: General,Geometry — Tags: , — m759 @ 10:16 PM

From a paper by June Barrow-Green and Jeremy Gray on the history of geometry at Cambridge, 1863-1940

This post was suggested by the names* (if not the very abstruse
concepts ) in the Aug. 20, 2013, preprint "A Panoramic Overview
of Inter-universal Teichmuller Theory
," by S. Mochizuki.

* Specifically, Jacobi  and Kummer  (along with theta functions).
I do not know of any direct  connection between these names'
relevance to the writings of Mochizuki and their relevance
(via Hudson, 1905) to my own much more elementary studies of
the geometry of the 4×4 square.

Thursday, August 31, 2017

A Conway-Norton-Ryba Theorem

Filed under: General,Geometry — Tags: — m759 @ 1:40 PM

In a book to be published Sept. 5 by Princeton University Press,
John Conway, Simon Norton,  and Alex Ryba present the following
result on order-four magic squares —

A monograph published in 1976, “Diamond Theory,” deals with
more general 4×4 squares containing entries from the Galois fields
GF(2), GF(4), or GF(16).  These squares have remarkable, if not
“magic,” symmetry properties.  See excerpts in a 1977 article.

See also Magic Square and Diamond Theorem in this  journal.

Wednesday, July 26, 2017


Filed under: General — m759 @ 6:01 PM

See 4x4x4 in this journal.  See also


Friday, July 14, 2017

March 26, 2006 (continued)

Filed under: General — m759 @ 7:38 PM

4x4 array of Psychonauts images

The above image, posted here on March 26, 2006, was
suggested by this morning's post "Black Art" and by another
item from that date in 2006 —

Thursday, July 6, 2017

A Pleasing Situation

Filed under: General,Geometry — m759 @ 9:20 PM

The 4x4x4 cube is the natural setting
for the finite version of the Klein quadric
and the eight "heptads" discussed by
Conwell in 1910.

As R. Shaw remarked in 1995, 
"The situation is indeed quite pleasing."

Wednesday, June 21, 2017

Concept and Realization

Filed under: General,Geometry — Tags: — m759 @ 1:12 PM

Remark on conceptual art quoted in the previous post

"…he’s giving the concept but not the realization."

A concept See a note from this date in 1983:

IMAGE- 'Solomon's Cube'

A realization  

Webpage demonstrating symmetries of 'Solomon's Cube'

Not the best possible realization, but enough for proof of concept .

Tuesday, May 23, 2017

Pursued by a Biplane

Filed under: General,Geometry — Tags: — m759 @ 9:41 PM

The Galois Tesseract as a biplane —

Cary Grant in 'North by Northwest'

Saturday, May 20, 2017

van Lint and Wilson Meet the Galois Tesseract*

Filed under: General,Geometry — Tags: — m759 @ 12:12 AM

Click image to enlarge.

The above 35 projective lines, within a 4×4 array —

The above 15 projective planes, within a 4×4 array (in white) —

* See Galois Tesseract  in this journal.

Monday, May 15, 2017

Appropriation at MoMA

Filed under: General,Geometry — m759 @ 1:14 PM

For example, Plato's diamond as an object to be transformed —

Plato's diamond in Jowett's version of the Meno dialogue

Versions of the transformed object —

See also The 4×4 Relativity Problem in this journal.

Wednesday, April 26, 2017

A Tale Unfolded

Filed under: General,Geometry — Tags: , , — m759 @ 2:00 AM

A sketch, adapted tonight from Girl Scouts of Palo Alto

From the April 14 noon post High Concept

From the April 14 3 AM post Hudson and Finite Geometry

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

From the April 24 evening post The Trials of Device

Pentagon with pentagram    

Note that Hudson's 1905 "unfolding" of even and odd puts even on top of
the square array, but my own 2013 unfolding above puts even at its left.

Monday, April 24, 2017

The Trials of Device

Filed under: General,Geometry — Tags: , , — m759 @ 3:28 PM

"A blank underlies the trials of device"
— Wallace Stevens, "An Ordinary Evening in New Haven" (1950)

A possible meaning for the phrase "the trials of device" —

See also Log24 posts mentioning a particular device, the pentagram .

For instance —

Wittgenstein's pentagram and 4x4 'counting-pattern'

Related figures

Pentagon with pentagram    

Friday, April 21, 2017

Music Box

Filed under: General,Geometry — Tags: , — m759 @ 3:07 PM

Guitart et al. on 'box' theory of creativity

A box from the annus mirabilis

See Hudson’s 4×4 array.

Related material —

Friday, April 14, 2017

Hudson and Finite Geometry

Filed under: General,Geometry — Tags: , — m759 @ 3:00 AM

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

The above four-element sets of black subsquares of a 4×4 square array 
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .

Hudson did not  view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective

In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.

This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements.  This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.

The space was later described in the following —

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Monday, April 3, 2017

Even Core

Filed under: General,Geometry — Tags: , — m759 @ 9:16 PM

4x4x4 gray cube


Sunday, March 5, 2017

The Omega Matrix

Filed under: General,Geometry — Tags: — m759 @ 5:00 PM

Richard Evan Schwartz on
the mathematics of the 4×4 square

See also Priority in this journal.

Monday, February 20, 2017

Mathematics and Narrative

Filed under: General,Geometry — Tags: , — m759 @ 2:40 PM

Mathematics —

Hudson's parametrization of the
4×4 square, published in 1905:

A later parametrization, from this date in 1986:


A note from later in 1986 shows the equivalence of these
two parametrizations:

Narrative —

Posts tagged Memory-History-Geometry.

The mathematically challenged may prefer the narrative of the
Creation Matrix from the religion of the Transformers:

"According to religious legend, the core of the Matrix
was created from Solomus, the god of wisdom,
trapped in the form of a crystal by Mortilus, the god
of death. Following the defeat of Mortilus, Solomus
managed to transform his crystal prison into the Matrix—
a conduit for the energies of Primus, who had himself
transformed into the life-giving computer Vector Sigma."

Saturday, February 18, 2017


Filed under: General,Geometry — m759 @ 3:00 AM

The Log24 version  (Nov. 9, 2005, and later posts) —



Escher's 'Verbum'

Escher's Verbum

Solomon's Cube

Solomon's Cube

I Ching hexagrams as parts of 4x4x4 cube

Geometry of the I Ching

The Warner Brothers version

The Paramount version

See also related material in the previous post, Transformers.

Sunday, January 8, 2017

A Theory of Everything

Filed under: General,Geometry — Tags: — m759 @ 7:11 PM

The title refers to the Chinese book the I Ching ,
the Classic of Changes .

