Sunday, July 29, 2012

The Galois Tesseract

Filed under: General,Geometry — Tags: , — m759 @ 11:00 PM


The three parts of the figure in today's earlier post "Defining Form"—

IMAGE- Hyperplanes (square and triangular) in PG(3,2), and coordinates for AG(4,2)

— share the same vector-space structure:

   0     c     d   c + d
   a   a + c   a + d a + c + d
   b   b + c   b + d b + c + d
a + b a + b + c a + b + d   a + b + 
  c + d

   (This vector-space a b c d  diagram is from  Chapter 11 of 
    Sphere Packings, Lattices and Groups , by John Horton
    Conway and N. J. A. Sloane, first published by Springer
    in 1988.)

The fact that any  4×4 array embodies such a structure was implicit in
the diamond theorem (February 1979). Any 4×4 array, regarded as
a model of the finite geometry AG(4, 2), may be called a Galois tesseract.
(So called because of the Galois geometry involved, and because the
16 cells of a 4×4 array with opposite edges identified have the same
adjacency pattern as the 16 vertices of a tesseract (see, for instance,
Coxeter's 1950 "Self-Dual Configurations and Regular Graphs," figures
5 and 6).)

A 1982 discussion of a more abstract form of AG(4, 2):


The above 1982 remarks by Brouwer may or may not have influenced
the drawing of the above 1988 Conway-Sloane diagram.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress