Log24

Friday, August 16, 2013

Six-Set Geometry

Filed under: General,Geometry — Tags: — m759 @ 5:24 AM

From April 23, 2013, in
​"Classical Geometry in Light of Galois Geometry"—

Click above image for some background from 1986.

Related material on six-set geometry from the classical literature—

Baker, H. F., "Note II: On the Hexagrammum Mysticum  of Pascal,"
in Principles of Geometry , Vol. II, Camb. U. Press, 1930, pp. 219-236  

Richmond, H. W., "The Figure Formed from Six Points in Space of Four Dimensions,"
Mathematische Annalen  (1900), Volume 53, Issue 1-2, pp 161-176

Richmond, H. W., "On the Figure of Six Points in Space of Four Dimensions," 
Quarterly Journal of Pure and Applied Mathematics , Vol. 31 (1900), pp. 125-160

Sunday, December 8, 2019

Geometry of 6 and 8

Filed under: General — Tags: , — m759 @ 4:03 AM

Just as
the finite space PG(3,2) is
the geometry of the 6-set, so is
the finite space PG(5,2)
the geometry of the 8-set.*

Selah.

* Consider, for the 6-set, the 32
(16, modulo complementation)
0-, 2-, 4-, and 6-subsets,
and, for the 8-set, the 128
(64, modulo complementation)
0-, 2-, 4-, 6-, and 8-subsets.

Update of 11:02 AM ET the same day:

See also Eightfold Geometry, a note from 2010.

Tuesday, July 2, 2019

Depth Psychology Meets Inscape Geometry

Filed under: General — m759 @ 3:00 AM

An illustration from the previous post may be interpreted
as an attempt to unbokeh  an inscape

The 15 lines above are Euclidean  lines based on pairs within a six-set
For examples of Galois  lines so based, see Six-Set Geometry:

Thursday, June 21, 2018

Dirac and Geometry (continued)

"Just fancy a scale model of Being 
made out of string and cardboard."

Nanavira Thera, 1 October 1957,
on a model of Kummer's Quartic Surface
mentioned by Eddington

"… a treatise on Kummer's quartic surface."

The "super-mathematician" Eddington did not see fit to mention
the title or the author of the treatise he discussed.

See Hudson + Kummer in this  journal.

See also posts tagged Dirac and Geometry.

Sunday, December 10, 2017

Geometry

Google search result for Plato + Statesman + interlacing + interweaving

See also Symplectic in this journal.

From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens  54, 59-79 (1992):

“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  figure appears in remarks on
the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2). See also
related remarks on the notion of  linear  (or line ) complex
in the finite projective space PG(3,2) —

Anticommuting Dirac matrices as spreads of projective lines

Ron Shaw on the 15 lines of the classical generalized quadrangle W(2), a general linear complex in PG(3,2)

Friday, April 14, 2017

Hudson and Finite Geometry

Filed under: General,Geometry — Tags: , — m759 @ 3:00 AM

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

The above four-element sets of black subsquares of a 4×4 square array 
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .

Hudson did not  view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective
3-space).

In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.

This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements.  This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.

The space was later described in the following —

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Friday, December 23, 2016

Memory, History, Geometry

Filed under: General,Geometry — Tags: — m759 @ 6:48 PM

(Continued)

Code Blue

Update of 7:04 PM ET —

The source of the 404 message in the browsing history above
was the footnote below:

Friday, December 16, 2016

Memory, History, Geometry

Filed under: General,Geometry — Tags: — m759 @ 9:48 AM

These are Rothko's Swamps .

See a Log24 search for related meditations.

For all three topics combined, see Coxeter —

" There is a pleasantly discursive treatment 
of Pontius Pilate’s unanswered question
‘What is truth?’ "

— Coxeter, 1987, introduction to Trudeau’s
     The Non-Euclidean Revolution

Update of 10 AM ET —  Related material, with an elementary example:

Posts tagged "Defining Form." The example —

IMAGE- Triangular models of the 4-point affine plane A and 7-point projective plane PA

Monday, December 14, 2015

Dirac and Geometry

Filed under: General,Geometry — Tags: , — m759 @ 10:30 AM

(Continued)

See a post by Peter Woit from Sept. 24, 2005 — Dirac's Hidden Geometry.

The connection, if any, with recent Log24 posts on Dirac and Geometry
is not immediately apparent.  Some related remarks from a novel —

From Broken Symmetries by Paul Preuss
(first published by Simon and Schuster in 1983) —

"He pondered the source of her fascination with the occult, which sooner or later seemed to entangle a lot of thoughtful people who were not already mired in establishmentarian science or religion. It was  the religious impulse, at base. Even reason itself could function as a religion, he supposed— but only for those of severely limited imagination. 

He’d toyed with 'psi' himself, written a couple of papers now much quoted by crackpots, to his chagrin. The reason he and so many other theoretical physicists were suckers for the stuff was easy to understand— for two-thirds of a century an enigma had rested at the heart of theoretical physics, a contradiction, a hard kernel of paradox. Quantum theory was inextricable from the uncertainty relations. 

The classical fox knows many things, but the quantum-mechanical hedgehog knows only one big thing— at a time. 'Complementarity,' Bohr had called it, a rubbery notion the great professor had stretched to include numerous pairs of opposites. Peter Slater was willing to call it absurdity, and unlike some of his older colleagues who, following in Einstein’s footsteps, demanded causal explanations for everything (at least in principle), Peter had never thirsted after 'hidden variables' to explain what could not be pictured. Mathematical relationships were enough to satisfy him, mere formal relationships which existed at all times, everywhere, at once. It was a thin nectar, but he was convinced it was the nectar of the gods. 

The psychic investigators, on the other hand, demanded to know how  the mind and the psychical world were related. Through ectoplasm, perhaps? Some fifth force of nature? Extra dimensions of spacetime? All these naive explanations were on a par with the assumption that psi is propagated by a species of nonlocal hidden variables, the favored explanation of sophisticates; ignotum per ignotius

'In this connection one should particularly remember that the human language permits the construction of sentences which do not involve any consequences and which therefore have no content at all…' The words were Heisenberg’s, lecturing in 1929 on the irreducible ambiguity of the uncertainty relations. They reminded Peter of Evan Harris Walker’s ingenious theory of the psi force, a theory that assigned psi both positive and negative values in such a way that the mere presence of a skeptic in the near vicinity of a sensitive psychic investigation could force null results. Neat, Dr. Walker, thought Peter Slater— neat, and totally without content. 

One had to be willing to tolerate ambiguity; one had to be willing to be crazy. Heisenberg himself was only human— he’d persuasively woven ambiguity into the fabric of the universe itself, but in that same set of 1929 lectures he’d rejected Dirac’s then-new wave equations with the remark, 'Here spontaneous transitions may occur to the states of negative energy; as these have never been observed, the theory is certainly wrong.' It was a reasonable conclusion, and that was its fault, for Dirac’s equations suggested the existence of antimatter: the first antiparticles, whose existence might never have been suspected without Dirac’s crazy results, were found less than three years later. 

Those so-called crazy psychics were too sane, that was their problem— they were too stubborn to admit that the universe was already more bizarre than anything they could imagine in their wildest dreams of wizardry."

Particularly relevant

"Mathematical relationships were enough to satisfy him,
mere formal relationships which existed at all times,
everywhere, at once."

Some related pure  mathematics

Anticommuting Dirac matrices as spreads of projective lines

Tuesday, December 1, 2015

Pascal’s Finite Geometry

Filed under: General,Geometry — Tags: — m759 @ 12:01 AM

See a search for "large Desargues configuration" in this journal.

The 6 Jan. 2015 preprint "Danzer's Configuration Revisited," 
by Boben, Gévay, and Pisanski, places this configuration,
which they call the Cayley-Salmon configuration , in the 
interesting context of Pascal's Hexagrammum Mysticum .

They show how the Cayley-Salmon configuration is, in a sense,
dual to something they call the Steiner-Plücker configuration .

This duality appears implicitly in my note of April 26, 1986,
"Picturing the smallest projective 3-space." The six-sets at
the bottom of that note, together with Figures 3 and 4
of Boben et. al. , indicate how this works.

The duality was, as they note, previously described in 1898.

Related material on six-set geometry from the classical literature—

Baker, H. F., "Note II: On the Hexagrammum Mysticum  of Pascal,"
in Principles of Geometry , Vol. II, Camb. U. Press, 1930, pp. 219-236  

Richmond, H. W., "The Figure Formed from Six Points in Space of Four Dimensions,"
Mathematische Annalen  (1900), Volume 53, Issue 1-2, pp 161-176

Richmond, H. W., "On the Figure of Six Points in Space of Four Dimensions," 
Quarterly Journal of Pure and Applied Mathematics , Vol. 31 (1900), pp. 125-160

Related material on six-set geometry from a more recent source —

Cullinane, Steven H., "Classical Geometry in Light of Galois Geometry," webpage

Friday, November 27, 2015

Einstein and Geometry

Filed under: General,Geometry — Tags: — m759 @ 2:01 PM

(A Prequel to Dirac and Geometry)

"So Einstein went back to the blackboard.
And on Nov. 25, 1915, he set down
the equation that rules the universe.
As compact and mysterious as a Viking rune,
it describes space-time as a kind of sagging mattress…."

— Dennis Overbye in The New York Times  online,
     November 24, 2015

Some pure  mathematics I prefer to the sagging Viking mattress —

Readings closely related to the above passage —

Thomas Hawkins, "From General Relativity to Group Representations:
the Background to Weyl's Papers of 1925-26
," in Matériaux pour
l'histoire des mathématiques au XXe siècle:
Actes du colloque
à la mémoire de Jean Dieudonné
, Nice, 1996  (Soc. Math.
de France, Paris, 1998), pp. 69-100.

The 19th-century algebraic theory of invariants is discussed
as what Weitzenböck called a guide "through the thicket
of formulas of general relativity."

Wallace Givens, "Tensor Coordinates of Linear Spaces," in
Annals of Mathematics  Second Series, Vol. 38, No. 2, April 1937, 
pp. 355-385.

Tensors (also used by Einstein in 1915) are related to 
the theory of line complexes in three-dimensional
projective space and to the matrices used by Dirac
in his 1928 work on quantum mechanics.

For those who prefer metaphors to mathematics —

"We acknowledge a theorem's beauty
when we see how the theorem 'fits' in its place,
how it sheds light around itself, like a Lichtung ,
a clearing in the woods." 
— Gian-Carlo Rota, Indiscrete Thoughts ,
Birkhäuser Boston, 1997, page 132

Rota fails to cite the source of his metaphor.
It is Heidegger's 1964 essay, "The End of Philosophy
and the Task of Thinking" —

"The forest clearing [ Lichtung ] is experienced
in contrast to dense forest, called Dickung  
in our older language." 
— Heidegger's Basic Writings 
edited by David Farrell Krell, 
Harper Collins paperback, 1993, page 441

Monday, November 23, 2015

Dirac and Line Geometry

Some background for my post of Nov. 20,
"Anticommuting Dirac Matrices as Skew Lines" —

First page of 'Configurations in Quantum Mechanics,' by E.M. Bruins, 1959

His earlier paper that Bruins refers to, "Line Geometry
and Quantum Mechanics," is available in a free PDF.

For a biography of Bruins translated by Google, click here.

For some additional historical background going back to
Eddington, see Gary W. Gibbons, "The Kummer
Configuration and the Geometry of Majorana Spinors,"
pages 39-52 in Oziewicz et al., eds., Spinors, Twistors,
Clifford Algebras, and Quantum Deformations:
Proceedings of the Second Max Born Symposium held
near Wrocław, Poland, September 1992
 . (Springer, 2012,
originally published by Kluwer in 1993.)

For more-recent remarks on quantum geometry, see a
paper by Saniga cited in today's update to my Nov. 20 post

Friday, April 25, 2014

Quilt Geometry

Filed under: General,Geometry — Tags: , — m759 @ 7:55 PM

or: The Dead Hand Shot

Library Thing book list: 'An Awkward Lie' and 'A Piece of Justice'

See also Tumbling Blocks Quilt and Springtime for Vishnu.

Tuesday, April 23, 2013

The Six-Set

Filed under: General,Geometry — Tags: , — m759 @ 3:00 AM

The configurations recently discussed in
Classical Geometry in Light of Galois Geometry
are not unrelated to the 27 "Solomon's Seal Lines
extensively studied in the 19th century.

See, in particular—

IMAGE- Archibald Henderson on six-set geometry (1911)

The following figures supply the connection of Henderson's six-set
to the Galois geometry previously discussed in "Classical Geometry…"—

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Saturday, November 10, 2012

Battlefield Geometry

Filed under: General,Geometry — Tags: — m759 @ 5:24 AM

(Continued)

Click to enlarge.

Related material from Wikipedia— Baseball metaphors for sex.

"Build it…"

Friday, November 9, 2012

Battlefield Geometry

Filed under: General,Geometry — Tags: — m759 @ 3:28 PM

(Continued from Sept. 11, 2007)

CIA Director David Petraeus resigns, cites extramarital affair

Trouble with the curve?

Wednesday, April 28, 2010

Eightfold Geometry

Filed under: General,Geometry — Tags: , — m759 @ 11:07 AM

Image-- The 35 partitions of an 8-set into two 4-sets

Image-- Analysis of structure of the 35 partitions of an 8-set into two 4-sets

Image-- Miracle Octad Generator of R.T. Curtis

Related web pages:

Miracle Octad Generator,
Generating the Octad Generator,
Geometry of the 4×4 Square

Related folklore:

"It is commonly known that there is a bijection between the 35 unordered triples of a 7-set [i.e., the 35 partitions of an 8-set into two 4-sets] and the 35 lines of PG(3,2) such that lines intersect if and only if the corresponding triples have exactly one element in common." –"Generalized Polygons and Semipartial Geometries," by F. De Clerck, J. A. Thas, and H. Van Maldeghem, April 1996 minicourse, example 5 on page 6

The Miracle Octad Generator may be regarded as illustrating the folklore.

Update of August 20, 2010–

For facts rather than folklore about the above bijection, see The Moore Correspondence.

Thursday, April 22, 2010

Mere Geometry

Filed under: General,Geometry — Tags: — m759 @ 1:00 PM

Image-- semeion estin ou meros outhen

Image-- Euclid's definition of 'point'

Stanford Encyclopedia of Philosophy

Mereology (from the Greek μερος, ‘part’) is the theory of parthood relations: of the relations of part to whole and the relations of part to part within a whole. Its roots can be traced back to the early days of philosophy, beginning with the Presocratics….”

A non-Euclidean* approach to parts–

Image-- examples from Galois affine geometry

Corresponding non-Euclidean*
projective points —

Image-- The smallest Galois geometries

Richard J. Trudeau in The Non-Euclidean Revolution, chapter on “Geometry and the Diamond Theory of Truth”–

“… Plato and Kant, and most of the philosophers and scientists in the 2200-year interval between them, did share the following general presumptions:

(1) Diamonds– informative, certain truths about the world– exist.
(2) The theorems of Euclidean geometry are diamonds.

Presumption (1) is what I referred to earlier as the ‘Diamond Theory’ of truth. It is far, far older than deductive geometry.”

Trudeau’s book was published in 1987. The non-Euclidean* figures above illustrate concepts from a 1976 monograph, also called “Diamond Theory.”

Although non-Euclidean,* the theorems of the 1976 “Diamond Theory” are also, in Trudeau’s terminology, diamonds.

* “Non-Euclidean” here means merely “other than  Euclidean.” No violation of Euclid’s parallel postulate is implied.

Thursday, February 28, 2019

Fooling

Filed under: General — m759 @ 10:12 AM

Galois (i.e., finite) fields described as 'deep modern algebra'

IMAGE- History of Mathematics in a Nutshell

The two books pictured above are From Discrete to Continuous ,
by Katherine Neal, and Geometrical Landscapes , by Amir Alexander.

Note: There is no Galois (i.e., finite) field with six elements, but
the theory  of finite fields underlies applications of six-set geometry.

Wednesday, February 13, 2019

April 18, 2003 (Good Friday), Continued

Filed under: General,Geometry — Tags: , — m759 @ 11:03 AM

"The purpose of mathematics cannot be derived from an activity 
inferior to it but from a higher sphere of human activity, namely,
religion."

Igor Shafarevitch, 1973 remark published as above in 1982.

"Perhaps."

— Steven H. Cullinane, February 13, 2019

From Log24 on Good Friday, April 18, 2003

. . . What, indeed, is truth?  I doubt that the best answer can be learned from either the Communist sympathizers of MIT or the “Red Mass” leftists of Georgetown.  For a better starting point than either of these institutions, see my note of April 6, 2001, Wag the Dogma.

See, too, In Principio Erat Verbum , which notes that “numbers go to heaven who know no more of God on earth than, as it were, of sun in forest gloom.”

Since today is the anniversary of the death of MIT mathematics professor Gian-Carlo Rota, an example of “sun in forest gloom” seems the best answer to Pilate’s question on this holy day.  See

The Shining of May 29.

“Examples are the stained glass windows
of knowledge.” — Vladimir Nabokov

AGEOMETRETOS MEDEIS EISITO

Motto of Plato’s Academy


 The Exorcist, 1973

Detail from an image linked to in the above footnote —

"And the darkness comprehended it not."

Id est :

A Good Friday, 2003, article by 
a student of Shafarevitch

" there are 25 planes in W . . . . Of course,
replacing {a,b,c} by the complementary set
does not change the plane. . . ."

Of course.

See. however, Six-Set Geometry in this  journal.

Thursday, March 29, 2018

“Before Creation Itself . . .”

Filed under: General,Geometry — Tags: — m759 @ 10:13 AM

 From the Diamond Theorem Facebook page —

A question three hours ago at that page

"Is this Time Cube?"

Notes toward an answer —

And from Six-Set Geometry in this journal . . .

Tuesday, May 2, 2017

Image Albums

Filed under: General,Geometry — Tags: — m759 @ 1:05 PM

Pinterest boards uploaded to the new m759.net/piwigo

Diamond Theorem 

Diamond Theorem Correlation

Miracle Octad Generator

The Eightfold Cube

Six-Set Geometry

Diamond Theory Cover

Update of May 2 —

Four-Color Decomposition

Binary Galois Spaces

The Galois Tesseract

Update of May 3 —

Desargues via Galois

The Tetrahedral Model

Solomon's Cube

Update of May 8 —

Art Space board created at Pinterest

Monday, May 30, 2016

Perfect Universe

Filed under: General,Geometry — Tags: — m759 @ 7:00 PM

(A sequel to the previous post, Perfect Number)

Since antiquity,  six has been known as
"the smallest perfect number." The word "perfect"
here means that a number is the sum of its 
proper divisors — in the case of six: 1, 2, and 3.

