Log24

Wednesday, January 31, 2024

Family Values for Phil and Lily Collins

Filed under: General — Tags: — m759 @ 10:19 am

"Yes, you'll be goin' loco
  down in Acapulco,

  the magic down there
  is so strong."

This song is from the 1988 film "Buster."

(Wikipedia: "Buster  is a 1988 British
romantic crime comedy-drama
based on events from the Great Train Robbery,
starring Phil Collins….")

For a related religious use of that name —
"Look, Buster, do you want to live?" —
see Fritz Leiber's "Damnation Morning."

Yesterday, January 30, 2024, was Phil Collins's birthday.

Dies Natalis

Filed under: General — Tags: , — m759 @ 8:18 am

The New York Times  reports the death yesterday, January 30, 2024,
of the wife of Beach Boys co-founder Brian Wilson.

According to the Catholic Church, therefore, yesterday was her
dies natalis — day of birth into heaven.

According to the Times, her secular  dies natalis  was Oct. 3 (10/03) —

"Melinda Kae Ledbetter was born on Oct. 3, 1946, in Pueblo, Colo."

According to this  journal, yesterday's significant "10 03" was a time

Fans of hallucinatory fiction might recall a saying of Philip Pullman:

"The meaning of a story emerges in the meeting
between the words on the page
and the thoughts in the reader's mind.
So when people ask me what I meant by this story,
or what was the message I was trying to convey in that one,
I have to explain that I'm not going to explain.

Anyway, I'm not in the message business;
I'm in the 'Once upon a time' business."

Words that are somewhat less hallucinatory —

Tuesday, January 30, 2024

The Library Corner

Filed under: General — Tags: — m759 @ 10:03 am

Later . . .

Cullinane Diamond Theorem:
The Latest Google Bard Version

Filed under: General — Tags: , , , — m759 @ 7:00 am
 

Prompt:

What is the Cullinane diamond theorem?

Google Bard Response:

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and symmetry. It focuses on a specific pattern – the four-diamond figure – and reveals a surprising property about its transformations.

The Four-Diamond Figure:

Imagine a 4×4 grid filled with 16 small squares, half colored black and half white. Now, divide these squares diagonally into quarters, creating four diamonds with alternating black and white shades. This arrangement is the four-diamond figure.

_________________


[Clearly erroneous illustration with link to amazon.com
is omitted.]

_____________________

The Theorem:

The Cullinane diamond theorem states that no matter how you scramble this four-diamond figure by randomly shuffling rows, columns, and the four 2×2 quadrants, the resulting pattern will always exhibit some form of symmetry. This symmetry can come in two forms:

Ordinary symmetry: This is the familiar reflectional symmetry where a vertical or horizontal axis divides the pattern into mirrored halves.

Color-interchange symmetry: Here, the pattern has a diagonal axis where swapping the black and white colors results in the same image.

Intriguing Implications:

This statement might seem intuitive at first. After all, even with scrambling, some semblance of order should remain. However, the beauty of the Cullinane diamond theorem lies in its generality and the precise mathematical framework it provides for understanding these symmetries.

The theorem sheds light on the underlying structure of graphic patterns and connects them to concepts from finite projective geometry. This connection allows us to analyze and classify these patterns in a systematic way, revealing hidden connections and surprising symmetries.

Applications and Beyond:

The Cullinane diamond theorem has found applications in various areas, including:

Sporadic simple groups: The Miracle Octad Generator, used to study these rare and exceptional groups, relies on the symmetry properties outlined in the theorem.

Orthogonal Latin squares: The connection between orthogonal Latin squares and projective spreads can be understood through the lens of the Cullinane diamond theorem.

Walsh functions: The symmetry properties of Walsh functions, used in signal processing and coding theory, can be linked to the diamond patterns.

Understanding the Cullinane diamond theorem offers a deeper appreciation for the interplay between symmetry, geometry, and seemingly random patterns. It serves as a testament to the beauty and hidden order within the realm of mathematics.

Bard may display inaccurate info, including . . . .

[Exercise … Find any inaccurate information
in the Bard response above.]

Powered by WordPress