The 64 hexagrams of the I Ching  may be arranged
naturally in a 4x4x4 cube. The natural form of transformations
("changes") of this cube is given by the diamond theorem.

A related post —

The Eightfold Cube, core structure of the I Ching

Wednesday, January 4, 2017

A Drama of Many Forms

Filed under: General,Geometry — Tags: — m759 @ 1:24 PM

According to art historian Rosalind Krauss in 1979,
the grid's earliest employers

"can be seen to be participating in a drama
that extended well beyond the domain of art.
That drama, which took many forms, was staged
in many places. One of them was a courtroom,
where early in this century, science did battle with God,
and, reversing all earlier precedents, won."

The previous post discussed the 3×3 grid in the context of
Krauss's drama. In memory of T. S. Eliot, who died on this date
in 1965, an image of the next-largest square grid, the 4×4 array:


See instances of the above image.

Monday, December 19, 2016

Tetrahedral Cayley-Salmon Model

Filed under: General,Geometry — Tags: , — m759 @ 9:38 AM

The figure below is one approach to the exercise
posted here on December 10, 2016.

Tetrahedral model (minus six lines) of the large Desargues configuration

Some background from earlier posts —

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click the image below to enlarge it.

Polster's tetrahedral model of the small Desargues configuration

Sunday, December 11, 2016

Complexity to Simplicity via Hudson and Rosenhain*

Filed under: General,Geometry — m759 @ 1:20 AM

'Desargues via Rosenhain'- April 1, 2013- The large Desargues configuration mapped canonically to the 4x4 square

*The Hudson of the title is the author of Kummer's Quartic Surface  (1905).
The Rosenhain of the title is the author for whom Hudson's 4×4 diagrams
of "Rosenhain tetrads" are named. For the "complexity to simplicity" of
the title, see Roger Fry in the previous post.

Friday, November 25, 2016


Filed under: General,Geometry — Tags: , — m759 @ 12:00 AM

Before the monograph "Diamond Theory" was distributed in 1976,
two (at least) notable figures were published that illustrate
symmetry properties of the 4×4 square:

Hudson in 1905 —

Golomb in 1967 —

It is also likely that some figures illustrating Walsh functions  as
two-color square arrays were published prior to 1976.

Update of Dec. 7, 2016 —
The earlier 1950's diagrams of Veitch and Karnaugh used the
1's and 0's of Boole, not those of Galois.

Tuesday, October 18, 2016


Filed under: General,Geometry — Tags: — m759 @ 6:00 AM

The term "parametrization," as discussed in Wikipedia,
seems useful for describing labelings that are not, at least
at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space
plus the 15 two-subsets of a six-set (Hudson, 1905) or by a
blank plus the 5 elements and the 10 two-subsets of a five-set
(derived in 2014 from a 1906 page by Whitehead), or by 
a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than
the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively
a class of equivalent coordinatizations and to
ascertain the group of transformations S
mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization"
is not limited to vector-space  coordinates. He describes it
as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space 
coordinates, admit a group of transformations among themselves
that can be used to describe transformations of the point-space
being coordinatized.)

Sunday, October 2, 2016


Filed under: General,Geometry — m759 @ 9:45 AM

On a new HBO series that opens at 9 PM ET tonight —

Watching Westworld , you can sense a grand mythology unfolding before your eyes. The show’s biggest strength is its world-building, an aspect of screenwriting that many television series have botched before. Often shows will rush viewers into plot, forgetting to instill a sense of place and of history, that you’re watching something that doesn’t just exist in a vacuum but rather is part of some larger ecosystem. Not since Lost  can I remember a TV show so committed to immersing its audience into the physical space it inhabits. (Indeed, Westworld  can also be viewed as a meta commentary on the art of screenwriting itself: brainstorming narratives, building characters, all for the amusement of other people.)

Westworld  is especially impressive because it builds two worlds at once: the Western theme park and the futuristic workplace. The Western half of Westworld  might be the more purely entertaining of the two, with its shootouts and heists and chases through sublime desert vistas. Behind the scenes, the theme park’s workers show how the robot sausage is made. And as a dystopian office drama, the show does something truly original.

Adam Epstein at QUARTZ, October 1, 2016

"… committed to immersing its audience
  into the physical space it inhabits…."

See also, in this journal, the Mimsy Cube

"Mimsy Were the Borogoves,"
classic science fiction story:

"… he lifted a square, transparent crystal block, small enough to cup in his palm– much too small to contain the maze of apparatus within it. In a moment Scott had solved that problem. The crystal was a sort of magnifying glass, vastly enlarging the things inside the block. Strange things they were, too. Miniature people, for example– They moved. Like clockwork automatons, though much more smoothly. It was rather like watching a play."

A Crystal Block —

Cube, 4x4x4

Saturday, September 24, 2016

Core Structure

Filed under: General,Geometry — Tags: — m759 @ 6:40 AM

For the director of "Interstellar" and "Inception"

At the core of the 4x4x4 cube is …


                                                      Cover modified.

The Eightfold Cube

Monday, September 19, 2016

Squaring the Pentagon

Filed under: General,Geometry — m759 @ 10:00 AM

The "points" and "lines" of finite  geometry are abstract
entities satisfying only whatever incidence requirements
yield non-contradictory and interesting results. In finite
geometry, neither the points nor the lines are required to
lie within any Euclidean (or, for that matter, non-Euclidean)

Models  of finite geometries may, however, embed the
points and lines within non -finite geometries in order
to aid visualization.

For instance, the 15 points and 35 lines of PG(3,2) may
be represented by subsets of a 4×4 array of dots, or squares,
located in the Euclidean plane. These "lines" are usually finite
subsets of dots or squares and not*  lines of the Euclidean plane.

Example — See "4×4" in this journal.

Some impose on configurations from finite geometry
the rather artificial requirement that both  points and lines
must be representable as those of a Euclidean plane.

Example:  A Cremona-Richmond pentagon —

Pentagon with pentagram

A square version of these 15 "points" —

A 1905 square version of these 15 "points" 
with digits instead of letters —

See Parametrizing the 4×4 Array
(Log24 post of Sept. 13, 2016).

Update of 8 AM ET Sunday, Sept. 25, 2016 —
For more illustrations, do a Google image search
on "the 2-subsets of a 6-set." (See one such search.)

* But in some models are subsets of the grid lines 
   that separate squares within an array.

Friday, September 16, 2016

A Counting-Pattern

Filed under: General,Geometry — Tags: , — m759 @ 10:48 AM

Wittgenstein, 1939

Dolgachev and Keum, 2002

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

For some related material, see posts tagged Priority.

Monday, September 12, 2016

The Kummer Lattice

Filed under: General,Geometry — Tags: , , , — m759 @ 2:00 PM

The previous post quoted Tom Wolfe on Chomsky's use of
the word "array." 

An example of particular interest is the 4×4  array
(whether of dots or of unit squares) —


Some context for the 4×4 array —

The following definition indicates that the 4×4 array, when
suitably coordinatized, underlies the Kummer lattice .

Further background on the Kummer lattice:

Alice Garbagnati and Alessandra Sarti, 
"Kummer Surfaces and K3 surfaces
with $(Z/2Z)^4$ symplectic action." 
To appear in Rocky Mountain J. Math.

The above article is written from the viewpoint of traditional
algebraic geometry. For a less traditional view of the underlying
affine 4-space from finite  geometry, see the website
Finite Geometry of the Square and Cube.

Some further context

"To our knowledge, the relation of the Golay code
to the Kummer lattice is a new observation."

— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of
Kummer surfaces in the Mathieu group M24 

As noted earlier, Taormina and Wendland seem not to be aware of
R. W. H. T. Hudson's use of the (uncoordinatized*) 4×4 array in his
1905 book Kummer's Quartic Surface.  The array was coordinatized,
i.e. given a "vector space structure," by Cullinane eight years prior to
the cited remarks of Curtis.

* Update of Sept. 14: "Uncoordinatized," but parametrized  by 0 and
the 15 two-subsets of a six-set. See the post of Sept. 13.

Wednesday, August 24, 2016

Core Statements

Filed under: General,Geometry — Tags: — m759 @ 1:06 PM

"That in which space itself is contained" — Wallace Stevens

An image by Steven H. Cullinane from April 1, 2013:

The large Desargues configuration of Euclidean 3-space can be 
mapped canonically to the 4×4 square of Galois geometry —

'Desargues via Rosenhain'- April 1, 2013- The large Desargues configuration mapped canonically to the 4x4 square

On an Auckland University of Technology thesis by Kate Cullinane —
On Kate Cullinane's book 'Sample Copy' - 'The core statement of this work...'
The thesis reportedly won an Art Directors Club award on April 5, 2013.

Thursday, July 28, 2016

The Giglmayr Foldings

Filed under: General,Geometry — m759 @ 1:44 PM

Giglmayr's transformations (a), (c), and (e) convert
his starting pattern

  1    2   5   6
  3    4   7   8
  9  10 13 14
11  12 15 16

to three length-16 sequences. Putting these resulting
sequences back into the 4×4 array in normal reading
order, we have

  1    2    3    4        1   2   4   3          1    4   2   3
  5    6    7    8        5   6   8   7          7    6   8   5 
  9  10  11  12      13 14 16 15       15 14 16 13
13  14  15  16       9  10 12 11        9  12 10 11

         (a)                         (c)                      (e)

Four length-16 basis vectors for a Galois 4-space consisting
of the origin and 15 weight-8 vectors over GF(2):

0 0 0 0       0 0 0 0       0 0 1 1       0 1 0 1
0 0 0 0       1 1 1 1       0 0 1 1       0 1 0 1 
1 1 1 1       0 0 0 0       0 0 1 1       0 1 0 1
1 1 1 1       1 1 1 1       0 0 1 1       0 1 0 1 .

(See "Finite Relativity" at finitegeometry.org/sc.)

The actions of Giglmayr's transformations on the above
four basis vectors indicate the transformations are part of
the affine group (of order 322,560) on the affine space
corresponding to the above vector space.

For a description of such transformations as "foldings,"
see a search for Zarin + Folded in this journal.

Tuesday, June 7, 2016

Art and Space…

Filed under: General,Geometry — Tags: — m759 @ 6:00 AM

Continues, in memory of chess grandmaster Viktor Korchnoi,
who reportedly died at 85 yesterday in Switzerland —

IMAGE- Spielfeld (1982-83), by Wolf Barth

The coloring of the 4×4 "base" in the above image
suggests St. Bridget's cross.

From this journal on St. Bridget's Day this year —

"Possible title: 

A new graphic approach 
to an old geometric approach
to a new combinatorial approach
to an old algebraic approach
to M24

The narrative leap from image to date may be regarded as
an example of "knight's move" thinking.

Wednesday, May 25, 2016


Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

"Studies of spin-½ theories in the framework of projective geometry
have been undertaken before." — Y. Jack Ng  and H. van Dam
February 20, 2009

For one such framework,* see posts from that same date 
four years earlier — February 20, 2005.

* A 4×4 array. See the 19771978, and 1986 versions by 
Steven H. Cullinane,   the 1987 version by R. T. Curtis, and
the 1988 Conway-Sloane version illustrated below —

Cullinane, 1977

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Cullinane, 1978

Cullinane, 1986

Curtis, 1987

Update of 10:42 PM ET on Sunday, June 19, 2016 —

The above images are precursors to

Conway and Sloane, 1988

Update of 10 AM ET Sept. 16, 2016 — The excerpt from the
1977 "Diamond Theory" article was added above.

Kummer and Dirac

From "Projective Geometry and PT-Symmetric Dirac Hamiltonian,"
Y. Jack Ng  and H. van Dam, 
Physics Letters B , Volume 673, Issue 3,
23 March 2009, Pages 237–239

(http://arxiv.org/abs/0901.2579v2, last revised Feb. 20, 2009)

" Studies of spin-½ theories in the framework of projective geometry
have been undertaken before. See, e.g., Ref. [4]. 1 "

1 These papers are rather mathematical and technical.
The authors of the first two papers discuss the Dirac equation
in terms of the Plucker-Klein correspondence between lines of
a three-dimensional projective space and points of a quadric
in a five-dimensional projective space. The last paper shows
that the Dirac equation bears a certain relation to Kummer’s
surface, viz., the structure of the Dirac ring of matrices is 
related to that of Kummer’s 166 configuration . . . ."


O. Veblen
Proc. Natl. Acad. Sci. USA , 19 (1933), p. 503
Full Text via CrossRef

E.M. Bruins
Proc. Nederl. Akad. Wetensch. , 52 (1949), p. 1135

F.C. Taylor Jr., Master thesis, University of North Carolina
at Chapel Hill (1968), unpublished

A remark of my own on the structure of Kummer’s 166 configuration . . . .

See that structure in this  journal, for instance —

See as well yesterday morning's post.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Ron Shaw on symplectic geometry and a linear complex in PG(3,2)

Tuesday, May 3, 2016


Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

A note related to the diamond theorem and to the site
Finite Geometry of the Square and Cube —

The last link in the previous post leads to a post of last October whose
final link leads, in turn, to a 2009 post titled Summa Mythologica .

Webpage demonstrating symmetries of 'Solomon's Cube'

Some may view the above web page as illustrating the
Glasperlenspiel  passage quoted here in Summa Mythologica 

“”I suddenly realized that in the language, or at any rate
in the spirit of the Glass Bead Game, everything actually
was all-meaningful, that every symbol and combination of
symbols led not hither and yon, not to single examples,
experiments, and proofs, but into the center, the mystery
and innermost heart of the world, into primal knowledge.
Every transition from major to minor in a sonata, every
transformation of a myth or a religious cult, every classical
or artistic formulation was, I realized in that flashing moment,
if seen with a truly meditative mind, nothing but a direct route
into the interior of the cosmic mystery, where in the alternation
between inhaling and exhaling, between heaven and earth,
between Yin and Yang, holiness is forever being created.”

A less poetic meditation on the above web page* —

“I saw that in the alternation between front and back,
between top and bottom, between left and right,
symmetry is forever being created.”

Update of Sept. 5, 2016 — See also a related remark
by Lévi-Strauss in 1955: “…three different readings
become possible: left to right, top to bottom, front
to back.”

* For the underlying mathematics, see a June 21, 1983, research note.

Monday, May 2, 2016

Subjective Quality

Filed under: General,Geometry — m759 @ 6:01 AM

The previous post deals in part with a figure from the 1988 book
Sphere Packings, Lattices and Groups , by J. H. Conway and
N. J. A. Sloane.

Siobhan Roberts recently wrote a book about the first of these
authors, Conway.  I just discovered that last fall she also had an
article about the second author, Sloane, published:

"How to Build a Search Engine for Mathematics,"
Nautilus , Oct 22, 2015.

Meanwhile, in this  journal

Log24 on that same date, Oct. 22, 2015 —

Roberts's remarks on Conway and later on Sloane are perhaps
examples of subjective  quality, as opposed to the objective  quality
sought, if not found, by Alexander, and exemplified by the
above bijection discussed here  last October.

Sunday, May 1, 2016

Sunday Appetizer from 1984

Filed under: General,Geometry — Tags: — m759 @ 2:00 PM

Judith Shulevitz in The New York Times
on Sunday, July 18, 2010
(quoted here Aug. 15, 2010) —

“What would an organic Christian Sabbath look like today?”

The 2015 German edition of Beautiful Mathematics ,
a 2011 Mathematical Association of America (MAA) book,
was retitled Mathematische Appetithäppchen —
Mathematical Appetizers . The German edition mentions
the author's source, omitted in the original American edition,
for his section 5.17, "A Group of Operations" (in German,
5.17, "Eine Gruppe von Operationen") —  

Mathematische Appetithäppchen:
Faszinierende Bilder. Packende Formeln. Reizvolle Sätze

Autor: Erickson, Martin —

"Weitere Informationen zu diesem Themenkreis finden sich
unter http://​www.​encyclopediaofma​th.​org/​index.​php/​
und http://​finitegeometry.​org/​sc/​gen/​coord.​html ."

That source was a document that has been on the Web
since 2002. The document was submitted to the MAA
in 1984 but was rejected. The German edition omits the
document's title, and describes it as merely a source for
"further information on this subject area."

The title of the document, "Binary Coordinate Systems,"
is highly relevant to figure 11.16c on page 312 of a book
published four years after the document was written: the 
1988 first edition of Sphere Packings, Lattices and Groups
by J. H. Conway and N. J. A. Sloane —

A passage from the 1984 document —

Monday, April 25, 2016

Seven Seals

Filed under: General,Geometry — Tags: — m759 @ 11:00 PM

 An old version of the Wikipedia article "Group theory"
(pictured in the previous post) —

"More poetically "

From Hermann Weyl's 1952 classic Symmetry

"Galois' ideas, which for several decades remained
a book with seven seals  but later exerted a more
and more profound influence upon the whole
development of mathematics, are contained in
a farewell letter written to a friend on the eve of
his death, which he met in a silly duel at the age of
twenty-one. This letter, if judged by the novelty and
profundity of ideas it contains, is perhaps the most
substantial piece of writing in the whole literature
of mankind."

The seven seals from the previous post, with some context —

These models of projective points are drawn from the underlying
structure described (in the 4×4 case) as part of the proof of the
Cullinane diamond theorem .

Friday, April 8, 2016

Space Cross

Filed under: General,Geometry — Tags: — m759 @ 11:00 PM

For George Orwell

Illustration from a book on mathematics —

This illustrates the Galois space  AG(4,2).

For some related spaces, see a note from 1984.

"There is  such a thing as a space cross."
— Saying adapted from a young-adult novel

Saturday, November 14, 2015

Space Program

Filed under: General — m759 @ 5:26 PM

A quote that appeared here on April 14, 2013

"I know what 'nothing' means." — Joan Didion

Dirac on the 4×4 matrices of an underlying nothingness —

"Corresponding to the four rows and columns,
the wave function ψ  must contain a variable
that takes on four values, in order that the matrices
shall be capable of being multiplied into it." 

— P. A. M. Dirac, Principles of Quantum Mechanics,
     Fourth Edition, Oxford University Press, 1958,
     page 257

Monday, October 5, 2015

Forms that Rhyme:

Filed under: General,Geometry — m759 @ 12:01 AM

The 4×4 Latin-Square Structures 

Click image for background.

Friday, August 7, 2015


Filed under: General,Geometry — Tags: — m759 @ 2:19 AM

Spielerei  —

"On the most recent visit, Arthur had given him
a brightly colored cube, with sides you could twist
in all directions, a new toy that had just come onto
the market."

— Daniel Kehlmann, F: A Novel  (2014),
     translated from the German by
     Carol Brown Janeway

Nicht Spielerei  —

A figure from this journal at 2 AM ET
on Monday, August 3, 2015

Also on August 3 —

FRANKFURT — "Johanna Quandt, the matriarch of the family
that controls the automaker BMW and one of the wealthiest
people in Germany, died on Monday in Bad Homburg, Germany.
She was 89."

MANHATTAN — "Carol Brown Janeway, a Scottish-born
publishing executive, editor and award-winning translator who
introduced American readers to dozens of international authors,
died on Monday in Manhattan. She was 71."

Related material —  Heisenberg on beauty, Munich, 1970                       

Monday, August 3, 2015

Text and Context*

Filed under: General,Geometry — Tags: — m759 @ 2:00 AM

"The ORCID organization offers an open and
independent registry intended to be the de facto  
standard for contributor identification in research
and academic publishing. On 16 October 2012,
ORCID launched its registry services and
started issuing user identifiers." — Wikipedia

This journal on the above date —


A more recent identifier —

Related material —

See also the recent posts Ein Kampf and Symplectic.

* Continued.

Wednesday, June 17, 2015

Slow Art, Continued

Filed under: General,Geometry — Tags: — m759 @ 10:01 AM

The title of the previous post, "Slow Art," is a phrase
of the late art critic Robert Hughes.

Example from mathematics:

  • Göpel tetrads as subsets of a 4×4 square in the classic
    1905 book Kummer's Quartic Surface  by R. W. H. T. Hudson.
    These subsets were constructed as helpful schematic diagrams,
    without any reference to the concept of finite  geometry they
    were later to embody.
  • Göpel tetrads (not named as such), again as subsets of
    a 4×4 square, that form the 15 isotropic projective lines of the
    finite projective 3-space PG(3,2) in a note on finite geometry
    from 1986 —

    Göpel tetrads in an inscape, April 1986

  • Göpel tetrads as these figures of finite  geometry in a 1990
    foreword to the reissued 1905 book of Hudson:

IMAGE- Galois geometry in Wolf Barth's 1990 foreword to Hudson's 1905 'Kummer's Quartic Surface'

Click the Barth passage to see it with its surrounding text.

Related material:

Monday, June 15, 2015

Omega Matrix

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

See that phrase in this journal.

See also last night's post.

The Greek letter Ω is customarily used to
denote a set that is acted upon by a group.
If the group is the affine group of 322,560
transformations of the four-dimensional
affine space over the two-element Galois
field, the appropriate Ω is the 4×4 grid above.

See the Cullinane diamond theorem.

Saturday, April 4, 2015

Harrowing of Hell (continued)

Filed under: General,Geometry — m759 @ 3:28 PM

Holy Saturday is, according to tradition, the day of 
the harrowing of Hell.


The above passage on "Die Figuren der vier Modi
im Magischen Quadrat 
" should be read in the context of
a Log24 post from last year's Devil's Night (the night of
October 30-31).  The post, "Structure," indicates that, using
the transformations of the diamond theorem, the notorious
"magic" square of Albrecht Dürer may be transformed
into normal reading order.  That order is only one of
322,560 natural reading orders for any 4×4 array of
symbols. The above four "modi" describe another.

Wednesday, April 1, 2015

Manifest O

Filed under: General,Geometry — Tags: , — m759 @ 4:44 AM

The title was suggested by

The "O" of the title stands for the octahedral  group.

See the following, from http://finitegeometry.org/sc/map.html —

83-06-21 An invariance of symmetry The diamond theorem on a 4x4x4 cube, and a sketch of the proof.
83-10-01 Portrait of O  A table of the octahedral group O using the 24 patterns from the 2×2 case of the diamond theorem.
83-10-16 Study of O  A different way of looking at the octahedral group, using cubes that illustrate the 2x2x2 case of the diamond theorem.
84-09-15 Diamonds and whirls Block designs of a different sort — graphic figures on cubes. See also the University of Exeter page on the octahedral group O.

Thursday, March 26, 2015

The Möbius Hypercube

Filed under: General,Geometry — Tags: , — m759 @ 12:31 AM

The incidences of points and planes in the
Möbius 8 configuration (8 points and 8 planes,
with 4 points on each plane and 4 planes on each point),
were described by Coxeter in a 1950 paper.* 
A table from Monday's post summarizes Coxeter's
remarks, which described the incidences in
spatial terms, with the points and planes as the vertices
and face-planes of two mutually inscribed tetrahedra —

Monday's post, "Gallucci's Möbius Configuration,"
may not be completely intelligible unless one notices
that Coxeter has drawn some of the intersections in his 
Fig. 24, a schematic representation of the point-plane
incidences, as dotless, and some as hollow dots.  The figure,
"Gallucci's version of Möbius's 84," is shown below.
The hollow dots, representing the 8 points  (as opposed
to the 8 planes ) of the configuration, are highlighted in blue.

Here a plane  (represented by a dotless intersection) contains
the four points  that are represented in the square array as lying
in the same row or same column as the plane. 

The above Möbius incidences appear also much earlier in
Coxeter's paper, in figures 6 and 5, where they are shown
as describing the structure of a hypercube. 

In figures 6 and 5, the dotless intersections representing
planes have been replaced by solid dots. The hollow dots
have again been highlighted in blue.

Figures 6 and 5 demonstrate the fact that adjacency in the set of
16 vertices of a hypercube is isomorphic to adjacency in the set
of 16 subsquares of a square 4×4 array, provided that opposite
sides of the array are identified, as in Fig. 6. The digits in 
Coxeter's labels above may be viewed as naming the positions 
of the 1's in (0,1) vectors (x4, x3, x2, x1) over the two-element
Galois field.  In that context, the 4×4 array may be called, instead
of a Möbius hypercube , a Galois tesseract .

*  "Self-Dual Configurations and Regular Graphs," 
    Bulletin of the American Mathematical Society,
    Vol. 56 (1950), pp. 413-455

The subscripts' usual 1-2-3-4 order is reversed as a reminder
    that such a vector may be viewed as labeling a binary number 
    from 0  through 15, or alternately as labeling a polynomial in
    the 16-element Galois field GF(24).  See the Log24 post
     Vector Addition in a Finite Field (Jan. 5, 2013).

Monday, March 23, 2015

Gallucci’s Möbius Configuration

Filed under: General,Geometry — Tags: — m759 @ 12:05 PM

From H. S. M. Coxeter's 1950 paper
"Self-Dual Configurations and Regular Graphs," 
a 4×4 array and a more perspicuous rearrangement—

(Click image to enlarge.) 

The above rearrangement brings Coxeter's remarks into accord
with the webpage The Galois Tesseract.

Update of Thursday, March 26, 2015 —

For an explanation of Coxeter's Fig. 24, see Thursday's later
post titled "The Möbius Hypercube."

Saturday, March 14, 2015

Unicode Diamonds

Filed under: General,Geometry — m759 @ 9:16 PM

The following figure, intended to display as
a black diamond, was produced with
HTML and Unicode characters. Depending
on the technology used to view it, the figure
may contain gaps or overlaps.


Some variations:





Such combined Unicode characters —

◢  black lower right triangle,
◣  black lower left triangle,
᭘  black upper left triangle,
᭙  black upper right triangle 

— might be used for a text-only version of the Diamond 16 Puzzle
that is more easily programmed than the current version.

The tricky part would be coding the letter-spacing and
line-height to avoid gaps or overlaps within the figures in
a variety of browsers. The w3.org visual formatting model
may or may not be helpful here.

Update of 11:20 PM ET March 15, 2015 — 
Seekers of simplicity should note that there is
a simple program in the Processing.js  language, not  using
such Unicode characters, that shows many random affine
permutations of a 4×4 diamond-theorem array when the
display window is clicked.

Saturday, February 14, 2015

Valentine Dance

Filed under: General,Geometry — Tags: , — m759 @ 2:00 PM

For Eliot and von Franz —

"A dance results."

— Marie-Louise von Franz
     in Number and Time

IMAGE- Halftime dance in 4x4 square, 2015 Super Bowl, with Katy Perry

Wednesday, January 14, 2015

Serial Box

Filed under: General,Geometry — Tags: , — m759 @ 1:20 PM

Enotes.com on Herman Wouk's 1985 novel Inside, Outside 

"The 'outside' of the title is the goyish world
into which David’s profession has drawn him;
the 'inside' is the warm life of his Russian-
Jewish family on which he, as narrator, reflects
in the course of the novel."

For a different sort of 'inside' life, see this morning's post
Gesamtkunstwerk , and Nathan Shields's Feb. 8, 2011,
tribute to a serial composer "In Memoriam, Milton Babbitt."
Some other context for Shields's musical remarks —

Doctor Faustus and Dürer Square.

For a more interesting contrast of inside with outside
that has nothing to do with ethnicity, see the Feb. 10,
2014, post Mystery Box III: Inside, Outside, about
the following box:


Saturday, October 25, 2014

Foundation Square

Filed under: General,Geometry — Tags: — m759 @ 2:56 PM

In the above illustration of the 3-4-5 Pythagorean triangle,
the grids on each side may be regarded as figures of
Euclidean  geometry or of Galois  geometry.

In Euclidean geometry, these grids illustrate a property of
the inner triangle.

In elementary Galois geometry, ignoring the connection with
the inner triangle, the grids may be regarded instead as
illustrating vector spaces over finite (i.e., Galois) fields.
Previous posts in this journal have dealt with properties of
the 3×3 and 4×4 grids.  This suggests a look at properties of
the next larger grid, the 5×5 array, viewed as a picture of the
two-dimensional vector space (or affine plane) over the finite
Galois field GF(5) (also known as ℤ5).

The 5×5 array may be coordinatized in a natural way, as illustrated
in (for instance) Matters Mathematical , by I.N. Herstein and
Irving Kaplansky, 2nd ed., Chelsea Publishing, 1978, p. 171:

See Herstein and Kaplansky for the elementary Galois geometry of
the 5×5 array.

For 5×5 geometry that is not so elementary, see…

Hafner's abstract:

We describe the Hoffman-Singleton graph geometrically, showing that
it is closely related to the incidence graph of the affine plane over ℤ5.
This allows us to construct all automorphisms of the graph.

The remarks of Brouwer on graphs connect the 5×5-related geometry discussed
by Hafner with the 4×4 geometry related to the Steiner system S(5,8,24).
(See the Miracle Octad Generator of R. T. Curtis and the related coordinatization
by Cullinane of the 4×4 array as a four-dimensional vector space over GF(2).)

Tuesday, October 21, 2014


Filed under: General,Geometry — Tags: — m759 @ 12:00 AM

(Night at the Museum continues.)

"Strategies for making or acquiring tools

While the creation of new tools marked the route to developing the social sciences,
the question remained: how best to acquire or produce those tools?"

— Jamie Cohen-Cole, “Instituting the Science of Mind: Intellectual Economies
and Disciplinary Exchange at Harvard’s Center for Cognitive Studies,”
British Journal for the History of Science  vol. 40, no. 4 (2007): 567-597.

Obituary of a co-founder, in 1960, of the Center for Cognitive Studies at Harvard:

"Disciplinary Exchange" —

In exchange for the free Web tools of HTML and JavaScript,
some free tools for illustrating elementary Galois geometry —

The Kaleidoscope Puzzle,  The Diamond 16 Puzzle
The 2x2x2 Cube, and The 4x4x4 Cube

"Intellectual Economies" —

In exchange for a $10 per month subscription, an excellent
"Quilt Design Tool" —

This illustrates not geometry, but rather creative capitalism.

Related material from the date of the above Harvard death:  Art Wars.

Monday, October 13, 2014

Raiders of the Lost Theorem

Filed under: General,Geometry — Tags: — m759 @ 12:05 PM

(Continued from Nov. 16, 2013.)

The 48 actions of GL(2,3) on a 3×3 array include the 8-element
quaternion group as a subgroup. This was illustrated in a Log24 post,
Hamilton’s Whirligig, of Jan. 5, 2006, and in a webpage whose
earliest version in the Internet Archive is from June 14, 2006.

One of these quaternion actions is pictured, without any reference
to quaternions, in a 2013 book by a Netherlands author whose
background in pure mathematics is apparently minimal:

In context (click to enlarge):

Update of later the same day —

Lee Sallows, Sept. 2011 foreword to Geometric Magic Squares —

“I first hit on the idea of a geometric magic square* in October 2001,**
and I sensed at once that I had penetrated some previously hidden portal
and was now standing on the threshold of a great adventure. It was going
to be like exploring Aladdin’s Cave. That there were treasures in the cave,
I was convinced, but how they were to be found was far from clear. The
concept of a geometric magic square is so simple that a child will grasp it
in a single glance. Ask a mathematician to create an actual specimen and
you may have a long wait before getting a response; such are the formidable
difficulties confronting the would-be constructor.”

* Defined by Sallows later in the book:

“Geometric  or, less formally, geomagic  is the term I use for
a magic square in which higher dimensional geometrical shapes
(or tiles  or pieces ) may appear in the cells instead of numbers.”

** See some geometric  matrices by Cullinane in a March 2001 webpage.

Earlier actual specimens — see Diamond Theory  excerpts published in
February 1977 and a brief description of the original 1976 monograph:

“51 pp. on the symmetries & algebra of
matrices with geometric-figure entries.”

— Steven H. Cullinane, 1977 ad in
Notices of the American Mathematical Society

The recreational topic of “magic” squares is of little relevance
to my own interests— group actions on such matrices and the
matrices’ role as models of finite geometries.

Sunday, September 21, 2014


Filed under: General,Geometry — m759 @ 11:00 AM

The previous post discussed the anatomy of the sum 9 + 6.

A different approach:  “A” and “The 6 spreads in A” below —

Wednesday, September 17, 2014

Raiders of the Lost Articulation

Tom Hanks as Indiana Langdon in Raiders of the Lost Articulation :

An unarticulated (but colored) cube:

Robert Langdon (played by Tom Hanks) and a corner of Solomon's Cube

A 2x2x2 articulated cube:

IMAGE- Eightfold cube with detail of triskelion structure

A 4x4x4 articulated cube built from subcubes like
the one viewed by Tom Hanks above:

Image-- Solomon's Cube

Solomon’s Cube

Tuesday, September 9, 2014

Smoke and Mirrors

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 AM

This post is continued from a March 12, 2013, post titled
"Smoke and Mirrors" on art in Tromsø, Norway, and from
a June 22, 2014, post on the nineteenth-century 
mathematicians Rosenhain and Göpel.

The latter day was the day of death for 
mathematician Loren D. Olson, Harvard '64.

For some background on that June 22 post, see the tag 
Rosenhain and Göpel in this journal.

Some background on Olson, who taught at the
University of Tromsø, from the American Mathematical
Society yesterday:

Olson died not long after attending the 50th reunion of the
Harvard Class of 1964.

For another connection between that class (also my own) 
and Tromsø, see posts tagged "Elegantly Packaged."
This phrase was taken from today's (print) 
New York Times  review of a new play titled "Smoke."
The phrase refers here  to the following "package" for 
some mathematical objects that were named after 
Rosenhain and Göpel — a 4×4 array —

For the way these objects were packaged within the array
in 1905 by British mathematician R. W. H. T. Hudson, see
a page at finitegometry.org/sc. For the connection to the art 
in Tromsø mentioned above, see the diamond theorem.

Sunday, August 31, 2014

Sunday School

Filed under: General,Geometry — Tags: — m759 @ 9:00 AM

The Folding

Cynthia Zarin in The New Yorker , issue dated April 12, 2004—

“Time, for L’Engle, is accordion-pleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”

The geometry of the 4×4 square array is that of the
3-dimensional projective Galois space PG(3,2).

This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc.  on
15 June 1974).  Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.

Some history: 

Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.

[Rewritten for clarity on Sept. 3, 2014.]

Wednesday, August 13, 2014

Stranger than Dreams*

Filed under: General,Geometry — Tags: — m759 @ 12:00 AM

Illustration from a discussion of a symplectic structure 
in a 4×4 array quoted here on January 17, 2014 —

See symplectic structure in this journal.

* The final words of Point Omega , a 2010 novel by Don DeLillo.
See also Omega Matrix in this journal.

Monday, August 4, 2014

A Wrinkle in Space

Filed under: General,Geometry — Tags: , — m759 @ 10:30 AM

"There is  such a thing as a tesseract." — Madeleine L'Engle

An approach via the Omega Matrix:


See, too, Rosenhain and Göpel as The Shadow Guests .

Sunday, July 20, 2014

Sunday School

Filed under: General,Geometry — m759 @ 9:29 AM

Paradigms of Geometry:
Continuous and Discrete

The discovery of the incommensurability of a square's
side with its diagonal contrasted a well-known discrete 
length (the side) with a new continuous  length (the diagonal).
The figures below illustrate a shift in the other direction.
The essential structure of the continuous  configuration at
left is embodied in the discrete  unit cells of the square at right.

IMAGE- Concepts of Space: The Large Desargues Configuration, the Related 4x4 Square, and the 4x4x4 Cube

See Desargues via Galois (August 6, 2013).

Wednesday, May 21, 2014

The Tetrahedral Model of PG(3,2)

Filed under: General,Geometry — Tags: , — m759 @ 10:15 PM

The page of Whitehead linked to this morning
suggests a review of Polster's tetrahedral model
of the finite projective 3-space PG(3,2) over the
two-element Galois field GF(2).

The above passage from Whitehead's 1906 book suggests
that the tetrahedral model may be older than Polster thinks.

Shown at right below is a correspondence between Whitehead's
version of the tetrahedral model and my own square  model,
based on the 4×4 array I call the Galois tesseract  (at left below).

(Click to enlarge.)

Thursday, March 27, 2014

Diamond Space

Filed under: General,Geometry — Tags: — m759 @ 2:28 PM


Definition:  A diamond space  — informal phrase denoting
a subspace of AG(6, 2), the six-dimensional affine space
over the two-element Galois field.

The reason for the name:

IMAGE - The Diamond Theorem, including the 4x4x4 'Solomon's Cube' case

Click to enlarge.

Friday, March 21, 2014

Three Constructions of the Miracle Octad Generator

Filed under: General,Geometry — Tags: , , — m759 @ 12:24 PM

IMAGE- Two constructions, by Turyn/Curtis, and by Conway, of the Miracle Octad Generator

See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.

Related material on the Turyn-Curtis construction
from the University of Cambridge —

— Slide by “Dr. Parker” — Apparently Richard A. Parker —
Lecture 4, “Discovering M24,” in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on “Sporadic and Related Groups.”
See also the Parker lectures of 2012-2013 on the same topic.

A third construction of Curtis’s 35  4×6  1976 MOG arrays would use
Cullinane’s analysis of the 4×4 subarrays’ affine and projective structure,
and point out the fact that Conwell’s 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis’s 1976 MOG.

See The Diamond Theorem,  Finite RelativityGalois Space,
Generating the Octad Generator, and The Klein Correspondence.

Update of March 22-March 23 —

Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1’s, all other squares as 0’s) of the 35  4×6 arrays of the 1976
Curtis MOG would then reveal*  the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35  MOG arrays.  For more
details of this “by-hand” construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction,  not  by hand (such as Turyn’s), of the
extended binary Golay code. See the Brouwer preprint quoted above.

* “Then a miracle occurs,” as in the classic 1977 Sidney Harris cartoon.

Illustration of array addition from March 23 —

IMAGE- Discovery of the S_3 action on bricks in the Conwell-Cullinane 'by-hand' approach to octad-building

Saturday, March 8, 2014

Conwell Heptads in Eastern Europe

Filed under: General,Geometry — Tags: — m759 @ 11:07 AM

“Charting the Real Four-Qubit Pauli Group
via Ovoids of a Hyperbolic Quadric of PG(7,2),”
by Metod Saniga, Péter Lévay and Petr Pracna,
arXiv:1202.2973v2 [math-ph] 26 Jun 2012 —

P. 4— “It was found that +(5,2) (the Klein quadric)
has, up to isomorphism, a unique  one — also known,
after its discoverer, as a Conwell heptad  [18].
The set of 28 points lying off +(5,2) comprises
eight such heptads, any two having exactly one
point in common.”

P. 11— “This split reminds us of a similar split of
63 points of PG(5,2) into 35/28 points lying on/off
a Klein quadric +(5,2).”

[18] G. M. Conwell, Ann. Math. 11 (1910) 60–76

A similar split occurs in yesterday’s Kummer Varieties post.
See the 63 = 28 + 35 vectors of R8 discussed there.

For more about Conwell heptads, see The Klein Correspondence,
Penrose Space-Time, and a Finite Model

For my own remarks on the date of the above arXiv paper
by Saniga et. al., click on the image below —

Walter Gropius

Sunday, March 2, 2014


Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

Raiders of the Lost  (Continued)

"Socrates: They say that the soul of man is immortal…."

From August 16, 2012

In the geometry of Plato illustrated below,
"the figure of eight [square] feet" is not ,  at this point
in the dialogue, the diamond in Jowett's picture.

An 1892 figure by Jowett illustrating Plato's Meno

A more correct version, from hermes-press.com —

Socrates: He only guesses that because the square is double, the line is double.Meno: True.


Socrates: Observe him while he recalls the steps in regular order. (To the Boy.) Tell me, boy, do you assert that a double space comes from a double line? Remember that I am not speaking of an oblong, but of a figure equal every way, and twice the size of this-that is to say of eight feet; and I want to know whether you still say that a double square comes from double line?

[Boy] Yes.

Socrates: But does not this line (AB) become doubled if we add another such line here (BJ is added)?

[Boy] Certainly.

Socrates: And four such lines [AJ, JK, KL, LA] will make a space containing eight feet?

[Boy] Yes.

Socrates: Let us draw such a figure: (adding DL, LK, and JK). Would you not say that this is the figure of eight feet?

[Boy] Yes.

Socrates: And are there not these four squares in the figure, each of which is equal to the figure of four feet? (Socrates draws in CM and CN)

[Boy] True.

Socrates: And is not that four times four?

[Boy] Certainly.

Socrates: And four times is not double?

[Boy] No, indeed.

Socrates: But how much?

[Boy] Four times as much.

Socrates: Therefore the double line, boy, has given a space, not twice, but four times as much.

[Boy] True.

Socrates: Four times four are sixteen— are they not?

[Boy] Yes.

As noted in the 2012 post, the diagram of greater interest is
Jowett's incorrect  version rather than the more correct version
shown above. This is because the 1892 version inadvertently
illustrates a tesseract:

A 4×4 square version, by Coxeter in 1950, of  a tesseract

This square version we may call the Galois  tesseract.

Monday, February 10, 2014

Mystery Box III: Inside, Outside

Filed under: General,Geometry — Tags: , , , , — m759 @ 2:28 PM

(Continued from Mystery Box, Feb. 4, and Mystery Box II, Feb. 5.)

The Box

Inside the Box

Outside the Box

For the connection of the inside  notation to the outside  geometry,
see Desargues via Galois.

(For a related connection to curves  and surfaces  in the outside
geometry, see Hudson's classic Kummer's Quartic Surface  and
Rosenhain and Göpel Tetrads in PG(3,2).)

Thursday, February 6, 2014

The Representation of Minus One

Filed under: General,Geometry — Tags: , , — m759 @ 6:24 AM

For the late mathematics educator Zoltan Dienes.

“There comes a time when the learner has identified
the abstract content of a number of different games
and is practically crying out for some sort of picture
by means of which to represent that which has been
gleaned as the common core of the various activities.”

— Article by “Melanie” at Zoltan Dienes’s website

Dienes reportedly died at 97 on Jan. 11, 2014.

From this journal on that date —


A star figure and the Galois quaternion.

The square root of the former is the latter.

Update of 5:01 PM ET Feb. 6, 2014 —

An illustration by Dienes related to the diamond theorem —

See also the above 15 images in


and versions of the 4×4 coordinatization in  The 4×4 Relativity Problem
(Jan. 17, 2014).

Saturday, February 1, 2014

The Delft Version

Filed under: General,Geometry — m759 @ 7:00 AM

My webpage "The Order-4 Latin Squares" has a rival—

"Latin squares of order 4: Enumeration of the
 24 different 4×4 Latin squares. Symmetry and
 other features."

The author — Yp de Haan, a professor emeritus of
materials science at Delft University of Technology —

The main difference between de Haan's approach and my own
is my use of the four-color decomposition theorem, a result that
I discovered in 1976.  This would, had de Haan known it, have
added depth to his "symmetry and other features" remarks.

Saturday, January 18, 2014

The Triangle Relativity Problem

Filed under: General,Geometry — Tags: — m759 @ 5:01 PM

A sequel to last night’s post The 4×4 Relativity Problem —

IMAGE- Triangle Coordinatization

In other words, how should the triangle corresponding to
the above square be coordinatized ?

See also a post of July 8, 2012 — “Not Quite Obvious.”

Context — “Triangles Are Square,” a webpage stemming
from an American Mathematical Monthly  item published
in 1984.

Thursday, January 16, 2014

Confession of a Sucker

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

Today’s 11 AM (ET) post was suggested by a New York Times
article, online yesterday, about art gallery owner Lisa Cooley.

A check of Cooley’s website yields the image below,
related to Beckett’s Molloy .

For the relevant passage from Molloy , click the following:

I took advantage of being at the seaside
to lay in a store of sucking-stones.

For posts on Molloy  in this journal, click Beckett + Molloy .

Cynthia Daignault, 2011:
The one I shall now describe, if I can…
Oil on linen, in 2 parts: 40 x 30 inches, 96 x 75 inches

Related art theory —

Geometry of the 4×4 Square 

Friday, November 1, 2013

Cameron’s Group Theory Notes

Filed under: General,Geometry — Tags: , — m759 @ 7:00 AM

In "Notes on Finite Group Theory"
by Peter J. Cameron (October 2013),
some parts are particularly related to the mathematics of
the 4×4 square (viewable in various ways as four quartets)—

  • Definition 1.3.1, Group actions, and example on partitions of a 4-set, p. 19.
  • Exercise 1.1, The group of Fano-plane symmetries, p. 35.
  • Exercise 2.17, The group of the empty set and the 15 two-subsets of a six-set, p. 66.
  • Section 3.1.2, The holomorph of a group, p. 70.
  • Exercise 3.7, The groups A8 and AGL(4,2), p. 78.

Cameron is the author of Parallelisms of Complete Designs ,
a book notable in part for its chapter epigraphs from T.S. Eliot's
Four Quartets . These epigraphs, if not the text proper, seem
appropriate for All Saints' Day.

But note also Log24 posts tagged Not Theology.

Older Posts »

Powered by WordPress