The properties of a six-element set (a "6-set") 
divided into three 2-sets and divided into two 3-sets
are those of what Burkard Polster, using the same 
adjective in a different sense, has called 
"the smallest perfect universe" — PG(3,2), the projective
3-dimensional space over the 2-element Galois field.

A Google search for the phrase "smallest perfect universe"
suggests a turnaround in meaning , if not in finance, 
that might please Yahoo CEO Marissa Mayer on her birthday —

The semantic  turnaround here in the meaning  of "perfect"
is accompanied by a model  turnaround in the picture  of PG(3,2) as
Polster's tetrahedral  model is replaced by Cullinane's square  model.

Further background from the previous post —

See also Kirkman's Schoolgirl Problem.

Saturday, December 6, 2014

Six-Point Theology

Filed under: General,Geometry — m759 @ 12:00 PM

On the feast of Saint Nicholas

See also the six  posts on this year's feast of Saint Andrew
and the following from the University  of St. Andrews —

Monday, October 21, 2019

Algebra and Space… Illustrated.

Filed under: General — Tags: , — m759 @ 4:26 PM

Related entertainment —

Detail:

   George Steiner

"Perhaps an insane conceit."

 

Perhaps.

 

See Quantum Tesseract Theorem .

 

Perhaps Not.

 

 See Dirac and Geometry .

Wednesday, October 9, 2019

The Joy of Six

Note that in the pictures below of the 15 two-subsets of a six-set,
the symbols 1 through 6 in Hudson's square array of 1905 occupy the
same positions as the anticommuting Dirac matrices in Arfken's 1985
square array. Similarly occupying these positions are the skew lines
within a generalized quadrangle (a line complex) inside PG(3,2).

Anticommuting Dirac matrices as spreads of projective lines

Related narrative The "Quantum Tesseract Theorem."

Friday, August 16, 2019

Nocciolo

Filed under: General — Tags: , , — m759 @ 10:45 AM

(Continued)

IMAGE- 'Nocciolo': A 'kernel' for Pascal's Hexagrammum Mysticum: The 15 2-subsets of a 6-set as points in a Galois geometry.

A revision of the above diagram showing
the Galois-addition-table structure —

Related tables from August 10

See "Schoolgirl Space Revisited."

Wednesday, July 31, 2019

The Epstein Chronicles, or:  Z is for Zorro

Filed under: General — Tags: , — m759 @ 8:54 PM

Zorro Ranch

The geometry of the 15 point-pairs in the previous post suggests a review:

From "Exploring Schoolgirl Space," July 8 —

The date  in the previous post — Oct. 9, 2018 — also suggests a review
of posts from that date now tagged Gen-Z:

Sunday, July 14, 2019

Old Pathways in Science:

Filed under: General — Tags: , — m759 @ 12:37 PM

The Quantum Tesseract Theorem Revisited

From page 274 — 

"The secret  is that the super-mathematician expresses by the anticommutation
of  his operators the property which the geometer conceives as  perpendicularity
of displacements.  That is why on p. 269 we singled out a pentad of anticommuting
operators, foreseeing that they would have an immediate application in describing
the property of perpendicular directions without using the traditional picture of space.
They express the property of perpendicularity without the picture of perpendicularity.

Thus far we have touched only the fringe of the structure of our set of sixteen E-operators.
Only by entering deeply into the theory of electrons could I show the whole structure
coming into evidence."

A related illustration, from posts tagged Dirac and Geometry —

Anticommuting Dirac matrices as spreads of projective lines

Compare and contrast Eddington's use of the word "perpendicular"
with a later use of the word by Saniga and Planat.

Friday, June 21, 2019

Cube Tales for Solstice Day

Filed under: General — Tags: , — m759 @ 3:45 PM

See also "Six-Set" in this journal
and "Cube Geometry Continues."

 
 

Friday, May 10, 2019

I Ching g6

Filed under: General — Tags: , , — m759 @ 12:25 PM

For fans of Resonance Science

"When the men on the chessboard
get up and tell you where to go …."

Desperately Seeking Resonance

Filed under: General — Tags: , , — m759 @ 10:46 AM

Continues

Also from Fall Equinox 2018 — Looney Tune for Physicists

Thursday, May 9, 2019

Blade and Chalice at the Museum

Filed under: General — Tags: — m759 @ 9:24 PM

(For other posts on the continuing triumph of entertainment
over truth, see a Log24 search for "Night at the Museum.")

See also yesterday's post When the Men and today's previous post.

Defense Against the Dark Arts

Filed under: General — Tags: , , — m759 @ 7:00 PM

F. Lanier Graham chess set (king-queen arrangement by the Wachowskis)

Wednesday, May 8, 2019

When the Men

Filed under: General — Tags: — m759 @ 6:33 PM

In Memoriam . . .

"When the men on the chessboard
get up and tell you where to go …."

"The I Ching encodes the geometry of the fabric of spacetime."

Sure it does.
 

Wednesday, May 1, 2019

For the First of May

Filed under: General — Tags: — m759 @ 9:00 AM

"The purpose of mathematics cannot be derived from an activity 
inferior to it but from a higher sphere of human activity, namely,
religion."

 Igor Shafarevitch in 1973

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

See also Ultron Cube.

Wednesday, February 27, 2019

Construction of PG(3,2) from K6

Filed under: General,Geometry — Tags: , , — m759 @ 11:38 AM

From this journal on April 23, 2013

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

From this journal in 2003

From Wikipedia on Groundhog Day, 2019

Tuesday, February 26, 2019

Citation

Filed under: General — Tags: , , , — m759 @ 12:00 PM

Some related material in this journal — See a search for k6.gif.

Some related material from Harvard —

Elkies's  "15 simple transpositions" clearly correspond to the 15 edges of
the complete graph K6 and to the 15  2-subsets of a 6-set.

For the connection to PG(3,2), see Finite Geometry of the Square and Cube.

The following "manifestation" of the 2-subsets of a 6-set might serve as
the desired Wikipedia citation —

See also the above 1986 construction of PG(3,2) from a 6-set
in the work of other authors in 1994 and 2002 . . .

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Monday, February 25, 2019

The Deep Six

Filed under: General,Geometry — Tags: , , , , — m759 @ 11:00 AM

". . . this notion of ‘depth’ is an elusive one
even for a mathematician who can recognize it. . . ."

— G. H. Hardy, A Mathematician's Apology

See Six-Set in this journal.

“Far from the shallow now”

Filed under: General,Geometry — Tags: , , , — m759 @ 12:06 AM

See posts tagged depth.

See as well Eddington Song and the previous post.

Monday, February 18, 2019

The Joy of Six

Filed under: General,Geometry — Tags: , , — m759 @ 3:00 PM


__________________________________________________________________________

See also the previous post.

I prefer the work of Josefine Lyche on the smallest perfect number/universe.

Context —

Lyche's Lynx760 installations and Vigeland's nearby Norwegian  clusterfuck.

Saturday, December 22, 2018

Cremona-Richmond

Filed under: General,Geometry — Tags: , — m759 @ 12:34 PM

The following are some notes on the history of Clifford algebras
and finite geometry suggested by the "Clifford Modules" link in a
Log24 post of March 12, 2005

A more recent appearance of the configuration —

Wednesday, December 12, 2018

An Inscape for Douthat

Some images, and a definition, suggested by my remarks here last night
on Apollo and Ross Douthat's remarks today on "The Return of Paganism" —

Detail of Feb. 20, 1986, note by Steven H. Cullinane on Weyl's 'relativity problem'

Kibler's 2008 'Variations on a theme' illustrated.

In finite geometry and combinatorics,
an inscape  is a 4×4 array of square figures,
each figure picturing a subset of the overall 4×4 array:


 

Related material — the phrase
"Quantum Tesseract Theorem" and  

A.  An image from the recent
      film "A Wrinkle in Time" — 

B.  A quote from the 1962 book —

"There's something phoney
in the whole setup, Meg thought.
There is definitely something rotten
in the state of Camazotz."

Sunday, November 18, 2018

Space Music

Filed under: General,Geometry — Tags: , , — m759 @ 9:27 AM

'The Eddington Song,' based on 'The Philosophy of Physical Science,' p. 141 (1939)

Update of Nov. 19 —

"Design is how it works." — Steve Jobs

See also www.cullinane.design.

Sunday, October 21, 2018

For Connoisseurs of Bad Art

Filed under: General — Tags: , — m759 @ 7:00 PM

Yesterday afternoon's post "Study in Blue and Pink" featured 
an image related to the "Blade and Chalice" of Dan Brown 

Requiem for a comics character known as "The Blue Blade" —

 

"We all float down here."

About the corresponding "Pink Chalice," the less said the better.

Saturday, October 20, 2018

Study in Blue and Pink

Filed under: General,Geometry — Tags: , — m759 @ 3:00 PM

Related Log24 posts — See Blade + Chalice.

Tuesday, September 25, 2018

Trinity

Filed under: General — Tags: , — m759 @ 10:10 AM

See some posts related to three names
associated with Trinity College, Cambridge —

Atiyah + Shaw + Eddington .

Saturday, September 1, 2018

Ron Shaw — D. 21 June 2016

The date of Ron Shaw's 2016 death appears to be June 21:

http://www.log24.com/log/pix18/180901-Ron_Shaw-d_21_June_2016-LMS-500w.jpg

All other Internet sources I have seen omit the June 21 date.

This  journal on that date —

http://www.log24.com/log/pix18/180901-The_Central_Structure-21_June_2016.jpg

Monday, August 27, 2018

Children of the Six Sides

Filed under: General,Geometry — Tags: — m759 @ 11:32 AM

http://www.log24.com/log/pix18/180827-Terminator-3-tx-arrival-publ-160917.jpg

http://www.log24.com/log/pix18/180827-Terminator-3-tx-arrival-publ-161018.jpg

From the former date above —

Saturday, September 17, 2016

A Box of Nothing

Filed under: Uncategorized — m759 @ 12:13 AM

(Continued)

"And six sides to bounce it all off of.

From the latter date above —

Tuesday, October 18, 2016

Parametrization

Filed under: Uncategorized — m759 @ 6:00 AM

The term "parametrization," as discussed in Wikipedia, seems useful for describing labelings that are not, at least at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space plus the 15 two-subsets of a six-set (Hudson, 1905) or by a blank plus the 5 elements and the 10 two-subsets of a five-set (derived in 2014 from a 1906 page by Whitehead), or by a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization" is not limited to vector-space  coordinates. He describes it as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space coordinates, admit a group of transformations among themselves that can be used to describe transformations of the point-space being coordinatized.)

From March 2018 —

http://www.log24.com/log/pix18/180827-MIT-Rubik-Robot.jpg

Monday, March 12, 2018

“Quantum Tesseract Theorem?”

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 AM

Remarks related to a recent film and a not-so-recent film.

For some historical background, see Dirac and Geometry in this journal.

Also (as Thas mentions) after Saniga and Planat —

The Saniga-Planat paper was submitted on December 21, 2006.

Excerpts from this  journal on that date —

A Halmos tombstone and the tale of HAL and the pod bay doors

     "Open the pod bay doors, HAL."

Saturday, February 17, 2018

The Binary Revolution

Filed under: General,Geometry — Tags: , — m759 @ 5:00 PM

Michael Atiyah on the late Ron Shaw

Phrases by Atiyah related to the importance in mathematics
of the two-element Galois field GF(2) —

  • "The digital revolution based on the 2 symbols (0,1)"
  • "The algebra of George Boole"
  • "Binary codes"
  • "Dirac's spinors, with their up/down dichotomy"

These phrases are from the year-end review of Trinity College,
Cambridge, Trinity Annual Record 2017 .

I prefer other, purely geometric, reasons for the importance of GF(2) —

  • The 2×2 square
  • The 2x2x2 cube
  • The 4×4 square
  • The 4x4x4 cube

See Finite Geometry of the Square and Cube.

See also today's earlier post God's Dice and Atiyah on the theology of 
(Boolean) algebra vs. (Galois) geometry:

God’s Dice

Filed under: General,Geometry — Tags: , — m759 @ 10:45 AM

On a Trinity classmate of Ian Macdonald (see previous post)—

Atiyah's eulogy of Shaw in Trinity Annual Record 2017 
is on pages 137 through 146.  The conclusion —

 

Friday, February 2, 2018

For Plato’s Cave

Filed under: General,Geometry — Tags: , , — m759 @ 12:06 PM

"Plato's allegory of the cave describes prisoners,
inhabiting the cave since childhood, immobile,
facing an interior wall. A large fire burns behind
the prisoners, and as people pass this fire their
shadows are cast upon the cave's wall, and
these shadows of the activity being played out
behind the prisoner become the only version of
reality that the prisoner knows."

— From the Occupy Space gallery in Ireland

IMAGE- Patrick McGoohan as 'The Prisoner,' with lapel button that says '6.'

Tuesday, October 10, 2017

Another 35-Year Wait

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 9:00 PM

The title refers to today's earlier post "The 35-Year Wait."

A check of my activities 35 years ago this fall, in the autumn
of 1982, yields a formula I prefer to the nonsensical, but famous,
"canonical formula" of Claude Lévi-Strauss.

The Lévi-Strauss formula

My "inscape" formula, from a note of Sept. 22, 1982 —

S = f ( f ( X ) ) .

Some mathematics from last year related to the 1982 formula —

Koen Thas, 'Unextendible Mututally Unbiased Bases' (2016)

See also Inscape in this  journal and posts tagged Dirac and Geometry.

Tuesday, September 12, 2017

Goals

Filed under: General,Geometry — Tags: — m759 @ 12:18 PM

"Truth and clarity remained his paramount goals…"

— Benedict Nightingale in today's online New York TImes  on an
English theatre director, founder of the Royal Shakespeare Company,
who reportedly died yesterday at 86.

See also Paramount in this  journal.

Monday, September 11, 2017

New Depth

Filed under: General,Geometry — Tags: — m759 @ 9:48 PM

A sentence from the New York Times Wire  discussed in the previous post

NYT Wire on Len Wein: 'Through characters like Wolverine and Swamp Thing, he helped bring a new depth to his art form.'

"Through characters like Wolverine and Swamp Thing,
he helped bring a new depth to his art form."

For Wolverine and Swamp Thing in posts related to a different
art form — geometry — see …

Monday, June 26, 2017

Upgrading to Six

This post was suggested by the previous post — Four Dots —
and by the phrase "smallest perfect" in this journal.

Related material (click to enlarge) —

Detail —

From the work of Eddington cited in 1974 by von Franz —

See also Dirac and Geometry and Kummer in this journal.

Updates from the morning of June 27 —

Ron Shaw on Eddington's triads "associated in conjugate pairs" —

For more about hyperbolic  and isotropic  lines in PG(3,2),
see posts tagged Diamond Theorem Correlation.

For Shaw, in memoriam — See Contrapuntal Interweaving and The Fugue.

Thursday, May 25, 2017

The Story of Six Continues

Filed under: General,Geometry — Tags: , — m759 @ 6:00 AM

A post of March 22, 2017, was titled "The Story of Six."

Related material from that date —

"I meant… a larger map." — Number Six in "The Prisoner"

Wednesday, April 26, 2017

A Tale Unfolded

Filed under: General,Geometry — Tags: , , — m759 @ 2:00 AM

A sketch, adapted tonight from Girl Scouts of Palo Alto

From the April 14 noon post High Concept

From the April 14 3 AM post Hudson and Finite Geometry

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

From the April 24 evening post The Trials of Device

Pentagon with pentagram    

Note that Hudson's 1905 "unfolding" of even and odd puts even on top of
the square array, but my own 2013 unfolding above puts even at its left.

Sunday, March 26, 2017

Seagram Studies

Filed under: General,Geometry — Tags: — m759 @ 9:00 PM

From a search in this journal for Seagram + Tradition

Related art:  Saturday afternoon's Twin Pillars of Symmetry.

Saturday, March 25, 2017

Twin Pillars of Symmetry

Filed under: General,Geometry — Tags: — m759 @ 1:00 PM

The phrase "twin pillars" in a New York Times  Fashion & Style
article today suggests a look at another pair of pillars —

This pair, from the realm of memory, history, and geometry disparaged
by the late painter Mark Rothko, might be viewed by Rothko
as  "parodies of ideas (which are ghosts)." (See the previous post.)

For a relationship between a 3-dimensional simplex and the {4, 3, 3},
see my note from May 21, 2014, on the tetrahedron and the tesseract.

Like Decorations in a Cartoon Graveyard

Filed under: General,Geometry — Tags: — m759 @ 4:00 AM

Continued from April 11, 2016, and from

A tribute to Rothko suggested by the previous post

For the idea  of Rothko's obstacles, see Hexagram 39 in this journal.

Wednesday, March 22, 2017

The Story of Six

Filed under: General,Geometry — Tags: , , — m759 @ 8:01 PM

On a psychotherapist who died at 86 on Monday —

"He studied mathematics and statistics at the Courant Institute,
a part of New York University — he would later write   a
mathematical fable, Numberland  (1987)."

The New York Times  online this evening
 


 

From Publishers Weekly

This wry parable by a psychotherapist contains one basic message: though death is inevitable, each moment in life is to be cherished. In the orderly but sterile kingdom of Numberland, digits live together harmoniously under a rigid president called The Professor. Their stable society is held intact by the firm conviction that they are immortal: When has a number ever died? This placid universe is plunged into chaos when the inquisitive hero SIX crosses over into the human world and converses with a young mathematician. This supposedly impossible transition convinces the ruling hierarchy that if SIX can talk to a mortal, then the rest of the numbers are, after all, mortal. The digits conclude that any effort or achievement is pointless in the face of inevitable death, and the cipher society breaks down completely. The solution? Banish SIX to the farthest corners of kingdom. Weinberg (The Heart of Psychotherapy ) uses his fable to gently satirize the military, academics, politicians and, above all, psychiatrists. But his tale is basically inspirational; a triumphant SIX miraculously returns from exile and quells the turmoil by showing his fellow digits that knowledge of one's mortality should enrich all other experiences and that death ultimately provides a frame for the magnificent picture that is life. 

Copyright 1987 Reed Business Information, Inc.

See also The Prisoner in this journal.

Friday, February 3, 2017

Raiders of the Lost Chalice

Filed under: General — Tags: — m759 @ 9:30 AM

Personally, I prefer
the religious symbolism
of Hudson Hawk .

Sunday, December 25, 2016

Credit Where Due

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

See also Robert M. Pirsig in this journal on Dec. 26, 2012.

Saturday, December 24, 2016

Early X Piece

Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

In memory of an American artist whose work resembles that of
the Soviet constructivist Karl Ioganson (c. 1890-1929).

The American artist reportedly died on Thursday, Dec. 22, 2016.

"In fact, the (re-)discovery of this novel structural principle was made in 1948-49 by a young American artist whom Koleichuk also mentions, Kenneth Snelson. In the summer of 1948, Snelson had gone to study with Joseph Albers who was then teaching at Black Mountain College. . . . One of the first works he made upon his return home was Early X Piece  which he dates to December 1948 . . . . "

— "In the Laboratory of Constructivism:
      Karl Ioganson's Cold Structures,"
      by Maria GoughOCTOBER  Magazine, MIT,
      Issue 84, Spring 1998, pp. 91-117

The word "constructivism" also refers to a philosophy of mathematics.
See a Log24 post, "Constructivist Witness,"  of 1 AM ET on the above
date of death.

Thursday, December 22, 2016

The Laugh-Hospital

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

Constructivism in mathematics and the laughing academy

See also, from the above publication date, Hudson's Inscape.
The inscape is illustrated in posts now tagged Laughing Academy.

Constructivist Witness

Filed under: General,Geometry — Tags: — m759 @ 1:00 AM

The title refers to a philosophy of mathematics.

For those who prefer metaphor Folk Etymology.

See also Stages of Math at Princeton's  
Institute for Advanced Study in March 2013 —

— and in this journal starting in August 2014.

Monday, December 19, 2016

ART WARS

Filed under: General,Geometry — Tags: , — m759 @ 10:25 PM

See also all posts now tagged Memory, History, Geometry.

Tetrahedral Cayley-Salmon Model

Filed under: General,Geometry — Tags: , — m759 @ 9:38 AM

The figure below is one approach to the exercise
posted here on December 10, 2016.

Tetrahedral model (minus six lines) of the large Desargues configuration

Some background from earlier posts —


IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click the image below to enlarge it.

Polster's tetrahedral model of the small Desargues configuration

Sunday, December 18, 2016

Two Models of the Small Desargues Configuration

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

Click image to enlarge.

Polster's tetrahedral model of the small Desargues configuration

See also the large  Desargues configuration in this journal.

Saturday, December 17, 2016

Tetrahedral Death Star

Filed under: General,Geometry — Tags: , — m759 @ 10:00 PM

Continuing the "Memory, History, Geometry" theme
from yesterday

See Tetrahedral,  Oblivion,  and Tetrahedral Oblivion.

IMAGE- From 'Oblivion' (2013), the Mother Ship

"Welcome home, Jack."

Friday, December 16, 2016

Read Something That Means Something

Filed under: General,Geometry — Tags: — m759 @ 5:29 PM

Rothko’s Swamps

Filed under: General,Geometry — Tags: — m759 @ 2:45 AM

"… you don’t write off an aging loved one
just because he or she becomes cranky."

— Peter Schjeldahl on Rothko in The New Yorker ,
issue dated December 19 & 26, 2016, page 27

He was cranky in his forties too —

See Rothko + Swamp in this journal.

Related attitude —

From Subway Art for Times Square Church , Nov. 7

Tuesday, December 13, 2016

The Thirteenth Novel

Filed under: General,Geometry — Tags: — m759 @ 4:00 PM

John Updike on Don DeLillo's thirteenth novel, Cosmopolis

" DeLillo’s post-Christian search for 'an order at some deep level'
has brought him to global computerization:
'the zero-oneness of the world, the digital imperative . . . . ' "

The New Yorker , issue dated March 31, 2003

On that date ….

Related remark —

" There is a pleasantly discursive treatment 
of Pontius Pilate’s unanswered question
‘What is truth?’ "

— Coxeter, 1987, introduction to Trudeau’s
     The Non-Euclidean Revolution

Saturday, December 10, 2016

Folk Etymology

Images from Burkard Polster's Geometrical Picture Book

See as well in this journal the large  Desargues configuration, with
15 points and 20 lines instead of 10 points and 10 lines as above.

Exercise:  Can the large Desargues configuration be formed
by adding 5 points and 10 lines to the above Polster model
of the small configuration in such a way as to preserve
the small-configuration model's striking symmetry?  
(Note: The related figure below from May 21, 2014, is not
necessarily very helpful. Try the Wolfram Demonstrations
model
, which requires a free player download.)

Labeling the Tetrahedral Model (Click to enlarge) —

Related folk etymology (see point a  above) —

Related literature —

The concept  of "fire in the center" at The New Yorker , 
issue dated December 12, 2016, on pages 38-39 in the
poem by Marsha de la O titled "A Natural History of Light."

Cézanne's Greetings.

Tuesday, October 18, 2016

Parametrization

Filed under: General,Geometry — Tags: — m759 @ 6:00 AM

The term "parametrization," as discussed in Wikipedia,
seems useful for describing labelings that are not, at least
at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space
plus the 15 two-subsets of a six-set (Hudson, 1905) or by a
blank plus the 5 elements and the 10 two-subsets of a five-set
(derived in 2014 from a 1906 page by Whitehead), or by 
a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than
the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively
a class of equivalent coordinatizations and to
ascertain the group of transformations S
mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization"
is not limited to vector-space  coordinates. He describes it
as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space 
coordinates, admit a group of transformations among themselves
that can be used to describe transformations of the point-space
being coordinatized.)

Thursday, September 15, 2016

The Smallest Perfect Number/Universe

Filed under: General,Geometry — Tags: , , — m759 @ 6:29 AM

The smallest perfect number,* six, meets
"the smallest perfect universe,"** PG(3,2).

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

  * For the definition of "perfect number," see any introductory
    number-theory text that deals with the history of the subject.
** The phrase "smallest perfect universe" as a name for PG(3,2),
     the projective 3-space over the 2-element Galois field GF(2),
     was coined by math writer Burkard Polster. Cullinane's square
     model of PG(3,2) differs from the earlier tetrahedral model
     discussed by Polster.

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: General,Geometry — Tags: , , , — m759 @ 10:00 PM

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Monday, September 12, 2016

The Kummer Lattice

Filed under: General,Geometry — Tags: , , , — m759 @ 2:00 PM

The previous post quoted Tom Wolfe on Chomsky's use of
the word "array." 

An example of particular interest is the 4×4  array
(whether of dots or of unit squares) —

      .

Some context for the 4×4 array —

The following definition indicates that the 4×4 array, when
suitably coordinatized, underlies the Kummer lattice .

Further background on the Kummer lattice:

Alice Garbagnati and Alessandra Sarti, 
"Kummer Surfaces and K3 surfaces
with $(Z/2Z)^4$ symplectic action." 
To appear in Rocky Mountain J. Math.

The above article is written from the viewpoint of traditional
algebraic geometry. For a less traditional view of the underlying
affine 4-space from finite  geometry, see the website
Finite Geometry of the Square and Cube.

Some further context

"To our knowledge, the relation of the Golay code
to the Kummer lattice is a new observation."

— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of
Kummer surfaces in the Mathieu group M24 
"

As noted earlier, Taormina and Wendland seem not to be aware of
R. W. H. T. Hudson's use of the (uncoordinatized*) 4×4 array in his
1905 book Kummer's Quartic Surface.  The array was coordinatized,
i.e. given a "vector space structure," by Cullinane eight years prior to
the cited remarks of Curtis.

* Update of Sept. 14: "Uncoordinatized," but parametrized  by 0 and
the 15 two-subsets of a six-set. See the post of Sept. 13.

Tuesday, August 9, 2016

Gestalt

Filed under: General,Geometry — Tags: , — m759 @ 9:29 PM

See "Smallest Perfect" and "We Are Six."

Tuesday, July 12, 2016

Group Elements and Skew Lines

Filed under: General,Geometry — Tags: — m759 @ 12:00 AM

The following passage by Igor Dolgachev (Good Friday, 2003
seems somewhat relevant (via its connection to Kummer's 166 )
to previous remarks here on Dirac matrices and geometry

Note related remarks from E. M. Bruins in 1959 —

First page of 'Configurations in Quantum Mechanics,' by E.M. Bruins, 1959

Friday, June 3, 2016

Bruins and van Dam

Filed under: General,Geometry — Tags: , — m759 @ 8:00 AM

A review of some recent posts on Dirac and geometry,
each of which mentions the late physicist Hendrik van Dam:

The first of these posts mentions the work of E. M. Bruins.
Some earlier posts that cite Bruins:

Monday, May 30, 2016

Perfect Number

Filed under: General,Geometry — Tags: — m759 @ 10:00 AM

"Ageometretos me eisito."—
"Let no one ignorant of geometry enter."—
Said to be a saying of Plato, part of the
seal of the American Mathematical Society—

For the birthday of Marissa Mayer, who turns 41 today —

VOGUE Magazine,
AUGUST 16, 2013 12:01 AM
by JACOB WEISBERG —

"As she works to reverse the fortunes of a failing Silicon Valley
giant, Yahoo’s Marissa Mayer has fueled a national debate
about the office life, motherhood, and what it takes to be the
CEO of the moment.

'I really like even numbers, and
I like heavily divisible numbers.
Twelve is my lucky number—
I just love how divisible it is.
I don’t like odd numbers, and
I really don’t like primes.
When I turned 37,
I put on a strong face, but
I was not looking forward to 37.
But 37 turned out to be a pretty amazing year.
Especially considering that
36 is divisible by twelve!'

A few things may strike you while listening to Marissa Mayer
deliver this riff . . . . "

Yes, they may.

A smaller number for Marissa's meditations:

Six has been known since antiquity as the first "perfect" number.
Why it was so called is of little interest to anyone but historians
of number theory  (a discipline that is not, as Wikipedia notes, 
to be confused with numerology .)

What part geometry , on the other hand, played in Marissa's education,
I do not know.

Here, for what it's worth, is a figure from a review of posts in this journal
on the key role played by the number six in geometry —

Wednesday, May 25, 2016

Framework

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

"Studies of spin-½ theories in the framework of projective geometry
have been undertaken before." — Y. Jack Ng  and H. van Dam
February 20, 2009

For one such framework,* see posts from that same date 
four years earlier — February 20, 2005.

* A 4×4 array. See the 19771978, and 1986 versions by 
Steven H. Cullinane,   the 1987 version by R. T. Curtis, and
the 1988 Conway-Sloane version illustrated below —

Cullinane, 1977

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Cullinane, 1978

Cullinane, 1986

Curtis, 1987

Update of 10:42 PM ET on Sunday, June 19, 2016 —

The above images are precursors to

Conway and Sloane, 1988

Update of 10 AM ET Sept. 16, 2016 — The excerpt from the
1977 "Diamond Theory" article was added above.

Kummer and Dirac

From "Projective Geometry and PT-Symmetric Dirac Hamiltonian,"
Y. Jack Ng  and H. van Dam, 
Physics Letters B , Volume 673, Issue 3,
23 March 2009, Pages 237–239

(http://arxiv.org/abs/0901.2579v2, last revised Feb. 20, 2009)

" Studies of spin-½ theories in the framework of projective geometry
have been undertaken before. See, e.g., Ref. [4]. 1 "

1 These papers are rather mathematical and technical.
The authors of the first two papers discuss the Dirac equation
in terms of the Plucker-Klein correspondence between lines of
a three-dimensional projective space and points of a quadric
in a five-dimensional projective space. The last paper shows
that the Dirac equation bears a certain relation to Kummer’s
surface, viz., the structure of the Dirac ring of matrices is 
related to that of Kummer’s 166 configuration . . . ."

[4]

O. Veblen
Proc. Natl. Acad. Sci. USA , 19 (1933), p. 503
Full Text via CrossRef

E.M. Bruins
Proc. Nederl. Akad. Wetensch. , 52 (1949), p. 1135

F.C. Taylor Jr., Master thesis, University of North Carolina
at Chapel Hill (1968), unpublished


A remark of my own on the structure of Kummer’s 166 configuration . . . .

See that structure in this  journal, for instance —

See as well yesterday morning's post.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface
.

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Ron Shaw on symplectic geometry and a linear complex in PG(3,2)

Monday, February 8, 2016

A Game with Four Letters

Filed under: General,Geometry — Tags: , — m759 @ 2:56 PM

Related material — Posts tagged Dirac and Geometry.

For an example of what Eddington calls "an open mind,"
see the 1958 letters of Nanavira Thera.
(Among the "Early Letters" in Seeking the Path ).

Saturday, November 21, 2015

The Zero System

Filed under: General,Geometry — Tags: — m759 @ 12:00 AM

For the title phrase, see Encyclopedia of Mathematics .
The zero system  illustrated in the previous post*
should not be confused with the cinematic Zero Theorem .

* More precisely, in the part showing the 15 lines fixed under
   a zero-system polarity in PG(3,2).  For the zero system 
   itself, see diamond-theorem correlation.

Friday, November 20, 2015

Anticommuting Dirac Matrices as Skew Lines

Filed under: General,Geometry — Tags: , — m759 @ 11:45 PM

(Continued from November 13)

The work of Ron Shaw in this area, ca. 1994-1995, does not
display explicitly the correspondence between anticommutativity
in the set of Dirac matrices and skewness in a line complex of
PG(3,2), the projective 3-space over the 2-element Galois field.

Here is an explicit picture —

Anticommuting Dirac matrices as spreads of projective lines

References:  

Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Shaw, Ron, "Finite Geometry, Dirac Groups, and the Table of
Real Clifford Algebras," undated article at ResearchGate.net

Update of November 23:

See my post of Nov. 23 on publications by E. M. Bruins
in 1949 and 1959 on Dirac matrices and line geometry,
and on another author who gives some historical background
going back to Eddington.

Some more-recent related material from the Slovak school of
finite geometry and quantum theory —

Saniga, 'Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits,' excerpt

The matrices underlying the Saniga paper are those of Pauli, not
those of Dirac, but these two sorts of matrices are closely related.

Thursday, November 19, 2015

Highlights of the Dirac-Mathieu Connection

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

For the connection of the title, see the post of Friday, November 13th, 2015.

For the essentials of this connection, see the following two documents —

Friday, November 13, 2015

A Connection between the 16 Dirac Matrices and the Large Mathieu Group



Note that the six anticommuting sets of Dirac matrices listed by Arfken
correspond exactly to the six spreads in the above complex of 15 projective
lines of PG(3,2) fixed under a symplectic polarity (the diamond theorem
correlation
 
). As I noted in 1986, this correlation underlies the Miracle
Octad Generator of R. T. Curtis, hence also the large Mathieu group.

References:

Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Related material:

The 6-set in my 1986 note above also appears in a 1996 paper on
the sixteen Dirac matrices by David M. Goodmanson —

Background reading:

Ron Shaw on finite geometry, Clifford algebras, and Dirac groups 
(undated compilation of publications from roughly 1994-1995)—

Thursday, March 26, 2015

The Möbius Hypercube

Filed under: General,Geometry — Tags: , — m759 @ 12:31 AM

The incidences of points and planes in the
Möbius 8 configuration (8 points and 8 planes,
with 4 points on each plane and 4 planes on each point),
were described by Coxeter in a 1950 paper.* 
A table from Monday's post summarizes Coxeter's
remarks, which described the incidences in
spatial terms, with the points and planes as the vertices
and face-planes of two mutually inscribed tetrahedra —

Monday's post, "Gallucci's Möbius Configuration,"
may not be completely intelligible unless one notices
that Coxeter has drawn some of the intersections in his 
Fig. 24, a schematic representation of the point-plane
incidences, as dotless, and some as hollow dots.  The figure,
"Gallucci's version of Möbius's 84," is shown below.
The hollow dots, representing the 8 points  (as opposed
to the 8 planes ) of the configuration, are highlighted in blue.

Here a plane  (represented by a dotless intersection) contains
the four points  that are represented in the square array as lying
in the same row or same column as the plane. 

The above Möbius incidences appear also much earlier in
Coxeter's paper, in figures 6 and 5, where they are shown
as describing the structure of a hypercube. 

In figures 6 and 5, the dotless intersections representing
planes have been replaced by solid dots. The hollow dots
have again been highlighted in blue.

Figures 6 and 5 demonstrate the fact that adjacency in the set of
16 vertices of a hypercube is isomorphic to adjacency in the set
of 16 subsquares of a square 4×4 array, provided that opposite
sides of the array are identified, as in Fig. 6. The digits in 
Coxeter's labels above may be viewed as naming the positions 
of the 1's in (0,1) vectors (x4, x3, x2, x1) over the two-element
Galois field.  In that context, the 4×4 array may be called, instead
of a Möbius hypercube , a Galois tesseract .

*  "Self-Dual Configurations and Regular Graphs," 
    Bulletin of the American Mathematical Society,
    Vol. 56 (1950), pp. 413-455

The subscripts' usual 1-2-3-4 order is reversed as a reminder
    that such a vector may be viewed as labeling a binary number 
    from 0  through 15, or alternately as labeling a polynomial in
    the 16-element Galois field GF(24).  See the Log24 post
     Vector Addition in a Finite Field (Jan. 5, 2013).

Monday, March 23, 2015

Gallucci’s Möbius Configuration

Filed under: General,Geometry — Tags: — m759 @ 12:05 PM

From H. S. M. Coxeter's 1950 paper
"Self-Dual Configurations and Regular Graphs," 
a 4×4 array and a more perspicuous rearrangement—

(Click image to enlarge.) 

The above rearrangement brings Coxeter's remarks into accord
with the webpage The Galois Tesseract.

Update of Thursday, March 26, 2015 —

For an explanation of Coxeter's Fig. 24, see Thursday's later
post titled "The Möbius Hypercube."

Sunday, August 24, 2014

Symplectic Structure…

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 PM

In the Miracle Octad Generator (MOG):

The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.

The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.

Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.

Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements  in two pictures, each showing 10 of the
3-subsets.

This pair of pictures corresponds to the 20 Rosenhain tetrads  among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads  among the 35 lines.

See Rosenhain and Göpel tetrads in PG(3,2). Some further background:

Wednesday, August 13, 2014

Symplectic Structure continued

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 PM

Some background for the part of the 2002 paper by Dolgachev and Keum
quoted here on January 17, 2014 —

Related material in this journal (click image for posts) —

Sunday, August 3, 2014

The Omega Matrix

Filed under: General,Geometry — Tags: , , — m759 @ 10:31 PM

Shown below is the matrix Omega from notes of Richard Evan Schwartz.
See also earlier versions (1976-1979) by Steven H. Cullinane.

IMAGE- The matrix Omega from notes of Richard Evan Schwartz. See also earlier versions (1977-1979) by Steven H. Cullinane.

Backstory:  The Schwartz Notes (June 1, 2011), and Schwartz on
the American Mathematical Society's current home page:

(Click to enlarge.)

Thursday, July 31, 2014

Zero System

Filed under: General,Geometry — Tags: , — m759 @ 6:11 PM

The title phrase (not to be confused with the film 'The Zero Theorem')
means, according to the Encyclopedia of Mathematics,
a null system , and

"A null system is also called null polarity,
a symplectic polarity or a symplectic correlation….
it is a polarity such that every point lies in its own
polar hyperplane."

See Reinhold Baer, "Null Systems in Projective Space,"
Bulletin of the American Mathematical Society, Vol. 51
(1945), pp. 903-906.

An example in PG(3,2), the projective 3-space over the
two-element Galois field GF(2):

IMAGE- The natural symplectic polarity in PG(3,2), illustrating a symplectic structure

See also the 10 AM ET post of Sunday, June 8, 2014, on this topic.

Friday, March 21, 2014

Three Constructions of the Miracle Octad Generator

Filed under: General,Geometry — Tags: , , — m759 @ 12:24 PM

IMAGE- Two constructions, by Turyn/Curtis, and by Conway, of the Miracle Octad Generator

See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.

Related material on the Turyn-Curtis construction
from the University of Cambridge —

— Slide by “Dr. Parker” — Apparently Richard A. Parker —
Lecture 4, “Discovering M24,” in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on “Sporadic and Related Groups.”
See also the Parker lectures of 2012-2013 on the same topic.

A third construction of Curtis’s 35  4×6  1976 MOG arrays would use
Cullinane’s analysis of the 4×4 subarrays’ affine and projective structure,
and point out the fact that Conwell’s 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis’s 1976 MOG.

See The Diamond Theorem,  Finite RelativityGalois Space,
Generating the Octad Generator, and The Klein Correspondence.

Update of March 22-March 23 —

Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1’s, all other squares as 0’s) of the 35  4×6 arrays of the 1976
Curtis MOG would then reveal*  the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35  MOG arrays.  For more
details of this “by-hand” construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction,  not  by hand (such as Turyn’s), of the
extended binary Golay code. See the Brouwer preprint quoted above.

* “Then a miracle occurs,” as in the classic 1977 Sidney Harris cartoon.

Illustration of array addition from March 23 —

IMAGE- Discovery of the S_3 action on bricks in the Conwell-Cullinane 'by-hand' approach to octad-building

Thursday, March 20, 2014

Classical Galois

Filed under: General,Geometry — Tags: , , — m759 @ 12:26 PM

IMAGE- The large Desargues configuration and Desargues's theorem in light of Galois geometry

Click image for more details.

To enlarge image, click here.

Thursday, February 6, 2014

The Representation of Minus One

Filed under: General,Geometry — Tags: , — m759 @ 6:24 AM

For the late mathematics educator Zoltan Dienes.

"There comes a time when the learner has identified
the abstract content of a number of different games
and is practically crying out for some sort of picture
by means of which to represent that which has been
gleaned as the common core of the various activities."

— Article by "Melanie" at Zoltan Dienes's website

Dienes reportedly died at 97 on Jan. 11, 2014.

From this journal on that date —

http://www.log24.com/log/pix11/110219-SquareRootQuaternion.jpg

A star figure and the Galois quaternion.

The square root of the former is the latter.

Update of 5:01 PM ET Feb. 6, 2014 —

An illustration by Dienes related to the diamond theorem —

See also the above 15 images in

http://www.log24.com/log/pix11/110220-relativprob.jpg

and versions of the 4×4 coordinatization in  The 4×4 Relativity Problem
(Jan. 17, 2014).

Friday, January 17, 2014

The 4×4 Relativity Problem

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 PM

The sixteen-dot square array in yesterday’s noon post suggests
the following remarks.

“This is the relativity problem:  to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The 1977 matrix Q is echoed in the following from 2002—

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

A different representation of Cullinane’s 1977 square model of the
16-point affine geometry over the two-element Galois field GF(2)
is supplied by Conway and Sloane in Sphere Packings, Lattices and Groups   
(first published in 1988) :

IMAGE- The Galois tesseract as a four-dimensional vector space, from a diagram by Conway and Sloane in 'Sphere Packings, Lattices, and Groups'

Here a, b, c, d   are basis vectors in the vector 4-space over GF(2).
(For a 1979 version of this vector space, see AMS Abstract 79T-A37.)

See also a 2011 publication of the Mathematical Association of America —

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

Saturday, December 21, 2013

House of Secrets*

Filed under: General,Geometry — m759 @ 6:01 PM

The title is taken from a book for ages 8-12 published
on Shakespeare's birthday, April 23, 2013.

Also from that date, a note for older readers—

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Half a dozen of the other —

For further context, see all  posts for the cruelest month of this past year.

* Secrets :  A sometimes dangerous word.

Friday, December 20, 2013

For Emil Artin

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

(On His Dies Natalis )

An Exceptional Isomorphism Between Geometric and
Combinatorial Steiner Triple Systems Underlies 
the Octads of the M24 Steiner System S(5, 8, 24).

This is asserted in an excerpt from… 

"The smallest non-rank 3 strongly regular graphs
​which satisfy the 4-vertex condition"
by Mikhail Klin, Mariusz Meszka, Sven Reichard, and Alex Rosa,
BAYREUTHER MATHEMATISCHE SCHRIFTEN 73 (2005), 152-212—

(Click for clearer image)

Note that Theorem 46 of Klin et al.  describes the role
of the Galois tesseract  in the Miracle Octad Generator
of R. T. Curtis (original 1976 version). The tesseract
(a 4×4 array) supplies the geometric  part of the above
exceptional geometric-combinatorial isomorphism.

Monday, November 11, 2013

The Mystic Hexastigm…

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 AM

Or: The Nutshell

What about Pascal?

For some background on Pascal's mathematics,
not his wager, see

Richmond, H. W., 
"On the Figure of Six Points in Space of Four Dimensions," 
Quarterly Journal of Pure and Applied Mathematics , 
Volume 31 (1900), pp. 125-160,
dated by Richmond March 30,1899

Richmond, H. W.,
"The Figure Formed from Six Points in Space of Four Dimensions,"
Mathematische Annalen , 
Volume 53 (1900), Issue 1-2, pp 161-176,
dated by Richmond February 1, 1899

See also Nocciolo  in this journal.

Recall as well that six points in space may,
if constrained to lie on a circle, be given
a religious interpretation.  Richmond's
six points are secular and more general.

Monday, October 14, 2013

Up and Down

Filed under: General — Tags: , — m759 @ 9:29 AM

Heraclitus, Fragment 60 (Diels number):

The way up and the way down is one and the same.

ὁδὸς ἄνω κάτω μία καὶ ὡυτή

hodòs áno káto mía kaì houté

— http://www.heraclitusfragments.com/B60/index.html

IMAGE- Fetzer on ambiguity in Mann's 'Doctor Faustus'

See also Blade and Chalice and, for a less Faustian
approach, Universe of Discourse.

IMAGE- Logic related to 'the arsenal of algebraic analysis tools for fields'

Further context:  Not Theology.

Saturday, September 21, 2013

Geometric Incarnation

The  Kummer 166  configuration  is the configuration of sixteen
6-sets within a 4×4 square array of points in which each 6-set
is determined by one of the 16 points of the array and
consists of the 3 other points in that point's row and the
3 other points in that point's column.

See Configurations and Squares.

The Wikipedia article Kummer surface  uses a rather poetic
phrase* to describe the relationship of the 166 to a number
of other mathematical concepts — "geometric incarnation."

Geometric Incarnation in the Galois Tesseract

Related material from finitegeometry.org —

IMAGE- 4x4 Geometry: Rosenhain and Göpel Tetrads and the Kummer Configuration

* Apparently from David Lehavi on March 18, 2007, at Citizendium .

Thursday, September 5, 2013

Moonshine II

Filed under: General,Geometry — Tags: , , , , , — m759 @ 10:31 AM

(Continued from yesterday)

The foreword by Wolf Barth in the 1990 Cambridge U. Press
reissue of Hudson's 1905 classic Kummer's Quartic Surface
covers some of the material in yesterday's post Moonshine.

The distinction that Barth described in 1990 was also described, and illustrated,
in my 1986 note "Picturing the smallest projective 3-space."  The affine 4-space
over the the finite Galois field GF(2) that Barth describes was earlier described—
within a 4×4 array like that pictured by Hudson in 1905— in a 1979 American
Mathematical Society abstract, "Symmetry invariance in a diamond ring."

"The distinction between Rosenhain and Goepel tetrads
is nothing but the distinction between isotropic and
non-isotropic planes in this affine space over the finite field."

The 1990 paragraph of Barth quoted above may be viewed as a summary
of these facts, and also of my March 17, 2013, note "Rosenhain and Göpel
Tetrads in PG(3,2)
."

Wednesday, August 21, 2013

The 21

Filed under: General,Geometry — Tags: — m759 @ 8:28 PM

A useful article on finite geometry,
"21 – 6 = 15: A Connection between Two Distinguished Geometries,"
by Albrecht Beutelspacher, American Mathematical Monthly ,
Vol. 93, No. 1, January 1986, pp. 29-41, is available for purchase
at JSTOR.

This article is related to the geometry of the six-set.
For some background, see remarks from 1986 at finitegeometry.org.

Friday, July 5, 2013

Mathematics and Narrative (continued)

Filed under: General,Geometry — Tags: , , — m759 @ 6:01 PM

Short Story — (Click image for some details.)

IMAGE- Andries Brouwer and the Galois Tesseract

Parts of a longer story —

The Galois Tesseract and Priority.

Monday, June 10, 2013

Galois Coordinates

Filed under: General,Geometry — Tags: , — m759 @ 10:30 PM

Today's previous post on coordinate systems
suggests a look at the phrase "Galois coordinates."

A search shows that the phrase, though natural,
has apparently not been used before 2011* for solutions
to what Hermann Weyl called "the relativity problem."

A thorough historical essay on Galois coordinatization
in this sense would require more academic resources
than I have available. It would likely describe a number
of applications of Galois-field coordinates to square
(and perhaps to cubical) arrays that were studied before
1976, the date of my Diamond Theory  monograph.

But such a survey might not  find any such pre-1976
coordinatization of a 4×4 array  by the 16 elements
of the vector 4-space  over the Galois field with two
elements, GF(2).

Such coordinatizations are important because of their
close relationship to the Mathieu group 24 .

See a preprint by Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group 24 ," with its remark
denying knowledge of any such coordinatization
prior to a 1989 paper by R. T. Curtis.

Related material: 

Some images related to Galois coordinates, excerpted
from a Google search today (click to enlarge)—

*  A rather abstract  2011 paper that uses the phrase
   "Galois coordinates" may have some implications 
   for the naive form of the relativity problem
   related to square and cubical arrays.

Saturday, June 1, 2013

Permanence

Filed under: General,Geometry — Tags: , , — m759 @ 4:00 PM

"What we do may be small, but it has
  a certain character of permanence."

— G. H. Hardy, A Mathematician's Apology

The diamond theorem  group, published without acknowledgment
of its source by the Mathematical Association of America in 2011—

IMAGE- The diamond-theorem affine group of order 322,560, published without acknowledgment of its source by the Mathematical Association of America in 2011

Tuesday, May 28, 2013

Codes

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 PM

The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Sunday, May 19, 2013

Priority Claim

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 AM

From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):

"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis
in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."

[Cur89] reference:
 R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 
32 (1989), 345-353 (received on
July 20, 1987).

— Anne Taormina and Katrin Wendland,
    "The overarching finite symmetry group of Kummer
      surfaces in the Mathieu group 24 ,"
     arXiv.org > hep-th > arXiv:1107.3834

"First mentioned by Curtis…."

No. I claim that to the best of my knowledge, the 
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.

Update of the above paragraph on July 6, 2013—

No. The vector space structure was described by
(for instance) Peter J. Cameron in a 1976
Cambridge University Press book —
Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pages 59 and 60.

The vector space structure as it occurs in a 4×4 array
of the sort that appears in the Curtis Miracle Octad
Generator may first have been pointed out by me,
Steven H. Cullinane,
 in an AMS abstract submitted in
October 1978, some nine years before the Curtis article.

See Notes on Finite Geometry for some background.

See in particular The Galois Tesseract.

For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).

Sunday, April 28, 2013

The Octad Generator

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 PM

… And the history of geometry  
Desargues, Pascal, Brianchon and Galois
in the light of complete n-points in space.

(Rewritten for clarity at about 10 AM ET April 29, with quote from Dowling added.
Updated with a reference to a Veblen and Young exercise (on p. 53) on April 30.)

Veblen and Young, Projective Geometry, Vol. I ,
Ginn and Company, 1910, page 39:

"The Desargues configuration. A very important configuration
is obtained by taking the plane section of a complete space five-point."

Each of figures 14 and 15 above has 15 points and 20 lines.
The Desargues configuration within each figure is denoted by
10 white points and 10 solid lines, with 3 points on each line and
3 lines on each point. Black  points and dashed  lines indicate the
complete space five-point and lines connecting it to the plane section
containing the Desargues configuration.

In a 1915 University of Chicago doctoral thesis, Archibald Henderson
used a complete space six -point to construct a configuration of
15 points and 20 lines in the context not of Desargues '  theorem, but
rather of Brianchon 's theorem and of the Pascal  hexagram.
Henderson's 1915 configuration is, it turns out, isomorphic to that of
the 15 points and 20 lines in the configuration constructed via a
complete space five -point five years earlier by Veblen and Young.
(See, in Veblen and Young's 1910 Vol. I, exercise 11, page 53:
"A plane section of a 6-point in space can  be considered as
3 triangles perspective in pairs from 3 collinear points with
corresponding sides meeting in 3 collinear points." This is the
large  Desargues configuration. See Classical Geometry in Light of 
Galois Geometry
.)

For this large  Desargues configuration see April 19.
For Henderson's complete six –point, see The Six-Set (April 23).
That post ends with figures relating the large  Desargues configuration
to the Galois  geometry PG(3,2) that underlies the Curtis
Miracle Octad Generator  and the large Mathieu group M24 —

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

See also Note on the MOG Correspondence from April 25, 2013.

That correspondence was also discussed in a note 28 years ago, on this date in 1985.

Thursday, April 25, 2013

Rosenhain and Göpel Revisited

Filed under: General,Geometry — Tags: , — m759 @ 5:24 PM

Some historical background for today's note on the geometry
underlying the Curtis Miracle Octad Generator (MOG):

IMAGE- Bateman in 1906 on Rosenhain and Göpel tetrads

The above incidence diagram recalls those in today's previous post
on the MOG, which is used to construct the large Mathieu group M24.

For some related material that is more up-to-date, search the Web
for Mathieu + Kummer .

Note on the MOG Correspondence

Filed under: General,Geometry — Tags: , — m759 @ 4:15 PM

In light of the April 23 post "The Six-Set,"
the caption at the bottom of a note of April 26, 1986
seems of interest:

"The R. T. Curtis correspondence between the 35 lines and the
2-subsets and 3-subsets of a 6-set. This underlies M24."

A related note from today:

IMAGE- Three-sets in the Curtis MOG

Saturday, April 6, 2013

Pascal via Curtis

Filed under: General,Geometry — Tags: , — m759 @ 9:17 AM

Click image for some background.

IMAGE- The Miracle Octad Generator (MOG) of R.T. Curtis

Shown above is a rearranged version of the
Miracle Octad Generator (MOG) of R. T. Curtis
("A new combinatorial approach to M24,"
Math. Proc. Camb. Phil. Soc., 79 (1976), 25-42.)

The 8-subcell rectangles in the left part of the figure may be
viewed as illustrating (if the top left subcell is disregarded)
the thirty-five 3-subsets of a 7-set.

Such a view relates, as the remarks below show, the
MOG's underlying Galois geometry, that of PG(3,2), to
the hexagrammum mysticum  of Pascal.

On Danzer's 354 Configuration:

IMAGE- Branko Grünbaum on Danzer's configuration
 

"Combinatorially, Danzer’s configuration can be interpreted
as defined by all 3-sets and all 4-sets that can be formed
by the elements of a 7-element set; each 'point' is represented
by one of the 3-sets, and it is incident with those lines
(represented by 4-sets) that contain the 3-set."

— Branko Grünbaum, "Musings on an Example of Danzer's,"
European Journal of Combinatorics , 29 (2008),
pp. 1910–1918 (online March 11, 2008)

"Danzer's configuration is deeply rooted in
Pascal's Hexagrammum Mysticum ."

— Marko Boben, Gábor Gévay, and Tomaž Pisanski,
"Danzer's Configuration Revisited," arXiv.org, Jan. 6, 2013

For an approach to such configurations that differs from
those of Grünbaum, Boben, Gévay, and Pisanski, see

Classical Geometry in Light of Galois Geometry.

Grünbaum has written little about Galois geometry.
Pisanski has recently touched on the subject;
see Configurations in this journal (Feb. 19, 2013).

Thursday, February 28, 2013

Paperweights

Filed under: General,Geometry — Tags: , — m759 @ 1:06 PM

A different dodecahedral space (Log24 on Oct. 3, 2011)—

R. T. Curtis, symmetric generation of M12 in a dodecahedron

Wednesday, February 13, 2013

Form:

Filed under: General,Geometry — Tags: , — m759 @ 9:29 PM

Story, Structure, and the Galois Tesseract

Recent Log24 posts have referred to the 
"Penrose diamond" and Minkowski space.

The Penrose diamond has nothing whatever
to do with my 1976 monograph "Diamond Theory,"
except for the diamond shape and the connection
of the Penrose diamond to the Klein quadric—

IMAGE- The Penrose diamond and the Klein quadric

The Klein quadric occurs in the five-dimensional projective space
over a field. If the field is the two-element Galois field GF(2), the
quadric helps explain certain remarkable symmetry properties 
of the R. T. Curtis Miracle Octad Generator  (MOG), hence of
the large Mathieu group M24. These properties are also 
relevant to the 1976 "Diamond Theory" monograph.

For some background on the quadric, see (for instance)

IMAGE- Stroppel on the Klein quadric, 2008

See also The Klein Correspondence,
Penrose Space-Time, and a Finite Model
.

Related material:

"… one might crudely distinguish between philosophical
and mathematical motivation. In the first case one tries
to convince with a telling conceptual story; in the second
one relies more on the elegance of some emergent
mathematical structure. If there is a tradition in logic
it favours the former, but I have a sneaking affection for
the latter. Of course the distinction is not so clear cut.
Elegant mathematics will of itself tell a tale, and one with
the merit of simplicity. This may carry philosophical
weight. But that cannot be guaranteed: in the end one
cannot escape the need to form a judgement of significance."

– J. M. E. Hyland. "Proof Theory in the Abstract." (pdf)
Annals of Pure and Applied Logic 114, 2002, 43-78.

Those who prefer story to structure may consult 

  1. today's previous post on the Penrose diamond
  2. the remarks of Scott Aaronson on August 17, 2012
  3. the remarks in this journal on that same date
  4. the geometry of the 4×4 array in the context of M24.
Older Posts »

Powered by WordPress