See posts tagged Tsimtsum and, more specifically, Mother Church.
Women and Children First
Two Students of Structure
A comment on Sean Kelly's Christmas Morning column on "aliveness"
in the New York Times philosophy series The Stone —
Diana Senechal's 1999 doctoral thesis at Yale was titled
"Diabolical Structures in the Poetics of Nikolai Gogol."
Her mother, Marjorie Senechal, has written extensively on symmetry
and served as editorinchief of The Mathematical Intelligencer .
From a 2013 memoir by Marjorie Senechal —
"While I was in Holland my enterprising student assistant at Smith had found, in Soviet Physics – Crystallography, an article by N. N. Sheftal' on tetrahedral penetration twins. She gave it to me on my return. It was just what I was looking for. The twins Sheftal' described had evidently begun as (111) contact twins, with the two crystallites rotated 60^{o} with respect to one another. As they grew, he suggested, each crystal overgrew the edges of the other and proceeded to spread across the adjacent facet. When all was said and done, they looked like they'd grown through each other, but the reality was overandaround. Brilliant! I thought. Could I apply this to cubes? No, evidently not. Cube facets are all (100) planes. But . . . these crystals might not have been cubes in their earliest stages, when twinning occurred! I wrote a paper on "The mechanism of certain growth twins of the penetration type" and sent it to Martin Buerger, editor of Neues Jarbuch für Mineralogie. This was before the Wrinch symposium; I had never met him. Buerger rejected it by return mail, mostly on the grounds that I hadn't quoted any of Buerger's many papers on twinning. And so I learned about turf wars in twin domains. In fact I hadn't read his papers but I quickly did. I added a reference to one of them, the paper was published, and we became friends.[5]
After reading Professor Sheftal's paper I wrote to him in Moscow; a warm and encouraging correspondence ensued, and we wrote a paper together long distance.[6] Then I heard about the scientific exchanges between the Academies of Science of the USSR and USA. I applied to spend a year at the Shubnikov Institute for Crystallography, where Sheftal' worked. I would, I proposed, study crystal growth with him, and color symmetry with Koptsik. To my delight, I was accepted for an 11month stay. Of course the children, now 11 and 14, would come too and attend Russian schools and learn Russian; they'd managed in Holland, hadn't they? Diana, my older daughter, was as delighted as I was. We had gone to Holland on a Russian boat, and she had fallen in love with the language. (Today she holds a Ph.D. in Slavic Languages and Literature from Yale.) . . . . 
Philosophy professors and those whose only interest in mathematics
is as a path to the occult may consult the Log24 posts tagged Tsimtsum.
In memory of Yale art historian Vincent Scully, who reportedly
died at 97 last night at his home in Lynchburg, Va., some remarks
from the firm of architect John Outram and from Scully —
Update from the morning of December 2 —
The above 3×3 figure is of course not unrelated to
the 4×4 figure in The Matrix for Quantum Mystics:
.
See as well Tsimtsum in this journal.
From The Atlantic , September 2017 issue, online —
"How America Lost Its Mind," by former Harvard Lampoon
writer Kurt Andersen —
The Atlantic 's embedded Google ad for "Quantum Space Elements"
is, by the way, completely unrelated to similarsounding work on
models of space in finite geometry (cf. tsimtsum ) . . .
A post suggested by the word tzimtzum (see Wednesday)
or tsimtsum (see this morning) —
Lifeboat from the Tsimtsum in Life of Pi —
Another sort of tsimtsum, contracting infinite space to a finite space —
"Much like the irrational number pi,
the primal tsimtsum transforms
an infinite circle into a measured line."
— Tzvi Freeman at Chabad.org
The College Mathematics Journal , 46, No. 3 (May 2015), pp. 162–171
From Gravity's Rainbow ((Penguin Classics paperback, June 1, 1995) —
Background: Rosenhain and Göpel Tetrads in PG(3,2)
Introduction: The Large Desargues Configuration Added by Steven H. Cullinane on Friday, April 19, 2013 Desargues' theorem according to a standard textbook:
"If two triangles are perspective from a point The converse, from the same book:
"If two triangles are perspective from a line
Desargues' theorem according to Wikipedia
"Two triangles are in perspective axially [i.e., from a line]
A figure often used to illustrate the theorem,
A discussion of the "if and only if" version of the theorem
This large Desargues configuration involves a third triangle,
Pointline incidence in this larger configuration is,
The third triangle, within the larger configuration,

A connection discovered today (April 1, 2013)—
(Click to enlarge the image below.)
Update of April 18, 2013
Note that Baker's Desarguestheorem figure has three triangles,
ABC, A'B'C', A"B"C", instead of the two triangles that occur in
the statement of the theorem. The third triangle appears in the
course of proving, not just stating, the theorem (or, more precisely,
its converse). See, for instance, a note on a standard textbook for
further details.
(End of April 18, 2013 update.)
Update of April 14, 2013
See Baker's Proof (Edited for the Web) for a detailed explanation
of the above picture of Baker's Desarguestheorem frontispiece.
(End of April 14, 2013 update.)
Update of April 12, 2013
A different figure, from a site at National Tsing Hua University,
shows the three triangles of Baker's figure more clearly:
(End of update of April 12, 2013)
Update of April 13, 2013
Another in a series of figures illustrating
Desargues's theorem in light of Galois geometry:
See also the original VeblenYoung figure in context.
(End of update of April 13, 2013)
Rota's remarks, while perhaps not completely accurate, provide some context
for the above DesarguesRosenhain connection. For some other context,
see the interplay in this journal between classical and finite geometry, i.e.
between Euclid and Galois.
For the recent context of the above finitegeometry version of Baker's Vol. I
frontispiece, see Sunday evening's finitegeometry version of Baker's Vol. IV
frontispiece, featuring the Göpel, rather than the Rosenhain, tetrads.
For a 1986 illustration of Göpel and Rosenhain tetrads (though not under
those names), see Picturing the Smallest Projective 3Space.
In summary… the following classicalgeometry figures
are closely related to the Galois geometry PG(3,2):
Volume I of Baker's Principles has a cover closely related to the Rosenhain tetrads in PG(3,2) 
Volume IV of Baker's Principles has a cover closely related to the Göpel tetrads in PG(3,2) 
Foundations (click to enlarge)

Higher Geometry (click to enlarge)

Powered by WordPress