Log24

Sunday, June 8, 2014

Vide

Filed under: General,Geometry — Tags: , , — m759 @ 10:00 AM

Some background on the large Desargues configuration

“The relevance of a geometric theorem is determined by what the theorem
tells us about space, and not by the eventual difficulty of the proof.”

— Gian-Carlo Rota discussing the theorem of Desargues

What space  tells us about the theorem :  

In the simplest case of a projective space  (as opposed to a plane ),
there are 15 points and 35 lines: 15 Göpel  lines and 20 Rosenhain  lines.*
The theorem of Desargues in this simplest case is essentially a symmetry
within the set of 20 Rosenhain lines. The symmetry, a reflection
about the main diagonal in the square model of this space, interchanges
10 horizontally oriented (row-based) lines with 10 corresponding
vertically oriented (column-based) lines.

Vide  Classical Geometry in Light of Galois Geometry.

* Update of June 9: For a more traditional nomenclature, see (for instance)
R. Shaw, 1995.  The “simplest case” link above was added to point out that
the two types of lines named are derived from a natural symplectic polarity 
in the space. The square model of the space, apparently first described in
notes written in October and December, 1978, makes this polarity clearly visible:

A coordinate-free approach to symplectic structure

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress