For an example of "anonymous content" (the title of the
previous post), see a search for "2×4" in this journal.
For an example of "anonymous content" (the title of the
previous post), see a search for "2×4" in this journal.
My statement yesterday morning that the 15 points
of the finite projective space PG(3,2) are indivisible
was wrong. I was misled by quoting the powerful
rhetoric of Lincoln Barnett (LIFE magazine, 1949).
Points of Euclidean space are of course indivisible:
"A point is that which has no parts" (in some translations).
And the 15 points of PG(3,2) may be pictured as 15
Euclidean points in a square array (with one point removed)
or tetrahedral array (with 11 points added).
The geometry of PG(3,2) becomes more interesting,
however, when the 15 points are each divided into
several parts. For one approach to such a division,
see Mere Geometry. For another approach, click on the
image below.
There are various ways to coordinatize a 3×3 array
(the Chinese "Holy Field'). Here are some —
See Cullinane, Coxeter, and Knight tour.
"Why is it called Windows 10 and not Windows 9?"
Good question.
See Sunday School (Log24 on June 13, 2010) —
.
A post of July 7, Haiku for DeLillo, had a link to posts tagged "Holy Field GF(3)."
As the smallest Galois field based on an odd prime, this structure
clearly is of fundamental importance.
It is, however, perhaps too small to be visually impressive.
A larger, closely related, field, GF(9), may be pictured as a 3×3 array…
… hence as the traditional Chinese Holy Field.
Marketing the Holy Field
The above illustration of China's Holy Field occurred in the context of
Log24 posts on Child Buyers. For more on child buyers, see an excellent
condemnation today by Diane Ravitch of the U. S. Secretary of Education.
A comment on the Scholarly Kitchen piece from
this morning's previous post —
This suggests …
The Beast from Hell's Kitchen
For some thoughts on mapping trees into
linear arrays, see The Forking (March 20, 2015).
See also Pitchfork in this journal.
Holy Saturday is, according to tradition, the day of
the harrowing of Hell.
Notes:
The above passage on "Die Figuren der vier Modi
im Magischen Quadrat " should be read in the context of
a Log24 post from last year's Devil's Night (the night of
October 30-31). The post, "Structure," indicates that, using
the transformations of the diamond theorem, the notorious
"magic" square of Albrecht Dürer may be transformed
into normal reading order. That order is only one of
322,560 natural reading orders for any 4×4 array of
symbols. The above four "modi" describe another.
The incidences of points and planes in the
Möbius 84 configuration (8 points and 8 planes,
with 4 points on each plane and 4 planes on each point),
were described by Coxeter in a 1950 paper.*
A table from Monday's post summarizes Coxeter's
remarks, which described the incidences in
spatial terms, with the points and planes as the vertices
and face-planes of two mutually inscribed tetrahedra —
Monday's post, "Gallucci's Möbius Configuration,"
may not be completely intelligible unless one notices
that Coxeter has drawn some of the intersections in his
Fig. 24, a schematic representation of the point-plane
incidences, as dotless, and some as hollow dots. The figure,
"Gallucci's version of Möbius's 84," is shown below.
The hollow dots, representing the 8 points (as opposed
to the 8 planes ) of the configuration, are highlighted in blue.
Here a plane (represented by a dotless intersection) contains
the four points that are represented in the square array as lying
in the same row or same column as the plane.
The above Möbius incidences appear also much earlier in
Coxeter's paper, in figures 6 and 5, where they are shown
as describing the structure of a hypercube.
In figures 6 and 5, the dotless intersections representing
planes have been replaced by solid dots. The hollow dots
have again been highlighted in blue.
Figures 6 and 5 demonstrate the fact that adjacency in the set of
16 vertices of a hypercube is isomorphic to adjacency in the set
of 16 subsquares of a square 4×4 array, provided that opposite
sides of the array are identified, as in Fig. 6. The digits in
Coxeter's labels above may be viewed as naming the positions
of the 1's in (0,1) vectors (x4, x3, x2, x1) over the two-element
Galois field.† In that context, the 4×4 array may be called, instead
of a Möbius hypercube , a Galois tesseract .
* "Self-Dual Configurations and Regular Graphs,"
Bulletin of the American Mathematical Society,
Vol. 56 (1950), pp. 413-455
† The subscripts' usual 1-2-3-4 order is reversed as a reminder
that such a vector may be viewed as labeling a binary number
from 0 through 15, or alternately as labeling a polynomial in
the 16-element Galois field GF(24). See the Log24 post
Vector Addition in a Finite Field (Jan. 5, 2013).
From H. S. M. Coxeter's 1950 paper
"Self-Dual Configurations and Regular Graphs,"
a 4×4 array and a more perspicuous rearrangement—
(Click image to enlarge.)
The above rearrangement brings Coxeter's remarks into accord
with the webpage The Galois Tesseract.
Update of Thursday, March 26, 2015 —
For an explanation of Coxeter's Fig. 24, see Thursday's later
post titled "The Möbius Hypercube."
The following figure, intended to display as
a black diamond, was produced with
HTML and Unicode characters. Depending
on the technology used to view it, the figure
may contain gaps or overlaps.
◢◣
◥◤
Some variations:
◤◥
◣◢
◤◥
◢◣
◤◣
◢◥
◤◣
◥◢
Such combined Unicode characters —
◢
black lower right triangle,
◣
black lower left triangle,
᭘
black upper left triangle,
᭙
black upper right triangle
— might be used for a text-only version of the Diamond 16 Puzzle
that is more easily programmed than the current version.
The tricky part would be coding the letter-spacing and
line-height to avoid gaps or overlaps within the figures in
a variety of browsers. The w3.org visual formatting model
may or may not be helpful here.
Update of 11:20 PM ET March 15, 2015 —
Seekers of simplicity should note that there is
a simple program in the Processing.js language, not using
such Unicode characters, that shows many random affine
permutations of a 4×4 diamond-theorem array when the
display window is clicked.
The previous post displayed a set of
24 unit-square “points” within a rectangular array.
These are the points of the
Miracle Octad Generator of R. T. Curtis.
The array was labeled Ω
because that is the usual designation for
a set acted upon by a group:
* The title is an allusion to Point Omega , a novel by
Don DeLillo published on Groundhog Day 2010.
See “Point Omega” in this journal.
An image that led off the year-end review yesterday in
the weblog of British combinatorialist Peter J. Cameron:
See also this weblog's post final post of 2014,
with a rectangular array illustrating the six faces
of a die, and Cameron's reference yesterday to
a die-related post…
"The things on my blog that seem to be
of continuing value are the expository
series like the one on the symmetric group
(the third post in this series was reblogged
by Gil Kalai last month, which gave it a new
lease of life)…."
A tale from an author of Prague:
The Emperor—so they say—has sent a message, directly from his death bed, to you alone, his pathetic subject, a tiny shadow which has taken refuge at the furthest distance from the imperial sun. He ordered the herald to kneel down beside his bed and whispered the message into his ear. He thought it was so important that he had the herald repeat it back to him. He confirmed the accuracy of the verbal message by nodding his head. And in front of the entire crowd of those who’ve come to witness his death—all the obstructing walls have been broken down and all the great ones of his empire are standing in a circle on the broad and high soaring flights of stairs—in front of all of them he dispatched his herald. The messenger started off at once, a powerful, tireless man. Sticking one arm out and then another, he makes his way through the crowd. If he runs into resistance, he points to his breast where there is a sign of the sun. So he moves forward easily, unlike anyone else. But the crowd is so huge; its dwelling places are infinite. If there were an open field, how he would fly along, and soon you would hear the marvelous pounding of his fist on your door. But instead of that, how futile are all his efforts. He is still forcing his way through the private rooms of the innermost palace. He will never he win his way through. And if he did manage that, nothing would have been achieved. He would have to fight his way down the steps, and, if he managed to do that, nothing would have been achieved. He would have to stride through the courtyards, and after the courtyards the second palace encircling the first, and, then again, stairs and courtyards, and then, once again, a palace, and so on for thousands of years. And if he finally did burst through the outermost door—but that can never, never happen—the royal capital city, the centre of the world, is still there in front of him, piled high and full of sediment. No one pushes his way through here, certainly not with a message from a dead man. But you sit at your window and dream of that message when evening comes. |
See also a passage quoted in this weblog on the original
date of Cameron's Prague image, July 26, 2014 —
"The philosopher Graham Harman is invested in
re-thinking the autonomy of objects and is part
of a movement called Object-Oriented-Philosophy
(OOP)." — From “The Action of Things,” a 2011
M.A. thesis at the Center for Curatorial Studies,
Bard College, by Manuela Moscoso
— in the context of a search here for the phrase
"structure of the object." An image from that search:
In the above illustration of the 3-4-5 Pythagorean triangle,
the grids on each side may be regarded as figures of
Euclidean geometry or of Galois geometry.
In Euclidean geometry, these grids illustrate a property of
the inner triangle.
In elementary Galois geometry, ignoring the connection with
the inner triangle, the grids may be regarded instead as
illustrating vector spaces over finite (i.e., Galois) fields.
Previous posts in this journal have dealt with properties of
the 3×3 and 4×4 grids. This suggests a look at properties of
the next larger grid, the 5×5 array, viewed as a picture of the
two-dimensional vector space (or affine plane) over the finite
Galois field GF(5) (also known as ℤ5).
The 5×5 array may be coordinatized in a natural way, as illustrated
in (for instance) Matters Mathematical , by I.N. Herstein and
Irving Kaplansky, 2nd ed., Chelsea Publishing, 1978, p. 171:
See Herstein and Kaplansky for the elementary Galois geometry of
the 5×5 array.
For 5×5 geometry that is not so elementary, see…
Hafner's abstract:
We describe the Hoffman-Singleton graph geometrically, showing that
it is closely related to the incidence graph of the affine plane over ℤ5.
This allows us to construct all automorphisms of the graph.
The remarks of Brouwer on graphs connect the 5×5-related geometry discussed
by Hafner with the 4×4 geometry related to the Steiner system S(5,8,24).
(See the Miracle Octad Generator of R. T. Curtis and the related coordinatization
by Cullinane of the 4×4 array as a four-dimensional vector space over GF(2).)
Parallelograms and the structure of the 3×3 array —
Click to enlarge:
A different approach to parallelograms and arrays —
Click for original post:
(Continued from Nov. 16, 2013.)
The 48 actions of GL(2,3) on a 3×3 array include the 8-element
quaternion group as a subgroup. This was illustrated in a Log24 post,
Hamilton’s Whirligig, of Jan. 5, 2006, and in a webpage whose
earliest version in the Internet Archive is from June 14, 2006.
One of these quaternion actions is pictured, without any reference
to quaternions, in a 2013 book by a Netherlands author whose
background in pure mathematics is apparently minimal:
In context (click to enlarge):
Update of later the same day —
Lee Sallows, Sept. 2011 foreword to Geometric Magic Squares —
“I first hit on the idea of a geometric magic square* in October 2001,**
and I sensed at once that I had penetrated some previously hidden portal
and was now standing on the threshold of a great adventure. It was going
to be like exploring Aladdin’s Cave. That there were treasures in the cave,
I was convinced, but how they were to be found was far from clear. The
concept of a geometric magic square is so simple that a child will grasp it
in a single glance. Ask a mathematician to create an actual specimen and
you may have a long wait before getting a response; such are the formidable
difficulties confronting the would-be constructor.”
* Defined by Sallows later in the book:
“Geometric or, less formally, geomagic is the term I use for
a magic square in which higher dimensional geometrical shapes
(or tiles or pieces ) may appear in the cells instead of numbers.”
** See some geometric matrices by Cullinane in a March 2001 webpage.
Earlier actual specimens — see Diamond Theory excerpts published in
February 1977 and a brief description of the original 1976 monograph:
“51 pp. on the symmetries & algebra of
matrices with geometric-figure entries.”
— Steven H. Cullinane, 1977 ad in
Notices of the American Mathematical Society
The recreational topic of “magic” squares is of little relevance
to my own interests— group actions on such matrices and the
matrices’ role as models of finite geometries.
This post is continued from a March 12, 2013, post titled
"Smoke and Mirrors" on art in Tromsø, Norway, and from
a June 22, 2014, post on the nineteenth-century
mathematicians Rosenhain and Göpel.
The latter day was the day of death for
mathematician Loren D. Olson, Harvard '64.
For some background on that June 22 post, see the tag
Rosenhain and Göpel in this journal.
Some background on Olson, who taught at the
University of Tromsø, from the American Mathematical
Society yesterday:
Olson died not long after attending the 50th reunion of the
Harvard Class of 1964.
For another connection between that class (also my own)
and Tromsø, see posts tagged "Elegantly Packaged."
This phrase was taken from today's (print)
New York Times review of a new play titled "Smoke."
The phrase refers here to the following "package" for
some mathematical objects that were named after
Rosenhain and Göpel — a 4×4 array —
For the way these objects were packaged within the array
in 1905 by British mathematician R. W. H. T. Hudson, see
a page at finitegometry.org/sc. For the connection to the art
in Tromsø mentioned above, see the diamond theorem.
The Folding
Cynthia Zarin in The New Yorker , issue dated April 12, 2004—
“Time, for L’Engle, is accordion-pleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”
The geometry of the 4×4 square array is that of the
3-dimensional projective Galois space PG(3,2).
This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc. on
15 June 1974). Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.
Some history:
Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.
[Rewritten for clarity on Sept. 3, 2014.]
Illustration from a discussion of a symplectic structure
in a 4×4 array quoted here on January 17, 2014 —
See symplectic structure in this journal.
* The final words of Point Omega , a 2010 novel by Don DeLillo.
See also Omega Matrix in this journal.
"There is such a thing as a tesseract." — Madeleine L'Engle
An approach via the Omega Matrix:
See, too, Rosenhain and Göpel as The Shadow Guests .
“Gates said his foundation is an advocate for the Common Core State Standards
that are part of the national curriculum and focus on mathematics and language
arts. He said learning ‘needs to be on the edge’ where it is challenging but not
too challenging, and that students receive the basics through Common Core.
‘It’s great to teach other things, but you need that foundation,’ he said.”
— T. S. Last in the Albuquerque Journal , 12:05 AM Tuesday, July 1, 2014
See also the previous post (Core Mathematics: Arrays) and, elsewhere
in this journal,
“Eight is a Gate.” — Mnemonic rhyme:
Anyone tackling the Raumproblem described here
on Feb. 21, 2014 should know the history of coordinatizations
of the 4×6 Miracle Octad Generator (MOG) array by R. T. Curtis
and J. H. Conway. Some documentation:
The above two images seem to contradict a statement by R. T. Curtis
in a 1989 paper. Curtis seemed in that paper to be saying, falsely, that
his original 1973 and 1976 MOG coordinates were those in array M below—
This seemingly false statement involved John H. Conway's supposedly
definitive and natural canonical coordinatization of the 4×6 MOG
array by the symbols for the 24 points of the projective line over GF(23)—
{∞, 0, 1, 2, 3… , 21, 22}:
An explanation of the apparent falsity in Curtis's 1989 paper:
By "two versions of the MOG" Curtis seems to have meant merely that the
octads , and not the projective-line coordinates , in his earlier papers were
mirror images of the octads that resulted later from the Conway coordinates,
as in the images below.
The page of Whitehead linked to this morning
suggests a review of Polster's tetrahedral model
of the finite projective 3-space PG(3,2) over the
two-element Galois field GF(2).
The above passage from Whitehead's 1906 book suggests
that the tetrahedral model may be older than Polster thinks.
Shown at right below is a correspondence between Whitehead's
version of the tetrahedral model and my own square model,
based on the 4×4 array I call the Galois tesseract (at left below).
(Click to enlarge.)
See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.
Related material on the Turyn-Curtis construction
from the University of Cambridge —
— Slide by "Dr. Parker" — Apparently Richard A. Parker —
Lecture 4, "Discovering M24," in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on "Sporadic and Related Groups."
See also the Parker lectures of 2012-2013 on the same topic.
A third construction of Curtis's 35 4×6 1976 MOG arrays would use
Cullinane's analysis of the 4×4 subarrays' affine and projective structure,
and point out the fact that Conwell's 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis's 1976 MOG.
See The Diamond Theorem, Finite Relativity, Galois Space,
Generating the Octad Generator, and The Klein Correspondence.
Update of March 22-March 23 —
Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1's, all other squares as 0's) of the 35 4×6 arrays of the 1976
Curtis MOG would then reveal* the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35 MOG arrays. For more
details of this "by-hand" construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction (such as Turyn's), not by hand, of the
extended binary Golay code. See the Brouwer preprint quoted above.
* "Then a miracle occurs," as in the classic 1977 Sidney Harris cartoon.
Illustration of array addition from March 23 —
The sixteen-dot square array in yesterday’s noon post suggests
the following remarks.
“This is the relativity problem: to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”
— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16
The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—
The 1977 matrix Q is echoed in the following from 2002—
A different representation of Cullinane’s 1977 square model of the
16-point affine geometry over the two-element Galois field GF(2)
is supplied by Conway and Sloane in Sphere Packings, Lattices and Groups
(first published in 1988) :
Here a, b, c, d are basis vectors in the vector 4-space over GF(2).
(For a 1979 version of this vector space, see AMS Abstract 79T-A37.)
See also a 2011 publication of the Mathematical Association of America —
The premiere of the Lily Collins film Abduction
(see previous post) was reportedly in Sydney, Australia,
on August 23, 2011.
From that date in this journal—
For the eight-limbed star at the top of the quaternion array above, She drew from her handbag a pale grey gleaming implement that looked by quick turns to me like a knife, a gun, a slim sceptre, and a delicate branding iron—especially when its tip sprouted an eight-limbed star of silver wire. “The test?” I faltered, staring at the thing. “Yes, to determine whether you can live in the fourth dimension or only die in it.” — Fritz Leiber, short story, 1959 |
Related material from Wikipedia, suggested by the reference quoted
in this morning's post to "a four-dimensionalist (perdurantist) ontology"—
"… perdurantism also applies if one believes there are temporal
but non-spatial abstract entities (like immaterial souls…)."
(On His Dies Natalis )…
This is asserted in an excerpt from…
"The smallest non-rank 3 strongly regular graphs
which satisfy the 4-vertex condition"
by Mikhail Klin, Mariusz Meszka, Sven Reichard, and Alex Rosa,
BAYREUTHER MATHEMATISCHE SCHRIFTEN 73 (2005), 152-212—
(Click for clearer image)
Note that Theorem 46 of Klin et al. describes the role
of the Galois tesseract in the Miracle Octad Generator
of R. T. Curtis (original 1976 version). The tesseract
(a 4×4 array) supplies the geometric part of the above
exceptional geometric-combinatorial isomorphism.
The above image is from Geometry of the 4×4 Square.
(The link "Visible Mathematics" in today's previous post, Quartet,
led to a post linked to that page, among others.)
Note that the seventh square above, at top right of the array of 35,
is the same as the image in Quartet.
Yes. See …
The 48 actions of GL(2,3) on a 3×3 coordinate-array A,
when matrices of that group right-multiply the elements of A,
with A =
(1,1) (1,0) (1,2) (0,1) (0,0) (0,2) (2,1) (2,0) (2,2) |
Actions of GL(2,p) on a pxp coordinate-array have the
same sorts of symmetries, where p is any odd prime.
Note that A, regarded in the Sallows manner as a magic square,
has the constant sum (0,0) in rows, columns, both diagonals, and
all four broken diagonals (with arithmetic modulo 3).
For a more sophisticated approach to the structure of the
ninefold square, see Coxeter + Aleph.
The Kummer 166 configuration is the configuration of sixteen
6-sets within a 4×4 square array of points in which each 6-set
is determined by one of the 16 points of the array and
consists of the 3 other points in that point's row and the
3 other points in that point's column.
See Configurations and Squares.
The Wikipedia article Kummer surface uses a rather poetic
phrase* to describe the relationship of the 166 to a number
of other mathematical concepts — "geometric incarnation."
Related material from finitegeometry.org —
* Apparently from David Lehavi on March 18, 2007, at Citizendium .
Mathematics:
A review of posts from earlier this month —
Wednesday, September 4, 2013
|
Narrative:
Aooo.
Happy birthday to Stephen King.
The following excerpt from a January 20, 2013, preprint shows that
a Galois-geometry version of the large Desargues 154203 configuration,
although based on the nineteenth-century work of Galois* and of Fano,**
may at times have twenty-first-century applications.
Atkinson's paper does not use the square model of PG(3,2), which later
in 2013 provided a natural view of the large Desargues 154203 configuration.
See my own Classical Geometry in Light of Galois Geometry. Atkinson's
"subset of 20 lines" corresponds to 20 of the 80 Rosenhain tetrads
mentioned in that later article and pictured within 4×4 squares in Hudson's
1905 classic Kummer's Quartic Surface.
* E. Galois, definition of finite fields in "Sur la Théorie des Nombres,"
Bulletin des Sciences Mathématiques de M. Férussac,
Vol. 13, 1830, pp. 428-435.
** G. Fano, definition of PG(3,2) in "Sui Postulati Fondamentali…,"
Giornale di Matematiche, Vol. 30, 1892, pp. 106-132.
The title refers to a classic 1960 novel by John Hersey.
“How do you get young people excited about space?”
— Megan Garber in The Atlantic , Aug. 16, 2012
(Italics added.) (See previous four posts.)
Allyn Jackson on “Simplicity, in Mathematics and in Art,”
in the new August 2013 issue of Notices of the American
Mathematical Society—
“As conventions evolve, so do notions of simplicity.
Franks mentioned Gauss’s 1831 paper that
established the respectability of complex numbers.”
This suggests a related image by Gauss, with a
remark on simplicity—
Here Gauss’s diagram is not, as may appear at first glance,
a 3×3 array of squares, but is rather a 4×4 array of discrete
points (part of an infinite plane array).
Related material that does feature the somewhat simpler 3×3 array
of squares, not seen as part of an infinite array—
Marketing the Holy Field
Click image for the original post.
For a purely mathematical view of the holy field, see Visualizing GL(2,p).
Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo—
Compare to an image of Vril muse Maria Orsitsch.
From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,
I DE LANGE NÆTTER —
Josefine Lyche
Keywords (to help place my artwork in the (See also the original catalog page.) |
Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.
For some background, see (for instance)
Conspiracy Theories and Secret Societies for Dummies .
From Andries Brouwer —
* Related material: Yesterday's evening post and The People's Cube.
(By the way, any 4×4 array is a tesseract .)
Today's previous post on coordinate systems
suggests a look at the phrase "Galois coordinates."
A search shows that the phrase, though natural,
has apparently not been used before 2011* for solutions
to what Hermann Weyl called "the relativity problem."
A thorough historical essay on Galois coordinatization
in this sense would require more academic resources
than I have available. It would likely describe a number
of applications of Galois-field coordinates to square
(and perhaps to cubical) arrays that were studied before
1976, the date of my Diamond Theory monograph.
But such a survey might not find any such pre-1976
coordinatization of a 4×4 array by the 16 elements
of the vector 4-space over the Galois field with two
elements, GF(2).
Such coordinatizations are important because of their
close relationship to the Mathieu group M 24 .
See a preprint by Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group M 24 ," with its remark
denying knowledge of any such coordinatization
prior to a 1989 paper by R. T. Curtis.
Related material:
Some images related to Galois coordinates, excerpted
from a Google search today (click to enlarge)—
* A rather abstract 2011 paper that uses the phrase
"Galois coordinates" may have some implications
for the naive form of the relativity problem
related to square and cubical arrays.
The hypercube model of the 4-space over the 2-element Galois field GF(2):
The phrase Galois tesseract may be used to denote a different model
of the above 4-space: the 4×4 square.
MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).
The thirty-five 4×4 structures within the MOG:
Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:
A later book co-authored by Sloane, first published in 1988,
did recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.
Between the 1977 and 1988 Sloane books came the diamond theorem.
Update of May 29, 2013:
The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):
From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):
"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."
[Cur89] reference:
R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 32 (1989), 345-353 (received on
July 20, 1987).
— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group M 24 ,"
arXiv.org > hep-th > arXiv:1107.3834
"First mentioned by Curtis…."
No. I claim that to the best of my knowledge, the
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.
Update of the above paragraph on July 6, 2013—
No. The vector space structure was described by
The vector space structure as it occurs in a 4×4 array |
See Notes on Finite Geometry for some background.
See in particular The Galois Tesseract.
For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).
"It should be emphasized that block models are physical models, the elements of which can be physically manipulated. Their manipulation differs in obvious and fundamental ways from the manipulation of symbols in formal axiomatic systems and in mathematics. For example the transformations described above, in which two linear arrays are joined together to form one array, or a rectangle of blocks is re-assembled into a linear array, are physical transformations not symbolic transformations. …"
— Storrs McCall, Department of Philosophy, McGill University, "The Consistency of Arithmetic"
"It should be emphasized…."
OK:
Storrs McCall at a 2008 philosophy conference .
His blocks talk was at 2:50 PM July 21, 2008.
See also this journal at noon that same day:
Froebel's Third Gift and the Eightfold Cube
From the prologue to the new Joyce Carol Oates
novel Accursed—
"This journey I undertake with such anticipation
is not one of geographical space but one of Time—
for it is the year 1905 that is my destination.
1905!—the very year of the Curse."
Today's previous post supplied a fanciful link
between the Crosswicks Curse of Oates and
the Crosswicks tesseract of Madeleine L'Engle.
The Crosswicks Curse according to L'Engle
in her classic 1962 novel A Wrinkle in Time —
"There is such a thing as a tesseract."
A tesseract is a 4-dimensional hypercube that
(as pointed out by Coxeter in 1950) may also
be viewed as a 4×4 array (with opposite edges
identified).
Meanwhile, back in 1905…
For more details, see how the Rosenhain and Göpel tetrads occur naturally
in the diamond theorem model of the 35 lines of the 15-point projective
Galois space PG(3,2).
See also Conwell in this journal and George Macfeely Conwell in the
honors list of the Princeton Class of 1905.
For readers of The Daily Princetonian :
(From a site advertised in the
Princetonian on March 11, 2013)
For readers of The Harvard Crimson :
For some background, see Crimson Easter Egg and the Diamond 16 Puzzle.
For some (very loosely) related narrative, see Crosswicks in this journal
and the Crosswicks Curse in a new novel by Joyce Carol Oates.
"There is such a thing as a tesseract."
— Crosswicks author Madeleine L'Engle
Story, Structure, and the Galois Tesseract
Recent Log24 posts have referred to the
"Penrose diamond" and Minkowski space.
The Penrose diamond has nothing whatever
to do with my 1976 monograph "Diamond Theory,"
except for the diamond shape and the connection
of the Penrose diamond to the Klein quadric—
The Klein quadric occurs in the five-dimensional projective space
over a field. If the field is the two-element Galois field GF(2), the
quadric helps explain certain remarkable symmetry properties
of the R. T. Curtis Miracle Octad Generator (MOG), hence of
the large Mathieu group M24. These properties are also
relevant to the 1976 "Diamond Theory" monograph.
For some background on the quadric, see (for instance)…
See also The Klein Correspondence,
Penrose Space-Time, and a Finite Model.
Related material:
"… one might crudely distinguish between philosophical – J. M. E. Hyland. "Proof Theory in the Abstract." (pdf) |
Those who prefer story to structure may consult
The finite (i.e., Galois) field GF(16),
according to J. J. Seidel in 1974—
The same field according to Steven H. Cullinane in 1986,
in its guise as the affine 4-space over GF(2)—
The same field, again disguised as an affine 4-space,
according to John H. Conway and N.J.A. Sloane in
Sphere Packings, Lattices, and Groups , first published in 1988—
The above figure by Conway and Sloane summarizes, using
a 4×4 array, the additive vector-space structure of the finite
field GF(16).
This structure embodies what in Euclidean space is called
the parallelogram rule for vector addition—
(Thanks to June Lester for the 3D (uvw) part of the above figure.)
For the transition from this colored Euclidean hypercube
(used above to illustrate the parallelogram rule) to the
4×4 Galois space (illustrated by Cullinane in 1979 and
Conway and Sloane in 1988— or later… I do not have
their book’s first edition), see Diamond Theory in 1937,
Vertex Adjacency in a Tesseract and in a 4×4 Array,
Spaces as Hypercubes, and The Galois Tesseract.
For some related narrative, see tesseract in this journal.
(This post has been added to finitegeometry.org.)
Update of August 9, 2013—
Coordinates for hypercube vertices derived from the
parallelogram rule in four dimensions were better
illustrated by Jürgen Köller in a web page archived in 2002.
Update of August 13, 2013—
The four basis vectors in the 2002 Köller hypercube figure
are also visible at the bottom of the hypercube figure on
page 7 of “Diamond Theory,” excerpts from a 1976 preprint
in Computer Graphics and Art , Vol. 2, No. 1, February 1977.
A predecessor: Coxeter’s 1950 hypercube figure from
“Self-Dual Configurations and Regular Graphs.”
The concept of "deep structure," once a popular meme,
has long been abandoned by Chomskians.
It still applies, however, to the 1976 mathematics, diamond theory ,
underlying the formal patterns discussed in a Royal Society paper
this year.
A review of deep structure, from the Wikipedia article Cartesian linguistics—
[Numbers in parentheses refer to pages in the original 1966 Harper edition of Chomsky's book Cartesian Linguistics .] Deep structure vs. surface structure "Pursuing the fundamental distinction between body and mind, Cartesian linguistics characteristically assumes that language has two aspects" (32). These are namely the sound/character of a linguistic sign and its significance (32). Semantic interpretation or phonetic interpretation may not be identical in Cartesian linguistics (32). Deep structures are often only represented in the mind (a mirror of thought), as opposed to surface structures, which are not. Deep structures vary less between languages than surface structures. For instance, the transformational operations to derive surface forms of Latin and French may obscure common features of their deep structures (39). Chomsky proposes, "In many respects, it seems to me quite accurate, then, to regard the theory of transformational generative grammar, as it is developing in current work, as essentially a modern and more explicit version of the Port-Royal theory" (39). Summary of Port Royal Grammar The Port Royal Grammar is an often cited reference in Cartesian Linguistics and is considered by Chomsky to be a more than suitable example of Cartesian linguistic philosophy. "A sentence has an inner mental aspect (a deep structure that conveys its meaning) and an outer, physical aspect as a sound sequence"***** This theory of deep and surface structures, developed in Port Royal linguistics, meets the formal requirements of language theory. Chomsky describes it in modern terms as "a base system that generates deep structures and a transformational system that maps these into surface structures", essentially a form of transformational grammar akin to modern studies (42). |
The corresponding concepts from diamond theory are…
"Deep structure"— The line diagrams indicating the underlying
structure of varying patterns
"A base system that generates deep structures"—
Group actions on square arrays… for instance, on the 4×4 square
"A transformational system"— The decomposition theorem
that maps deep structure into surface structure (and vice-versa)
(Continued from 1986)
S. H. Cullinane This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.
— H. Weyl, The Classical Groups , In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S. This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame. The frame: A 4×4 array. The invariant structure: The following set of 15 partitions of the frame into two 8-sets.
A representative coordinatization:
0000 0001 0010 0011
The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2). |
S. H. Cullinane This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.
— H. Weyl, The Classical Groups , In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S. This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame. The frame: An array of 16 congruent equilateral subtriangles that make up a larger equilateral triangle. The invariant structure: The following set of 15 partitions of the frame into two 8-sets.
The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2). |
For some background on the triangular version,
see the Square-Triangle Theorem,
noting particularly the linked-to coordinatization picture.
The December 2012 Notices of the American
Mathematical Society has an ad on page 1564
(in a review of two books on vulgarized mathematics)
for three workshops next year on “Low-dimensional
Topology, Geometry, and Dynamics”—
(Only the top part of the ad is shown; for further details
see an ICERM page.)
(ICERM stands for Institute for Computational
and Experimental Research in Mathematics.)
The ICERM logo displays seven subcubes of
a 2x2x2 eight-cube array with one cube missing—
The logo, apparently a stylized image of the architecture
of the Providence building housing ICERM, is not unlike
a picture of Froebel’s Third Gift—
© 2005 The Institute for Figuring
Photo by Norman Brosterman from the Inventing Kindergarten
exhibit at The Institute for Figuring (co-founded by Margaret Wertheim)
The eighth cube, missing in the ICERM logo and detached in the
Froebel Cubes photo, may be regarded as representing the origin
(0,0,0) in a coordinatized version of the 2x2x2 array—
in other words the cube invariant under linear , as opposed to
more general affine , permutations of the cubes in the array.
These cubes are not without relevance to the workshops’ topics—
low-dimensional exotic geometric structures, group theory, and dynamics.
See The Eightfold Cube, A Simple Reflection Group of Order 168, and
The Quaternion Group Acting on an Eightfold Cube.
Those who insist on vulgarizing their mathematics may regard linear
and affine group actions on the eight cubes as the dance of
Snow White (representing (0,0,0)) and the Seven Dwarfs—
.
(A prequel to Galois Field of Dreams)
The opening of Descartes' Dream ,
by Philip J. Davis and Reuben Hersh—
"The modern world,
our world of triumphant rationality,
began on November 10, 1619,
with a revelation and a nightmare."
For a revelation, see Battlefield Geometry.
For a nightmare, see Joyce's Nightmare.
Some later work of Descartes—
From "What Descartes knew of mathematics in 1628,"
by David Rabouin, CNRS-Univ. Paris Diderot,
Historia Mathematica , Volume 37, Issue 3,
Contexts, emergence and issues of Cartesian geometry,
August 2010, pages 428–459 —
Fig. 5. How to represent the difference between white, blue, and red
according to Rule XII [from Descartes, 1701, p. 34].
The 4×4 array of Descartes appears also in the Battlefield Geometry posts.
For its relevance to Galois's field of dreams, see (for instance) block designs.
(Continued from previous TARDIS posts)
Summary: A review of some posts from last August is suggested by the death,
reportedly during the dark hours early on October 30, of artist Lebbeus Woods.
An (initially unauthorized) appearance of his work in the 1995 film
Twelve Monkeys …
… suggests a review of three posts from last August.
Wednesday, August 1, 2012Defining FormContinued from July 29 in memory of filmmaker Chris Marker, See Slides and Chanting†and Where Madness Lies. See also Sherrill Grace on Malcolm Lowry. * Washington Post. Other sources say Marker died on July 30. † These notably occur in Marker's masterpiece |
Wednesday, August 1, 2012Triple FeatureFor related material, see this morning's post Defining Form. |
Sunday, August 12, 2012Doctor WhoOn Robert A. Heinlein's novel Glory Road— "Glory Road (1963) included the foldbox , a hyperdimensional packing case that was bigger inside than outside. It is unclear if Glory Road was influenced by the debut of the science fiction television series Doctor Who on the BBC that same year. In Doctor Who , the main character pilots a time machine called a TARDIS, which is built with technology which makes it 'dimensionally transcendental,' that is, bigger inside than out." — Todd, Tesseract article at exampleproblems.com From the same exampleproblems.com article— "The connection pattern of the tesseract's vertices is the same as that of a 4×4 square array drawn on a torus; each cell (representing a vertex of the tesseract) is adjacent to exactly four other cells. See geometry of the 4×4 square." For further details, see today's new page on vertex adjacency at finitegeometry.org. |
"It was a dark and stormy night."— A Wrinkle in Time
Last Wednesday's 11 PM post mentioned the
adjacency-isomorphism relating the 4-dimensional
hypercube over the 2-element Galois field GF(2) to
the 4×4 array made up of 16 square cells, with
opposite edges of the 4×4 array identified.
A web page illustrates this property with diagrams that
enjoy the Karnaugh property— adjacent vertices, or cells,
differ in exactly one coordinate. A brief paper by two German
authors relates the Karnaugh property to the construction
of a magic square like that of Dürer (see last Wednesday).
In a similar way (search the Web for Karnaugh + cube ),
vertex adjacency in the 6-dimensional hypercube over GF(2)
is isomorphic to cell adjacency in the 4x4x4 cube, with
opposite faces of the 4x4x4 cube identified.
The above cube may be used to illustrate some properties
of the 64-point Galois 6-space that are more advanced
than those studied by enthusiasts of "magic" squares
and cubes.
See
Those who prefer narrative to mathematics may
consult posts in this journal containing the word "Cuber."
Detail from last night's 1.3 MB image
"Search for the Lost Tesseract"—
The lost tesseract appears here on the cover of Wittgenstein's
Zettel and, hidden in the form of a 4×4 array, as a subarray
of the Miracle Octad Generator on the cover of Griess's
Twelve Sporadic Groups and in a figure illustrating
the geometry of logic.
Another figure—
Gligoric died in Belgrade, Serbia, on Tuesday, August 14.
From this journal on that date—
"Visual forms, he thought, were solutions to
specific problems that come from specific needs."
— Michael Kimmelman in The New York Times
obituary of E. H. Gombrich (November 7th, 2001)
On Robert A. Heinlein's novel Glory Road—
"Glory Road (1963) included the foldbox , a hyperdimensional packing case that was bigger inside than outside. It is unclear if Glory Road was influenced by the debut of the science fiction television series Doctor Who on the BBC that same year. In Doctor Who , the main character pilots a time machine called a TARDIS, which is built with technology which makes it 'dimensionally transcendental,' that is, bigger inside than out."
— Todd, Tesseract article at exampleproblems.com
From the same exampleproblems.com article—
"The connection pattern of the tesseract's vertices is the same as that of a 4×4 square array drawn on a torus; each cell (representing a vertex of the tesseract) is adjacent to exactly four other cells. See geometry of the 4×4 square."
For further details, see today's new page on vertex adjacency at finitegeometry.org.
The three parts of the figure in today's earlier post "Defining Form"—
— share the same vector-space structure:
0 | c | d | c + d |
a | a + c | a + d | a + c + d |
b | b + c | b + d | b + c + d |
a + b | a + b + c | a + b + d | a + b + c + d |
(This vector-space a b c d diagram is from Chapter 11 of
Sphere Packings, Lattices and Groups , by John Horton
Conway and N. J. A. Sloane, first published by Springer
in 1988.)
The fact that any 4×4 array embodies such a structure was implicit in
the diamond theorem (February 1979). Any 4×4 array, regarded as
a model of the finite geometry AG(4, 2), may be called a Galois tesseract.
(So called because of the Galois geometry involved, and because the
16 cells of a 4×4 array with opposite edges identified have the same
adjacency pattern as the 16 vertices of a tesseract (see, for instance,
Coxeter's 1950 "Self-Dual Configurations and Regular Graphs," figures
5 and 6).)
A 1982 discussion of a more abstract form of AG(4, 2):
Source:
The above 1982 remarks by Brouwer may or may not have influenced
the drawing of the above 1988 Conway-Sloane diagram.
Another approach to the square-to-triangle
mapping problem (see also previous post)—
For the square model referred to in the above picture, see (for instance)
Coordinates for the 16 points in the triangular arrays
of the corresponding affine space may be deduced
from the patterns in the projective-hyperplanes array above.
This should solve the inverse problem of mapping,
in a natural way, the triangular array of 16 points
to the square array of 16 points.
Update of 9:35 AM ET July 16, 2012:
Note that the square model's 15 hyperplanes S
and the triangular model's 15 hyperplanes T —
— share the following vector-space structure —
0 | c | d | c + d |
a | a + c | a + d | a + c + d |
b | b + c | b + d | b + c + d |
a + b | a + b + c | a + b + d | a + b + c + d |
(This vector-space a b c d diagram is from
Chapter 11 of Sphere Packings, Lattices
and Groups , by John Horton Conway and
N. J. A. Sloane, first published by Springer
in 1988.)
A trial solution to the
square-to-triangle mapping problem—
Problem: Is there any good definition of "natural"
square-to-triangle mappings according to which
the above mapping is natural (or, for that matter,
un-natural)?
"A figurate number… is a number
that can be represented by
a regular geometrical arrangement
of equally spaced points."
— Eric W. Weisstein at Wolfram MathWorld
For example—
Call a convex polytope P an n-replica if P consists of n
mutually congruent polytopes similar to P packed together.
The square-triangle theorem (or lemma) says that
"Every triangle is an n-replica"
is true if and only if n is a square.
Equivalently,
The positive integer n is a square
if and only if every triangle is an n-replica.
(I.e., squares are triangular.)
This supplies the converse to the saying that
An example of lines in a Galois space * —
The 35 lines in the 3-dimensional Galois projective space PG(3,2)—
There are 15 different individual linear diagrams in the figure above.
These are the points of the Galois space PG(3,2). Each 3-set of linear diagrams
represents the structure of one of the 35 4×4 arrays and also represents a line
of the projective space.
The symmetry of the linear diagrams accounts for the symmetry of the
840 possible images in the kaleidoscope puzzle.
* For further details on the phrase "Galois space," see
Beniamino Segre's "On Galois Geometries," Proceedings of the
International Congress of Mathematicians, 1958 [Edinburgh].
(Cambridge U. Press, 1960, 488-499.)
(Update of Jan. 5, 2013— This post has been added to finitegeometry.org.)
"That n 2 points fall naturally into a triangular array
is a not-quite-obvious fact which may have applications…
and seems worth stating more formally."
— Steven H. Cullinane, letter in the
American Mathematical Monthly 1985 June-July issue
If the ancient Greeks had not been distracted by
investigations of triangular (as opposed to square )
numbers, they might have done something with this fact.
A search for occurrences of the phrase
"n2 [i.e., n 2 ] congruent triangles"
indicates only fairly recent (i.e., later than 1984) results.*
Some related material, updated this morning—
This suggests a problem—
What mappings of a square array of n 2 points to
In the figure above, whether |
* Update of July 15, 2012 (11:07 PM ET)—
Theorem on " rep-n 2 " (Golomb's terminology)
triangles from a 1982 book—
Josefine Lyche bowling (Facebook, June 12, 2012)
A professor of philosophy in 1984 on Socrates's geometric proof in Plato's Meno dialogue—
"These recondite issues matter because theories about mathematics have had a big place in Western philosophy. All kinds of outlandish doctrines have tried to explain the nature of mathematical knowledge. Socrates set the ball rolling…."
— Ian Hacking in The New York Review of Books , Feb. 16, 1984
The same professor introducing a new edition of Kuhn's Structure of Scientific Revolutions—
"Paradigms Regained" (Los Angeles Review of Books , April 18, 2012)—
"That is the structure of scientific revolutions: normal science with a paradigm and a dedication to solving puzzles; followed by serious anomalies, which lead to a crisis; and finally resolution of the crisis by a new paradigm. Another famous word does not occur in the section titles: incommensurability. This is the idea that, in the course of a revolution and paradigm shift, the new ideas and assertions cannot be strictly compared to the old ones."
The Meno proof involves inscribing diagonals in squares. It is therefore related, albeit indirectly, to the classic Greek discovery that the diagonals of a square are incommensurable with its sides. Hence the following discussion of incommensurability seems relevant.
See also von Fritz and incommensurability in The New York Times (March 8, 2011).
For mathematical remarks related to the 10-dot triangular array of von Fritz, diagonals, and bowling, see this journal on Nov. 8, 2011— "Stoned."
(Continued from Part I and Part II.)
The paper excerpted below supplies some badly needed technical
background for the Wikipedia article on functional decomposition.
The preprint above gives the precise definitions and technical references
that are completely absent from Wikipedia's Functional decomposition.
For some related material on 4×4 arrays like those in the above figure
see Decomposition Part I and Geometry of the 4×4 Square.
The diamond shape of yesterday's noon post
is not wholly without mathematical interest …
"Every triangle is an n -replica" is true
if and only if n is a square.
The 16 subdiamonds of the above figure clearly
may be mapped by an affine transformation
to 16 subsquares of a square array.
(See the diamond lattice in Weyl's Symmetry .)
Similarly for any square n , not just 16.
There is a group of 322,560 natural transformations
that permute the centers of the 16 subsquares
in a 16-part square array. The same group may be
viewed as permuting the centers of the 16 subtriangles
in a 16-part triangular array.
(Updated March 29, 2012, to correct wording and add Weyl link.)
From the current Wikipedia article "Symmetry (physics)"—
"In physics, symmetry includes all features of a physical system that exhibit the property of symmetry—that is, under certain transformations, aspects of these systems are 'unchanged', according to a particular observation. A symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is 'preserved' under some change.
A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries. Continuous symmetries can be described by Lie groups while discrete symmetries are described by finite groups (see Symmetry group)."….
"A discrete symmetry is a symmetry that describes non-continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square's original appearance."
Note the confusion here between continuous (or discontinuous) transformations and "continuous" (or "discontinuous," i.e. "discrete") groups .
This confusion may impede efforts to think clearly about some pure mathematics related to current physics— in particular, about the geometry of spaces made up of individual units ("points") that are not joined together in a continuous manifold.
For an attempt to forestall such confusion, see Noncontinuous Groups.
For related material, see Erlanger and Galois as well as the opening paragraphs of Diamond Theory—
Symmetry is often described as invariance under a group of transformations. An unspoken assumption about symmetry in Euclidean 3-space is that the transformations involved are continuous.
Diamond theory rejects this assumption, and in so doing reveals that Euclidean symmetry may itself be invariant under rather interesting groups of non-continuous (and a-symmetric) transformations. (These might be called noncontinuous groups, as opposed to so-called discontinuous (or discrete ) symmetry groups. See Weyl's Symmetry .)
For example, the affine group A on the 4-space over the 2-element field has a natural noncontinuous and asymmetric but symmetry-preserving action on the elements of a 4×4 array. (Details)
(Version first archived on March 27, 2002)
Update of Sunday, February 19, 2012—
The abuse of language by the anonymous authors
of the above Wikipedia article occurs also in more
reputable sources. For instance—
Some transformations referred to by Brading and Castellani
and their editees as "discrete symmetries" are, in fact, as
linear transformations of continuous spaces, themselves
continuous transformations.
This unfortunate abuse of language is at least made explicit
in a 2003 text, Mathematical Perspectives on Theoretical
Physics (Nirmala Prakash, Imperial College Press)—
"… associated[*] with any given symmetry there always exists
a continuous or a discrete group of transformations….
A symmetry whose associated group is continuous (discrete)
is called a continuous (discrete ) symmetry ." — Pp. 235, 236
[* Associated how?]
"… a finite set with n elements Tesseract formed from a 4-set—
The same 16 subsets or points can
"There is such a thing as a 4-set." |
Update of August 12, 2012:
Figures like the above, with adjacent vertices differing in only one coordinate,
appear in a 1950 paper of H. S. M. Coxeter—
The twin topics of autism and of narrowing definitions
suggested the following remarks.
The mystical number "318" in the pilot episode
of Kiefer Sutherland's new series about autism, "Touch,"
is so small that it can easily apply (as the pilot
illustrated) to many different things: a date, a
time, a bus number, an address, etc.
The last 3/18 Log24 post— Defining Configurations—
led, after a false start and some further research,
to the writing of the webpage Configurations and Squares.
An image from that page—
Interpreting this, in an autistic manner, as the number
287501346 lets us search for more specific items
than those labeled simply 318.
The search yields, among other things, an offer of
Night Magic Cologne (unsold)—
For further mystery and magic, see, from the date
the Night Magic offer closed— May 8, 2010— "A Better Story."
See also the next day's followup, "The Ninth Gate."
(Continued from Epiphany and from yesterday.)
Detail from the current American Mathematical Society homepage—
Further detail, with a comparison to Dürer’s magic square—
The three interpenetrating planes in the foreground of Donmoyer‘s picture
provide a clue to the structure of the the magic square array behind them.
Group the 16 elements of Donmoyer’s array into four 4-sets corresponding to the
four rows of Dürer’s square, and apply the 4-color decomposition theorem.
Note the symmetry of the set of 3 line diagrams that result.
Now consider the 4-sets 1-4, 5-8, 9-12, and 13-16, and note that these
occupy the same positions in the Donmoyer square that 4-sets of
like elements occupy in the diamond-puzzle figure below—
Thus the Donmoyer array also enjoys the structural symmetry,
invariant under 322,560 transformations, of the diamond-puzzle figure.
Just as the decomposition theorem’s interpenetrating lines explain the structure
of a 4×4 square , the foreground’s interpenetrating planes explain the structure
of a 2x2x2 cube .
For an application to theology, recall that interpenetration is a technical term
in that field, and see the following post from last year—
Saturday, June 25, 2011
— m759 @ 12:00 PM “… the formula ‘Three Hypostases in one Ousia ‘ Ousia
|
“…the nonlinear characterization of Billy Pilgrim
emphasizes that he is not simply an established
identity who undergoes a series of changes but
all the different things he is at different times.”
This suggests that the above structure
be viewed as illustrating not eight parts
but rather 8! = 40,320 parts.
"The Cardinal seemed a little preoccupied today."
The New Yorker , May 13, 2002
See also a note of May 14 , 2002.
See also a quote from William Peter Blatty in this journal yesterday.
The green cell in the array may be viewed as representing
Blatty's The Ninth Configuration … or perhaps Plan 9.
A footnote was added to Finite Relativity—
Background:
Weyl on what he calls the relativity problem—
“The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time.”
– Hermann Weyl, 1949, “Relativity Theory as a Stimulus in Mathematical Research“
“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”
– Hermann Weyl, 1946, The Classical Groups , Princeton University Press, p. 16
…. A note of Feb. 20, 1986, supplied an example of such coordinatizations in finite geometry. In that note, the group of mediating transformations acted directly on coordinates within a 4×4 array. When the 4×4 array is embedded in a 4×6 array, a larger and more interesting group, M 24 (containing the original group), acts on the larger array. There is no obvious solution to Weyl’s relativity problem for M 24. That is, there is no obvious way* to apply exactly 24 distinct transformable coordinate-sets (or symbol-strings ) to the 24 array elements in such a way that the natural group of mediating transformations of the 24 symbol-strings is M 24. ….
Footnote of Sept. 20, 2011:
* R.T. Curtis has, it seems, a non-obvious way that involves strings of seven symbols. His abstract for a 1990 paper says that in his construction “The generators of M 24 are defined… as permutations of twenty-four 7-cycles in the action of PSL2(7) on seven letters….”
See “Geometric Interpretations of the ‘Natural’ Generators of the Mathieu groups,” by R.T. Curtis, Mathematical Proceedings of the Cambridge Philosophical Society (1990), Vol. 107, Issue 01, pp. 19-26. (Rec. Jan. 3, 1989, revised Feb. 3, 1989.) This paper was published online on Oct. 24, 2008.
Some related articles by Curtis:
R.T. Curtis, “Natural Constructions of the Mathieu groups,” Math. Proc. Cambridge Philos. Soc. (1989), Vol. 106, pp. 423-429
R.T. Curtis. “Symmetric Presentations I: Introduction, with Particular Reference to the Mathieu groups M 12 and M 24” In Proceedings of 1990 LMS Durham Conference ‘Groups, Combinatorics and Geometry’ (eds. M. W. Liebeck and J. Saxl), London Math. Soc. Lecture Note Series 165, Cambridge University Press, 1992, pp. 380–396
R.T. Curtis, “A Survey of Symmetric Generation of Sporadic Simple Groups,” in The Atlas of Finite Groups: Ten Years On , (eds. R.T. Curtis and R.A. Wilson), London Math. Soc. Lecture Note Series 249, Cambridge University Press, 1998, pp. 39–57
"In any geometry satisfying Pappus's Theorem,
the four pairs of opposite points of 83
are joined by four concurrent lines."
— H. S. M. Coxeter (see below)
Continued from Tuesday, Sept. 6—
The Diamond Star
The above is a version of a figure from Configurations and Squares.
Yesterday's post related the the Pappus configuration to this figure.
Coxeter, in "Self-Dual Configurations and Regular Graphs," also relates Pappus to the figure.
Some excerpts from Coxeter—
The relabeling uses the 8 superscripts
from the first picture above (plus 0).
The order of the superscripts is from
an 8-cycle in the Galois field GF(9).
The relabeled configuration is used in a discussion of Pappus—
(Update of Sept. 10, 2011—
Coxeter here has a note referring to page 335 of
G. A. Miller, H. F. Blichfeldt, and L. E. Dickson,
Theory and Applications of Finite Groups , New York, 1916.)
Coxeter later uses the the 3×3 array (with center omitted) again to illustrate the Desargues configuration—
The Desargues configuration is discussed by Gian-Carlo Rota on pp. 145-146 of Indiscrete Thoughts—
"The value of Desargues' theorem and the reason why the statement of this theorem has survived through the centuries, while other equally striking geometrical theorems have been forgotten, is in the realization that Desargues' theorem opened a horizon of possibilities that relate geometry and algebra in unexpected ways."
A search for some background on Gian-Carlo Rota's remarks
in Indiscrete Thoughts * on a geometric configuration
leads to the following passages in Hilbert and Cohn-Vossen's
classic Geometry and the Imagination—
These authors describe the Brianchon-Pascal configuration
of 9 points and 9 lines, with 3 points on each line
and 3 lines through each point, as being
"the most important configuration of all geometry."
Thus it seems worthwhile to relate it to the web page
on square configurations referenced here Tuesday.
The Encyclopaedia of Mathematics , ed. by Michiel Hazewinkel,
supplies a summary of the configuration apparently
derived from Hilbert and Cohn-Vossen—
My own annotation at right above shows one way to picture the
Brianchon-Pascal points and lines— regarded as those of a finite,
purely combinatorial , configuration— as subsets of the nine-point
square array discussed in Configurations and Squares. The
rearrangement of points in the square yields lines that are in
accord with those in the usual square picture of the 9-point
affine plane.
A more explicit picture—
The Brianchon-Pascal configuration is better known as Pappus's configuration,
and a search under that name will give an idea of its importance in geometry.
* Birkhäuser Boston, 1998 2nd printing, p. 145
A post of September 1, The Galois Tesseract, noted that the interplay
of algebraic and geometric properties within the 4×4 array that forms
two-thirds of the Curtis Miracle Octad Generator (MOG) may first have
been described by Cullinane (AMS abstract 79T-A37, Notices , Feb. 1979).
Here is some supporting material—
The passage from Carmichael above emphasizes the importance of
the 4×4 square within the MOG.
The passage from Conway and Sloane, in a book whose first edition
was published in 1988, makes explicit the structure of the MOG's
4×4 square as the affine 4-space over the 2-element Galois field.
The passage from Curtis (1974, published in 1976) describes 35 sets
of four "special tetrads" within the 4×4 square of the MOG. These
correspond to the 35 sets of four parallel 4-point affine planes within
the square. Curtis, however, in 1976 makes no mention of the affine
structure, characterizing his 140 "special tetrads" rather by the parity
of their intersections with the square's rows and columns.
The affine structure appears in the 1979 abstract mentioned above—
The "35 structures" of the abstract were listed, with an application to
Latin-square orthogonality, in a note from December 1978—
See also a 1987 article by R. T. Curtis—
Further elementary techniques using the miracle octad generator, by R. T. Curtis. Abstract:
“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”
(Received July 20 1987)
– Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353
* For instance:
Update of Sept. 4— This post is now a page at finitegeometry.org.
Related remarks —
For the eight-limbed star at the top of the quaternion array above,
see "Damnation Morning" in this journal—
She drew from her handbag a pale grey gleaming implement that looked by quick turns to me like a knife, a gun, a slim sceptre, and a delicate branding iron—especially when its tip sprouted an eight-limbed star of silver wire. “The test?” I faltered, staring at the thing. “Yes, to determine whether you can live in the fourth dimension or only die in it.” — Fritz Leiber, short story, 1959
See also Feb. 19, 2011.
Happy birthday to Amy Adams
(actress from Castle Rock, Colorado)
"The metaphor for metamorphosis…" —Endgame
Related material:
"The idea that reality consists of multiple 'levels,' each mirroring all others in some fashion, is a diagnostic feature of premodern cosmologies in general…."
— Scholarly paper on "Correlative Cosmologies"
"How many layers are there to human thought? Sometimes in art, just as in people’s conversations, we’re aware of only one at a time. On other occasions, though, we realize just how many layers can be in simultaneous action, and we’re given a sense of both revelation and mystery. When a choreographer responds to music— when one artist reacts in detail to another— the sensation of multilayering can affect us as an insight not just into dance but into the regions of the mind.
The triple bill by the Mark Morris Dance Group at the Rose Theater, presented on Thursday night as part of the Mostly Mozart Festival, moves from simple to complex, and from plain entertainment to an astonishingly beautiful and intricate demonstration of genius….
'Socrates' (2010), which closed the program, is a calm and objective work that has no special dance excitement and whips up no vehement audience reaction. Its beauty, however, is extraordinary. It’s possible to trace in it terms of arithmetic, geometry, dualism, epistemology and ontology, and it acts as a demonstration of art and as a reflection of life, philosophy and death."
— Alastair Macaulay in today's New York Times
SOCRATES: Let us turn off the road a little….
— Libretto for Mark Morris's 'Socrates'
See also Amy Adams's new film "On the Road"
in a story from Aug. 5, 2010 as well as a different story,
Eightgate, from that same date:
The above reference to "metamorphosis" may be seen,
if one likes, as a reference to the group of all projectivities
and correlations in the finite projective space PG(3,2)—
a group isomorphic to the 40,320 transformations of S8
acting on the above eight-part figure.
See also The Moore Correspondence from last year
on today's date, August 20.
For some background, see a book by Peter J. Cameron,
who has figured in several recent Log24 posts—
"At the still point, there the dance is."
— Four Quartets
Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité….
— Baudelaire, “Correspondances ”
From “A Four-Color Theorem”—
Figure 1
Note that this illustrates a natural correspondence
between
(A) the seven highly symmetrical four-colorings
of the 4×2 array at the left of Fig. 1, and
(B) the seven points of the smallest
projective plane at the right of Fig. 1.
To see the correspondence, add, in binary
fashion, the pairs of projective points from the
“points” section that correspond to like-colored
squares in a four-coloring from the left of Fig. 1.
(The correspondence can, of course, be described
in terms of cosets rather than of colorings.)
A different correspondence between these 7 four-coloring
structures and these 7 projective-line structures appears in
a structural analysis of the Miracle Octad Generator
(MOG) of R.T. Curtis—
Figure 2
Here the correspondence between the 7 four-coloring structures (left section) and the 7 projective-line structures (center section) is less obvious, but more fruitful. It yields, as shown, all of the 35 partitions of an 8-element set (an 8-set ) into two 4-sets. The 7 four-colorings in Fig. 2 also appear in the 35 4×4 parts of the MOG that correspond, in a way indicated by Fig. 2, to the 35 8-set paritions. This larger correspondence— of 35 4×2 arrays with 35 4×4 arrays— is the MOG, at least as it was originally defined. See The MOG, Generating the Octad Generator, and Eightfold Geometry.
For some applications of the Curtis MOG, see |
Yesterday's post Ad Meld featured Harry Potter (succeeding in business),
a 4×6 array from a video of the song "Abracadabra," and a link to a post
with some background on the 4×6 Miracle Octad Generator of R.T. Curtis.
A search tonight for related material on the Web yielded…
Weblog post by Steve Richards titled "The Search for Invariants:
The Diamond Theory of Truth, the Miracle Octad Generator
and Metalibrarianship." The artwork is by Steven H. Cullinane.
Richards has omitted Cullinane's name and retitled the artwork.
The author of the post is an artist who seems to be interested in the occult.
His post continues with photos of pages, some from my own work (as above), some not.
My own work does not deal with the occult, but some enthusiasts of "sacred geometry" may imagine otherwise.
The artist's post concludes with the following (note also the beginning of the preceding post)—
"The Struggle of the Magicians" is a 1914 ballet by Gurdjieff. Perhaps it would interest Harry.
The title refers not to numbers of the form p 3, p prime, but to geometric cubes with p 3 subcubes.
Such cubes are natural models for the finite vector spaces acted upon by general linear groups viewed as permutation groups of degree (not order ) p 3.
For the case p =2, see The Eightfold Cube.
For the case p =3, see the "External links" section of the Nov. 30, 2009, version of Wikipedia article "General Linear Group." (That is the version just prior to the Dec. 14, 2009, revision by anonymous user "Greenfernglade.")
For symmetries of group actions for larger primes, see the related 1985 remark* on two -dimensional linear groups—
"Actions of GL(2,p ) on a p ×p coordinate-array
have the same sorts of symmetries,
where p is any odd prime."
Perfect Symmetry (Oct. 2008) and Perfect Symmetry single (Dec. 2008)—
Related science…
Heinz Pagels in Perfect Symmetry (paperback, 1985), p. xvii—
The penultimate chapter of this third part of the book—
as far as speculation is concerned— describes some
recent mathematical models for the very origin of the
universe—how the fabric of space, time and matter can
be created out of absolutely nothing. What could have more
perfect symmetry than absolute nothingness? For the first
time in history, scientists have constructed mathematical
models that account for the very creation of the universe
out of nothing.
On Grand Unified Theories (GUT's) of physics (ibid., 284)—
In spite of the fact that GUTs leave deep puzzles unsolved,
they have gone a long way toward unifying the various
quantum particles. For example, many people are disturbed
by the large numbers of gluons, quarks and leptons. Part of
the appeal of the GUT idea is that this proliferation of
quantum particles is really superficial and that all the gluons
as well at the quarks and leptons may be simply viewed as
components of a few fundamental unifying fields. Under the
GUT symmetry operation these field components transform
into one another. The reason quantum particles appear to
have different properties in nature is that the unifying
symmetry is broken. The various gluons, quarks and leptons
are analogous to the facets of a cut diamond, which appear
differently according to the way the diamond is held but in
fact are all manifestations of the same underlying object.
Related art— Puzzle and Particles…
The Diamond 16 Puzzle (compare with Keane art above)—
—and The Standard Model of particle theory—
The fact that both the puzzle and the particles appear
within a 4×4 array is of course completely coincidental.
See also a more literary approach— "The Still Point and the Wheel"—
"Anomalies must be expected along the conceptual frontier between the temporal and the eternal."
— The Death of Adam , by Marilynne Robinson, Houghton Mifflin, 1998, essay on Marguerite de Navarre
The On-Line Encyclopedia of Integer Sequences has an article titled "Number of combinatorial configurations of type (n_3)," by N.J.A. Sloane and D. Glynn.
From that article:
The following corrects the word "unique" in the example.
* This post corrects an earlier post, also numbered 14660 and dated 7 PM March 18, 2011, that was in error.
The correction was made at about 11:50 AM on March 20, 2011.
_____________________________________________________________
Update of March 21
The problem here is of course with the definition. Sloane and Glynn failed to include in their definition a condition that is common in other definitions of configurations, even abstract or purely "combinatorial" configurations. See, for instance, Configurations of Points and Lines , by Branko Grunbaum (American Mathematical Society, 2009), p. 17—
In the most general sense we shall consider combinatorial (or abstract) configurations; we shall use the term set-configurations as well. In this setting "points" are interpreted as any symbols (usually letters or integers), and "lines" are families of such symbols; "incidence" means that a "point" is an element of a "line". It follows that combinatorial configurations are special kinds of general incidence structures. Occasionally, in order to simplify and clarify the language, for "points" we shall use the term marks, and for "lines" we shall use blocks. The main property of geometric configurations that is preserved in the generalization to set-configurations (and that characterizes such configurations) is that two marks are incident with at most one block, and two blocks with at most one mark.
Whether or not omitting this "at most one" condition from the definition is aesthetically the best choice, it dramatically changes the number of configurations in the resulting theory, as the above (8_3) examples show.
Update of March 22 (itself updated on March 25)
For further background on configurations, see Dolgachev—
Note that the two examples Dolgachev mentions here, with 16 points and 9 points, are not unrelated to the geometry of 4×4 and 3×3 square arrays. For the Kummer and related 16-point configurations, see section 10.3, "The Three Biplanes of Order 4," in Burkard Polster's A Geometrical Picture Book (Springer, 1998). See also the 4×4 array described by Gordon Royle in an undated web page and in 1980 by Assmus and Sardi. For the Hesse configuration, see (for instance) the passage from Coxeter quoted in Quaternions in an Affine Galois Plane.
Update of March 27
See the above link to the (16,6) 4×4 array and the (16,6) exercises using this array in R.D. Carmichael's classic Introduction to the Theory of Groups of Finite Order (1937), pp. 42-43. For a connection of this sort of 4×4 geometry to the geometry of the diamond theorem, read "The 2-subsets of a 6-set are the points of a PG(3,2)" (a note from 1986) in light of R.W.H.T. Hudson's 1905 classic Kummer's Quartic Surface , pages 8-9, 16-17, 44-45, 76-77, 78-79, and 80.
The following was suggested by a link within this evening's earlier Kane site link.
Peter J. Cameron's weblog on August 26, 2010—
A Latin square of order n is a
|
|
Some related literary remarks—
Proginoskes and Latin Squares.
See also "It was a perfectly ordinary night at Christ's high table…."
Apollo's 13: A Group Theory Narrative —
I. At Wikipedia —
II. Here —
See Cube Spaces and Cubist Geometries.
The 13 symmetry axes of the (Euclidean) cube–
exactly one axis for each pair of opposite
subcubes in the 27-part (Galois) 3×3×3 cube–
A note from 1985 describing group actions on a 3×3 plane array—
Undated software by Ed Pegg Jr. displays
group actions on a 3×3×3 cube that extend the
3×3 group actions from 1985 described above—
Pegg gives no reference to the 1985 work on group actions.
"Eight is a gate."
— This journal, December 2002
Tralfamadorian Structure
in Slaughterhouse-Five
includes the following passage:
“…the nonlinear characterization of Billy Pilgrim
emphasizes that he is not simply an established
identity who undergoes a series of changes but
all the different things he is at different times.”
This suggests that the above structure be viewed
as illustrating not eight parts but rather
8! = 40,320 parts.
See also April 2, 2003.
Happy birthday to John Huston and
happy dies natalis to Richard Burton.
Cubic models of finite geometries
display an interplay between
Euclidean and Galois geometry.
Example 1— The 2×2×2 Cube—
also known as the eightfold cube—
Group actions on the eightfold cube, 1984—
Version by Laszlo Lovasz et al., 2003—
Lovasz et al. go on to describe the same group actions
as in the 1984 note, without attribution.
Example 2— The 3×3×3 Cube
A note from 1985 describing group actions on a 3×3 plane array—
Undated software by Ed Pegg Jr. displays
group actions on a 3×3×3 cube that extend the
3×3 group actions from 1985 described above—
Pegg gives no reference to the 1985 work on group actions.
Example 3— The 4×4×4 Cube
A note from 27 years ago today—
As far as I know, this version of the
group-actions theorem has not yet been ripped off.
In the above view, four of the tesseract's 16
vertices are overlaid by other vertices.
For views that are more complete and
moveable, see Smith's tesseract page.
Four-Part Tesseract Divisions—
The above figure shows how four-part partitions
of the 16 vertices of a tesseract in an infinite
Euclidean space are related to four-part partitions
of the 16 points in a finite Galois space
Euclidean spaces versus Galois spaces in a larger context— Infinite versus Finite The central aim of Western religion —
"Each of us has something to offer the Creator...
the bridging of
masculine and feminine,
life and death.
It's redemption.... nothing else matters."
-- Martha Cooley in The Archivist (1998)
The central aim of Western philosophy —
Dualities of Pythagoras
as reconstructed by Aristotle:
Limited Unlimited
Odd Even
Male Female
Light Dark
Straight Curved
... and so on ....
"Of these dualities, the first is the most important; all the others may be seen as different aspects of this fundamental dichotomy. To establish a rational and consistent relationship between the limited [man, etc.] and the unlimited [the cosmos, etc.] is… the central aim of all Western philosophy." |
Another picture related to philosophy and religion—
Jung's Four-Diamond Figure from Aion—
This figure was devised by Jung
to represent the Self. Compare the
remarks of Paul Valéry on the Self—
Flight from Eden: The Origins of Modern Literary Criticism and Theory, by Steven Cassedy, U. of California Press, 1990, pages 156-157—
Valéry saw the mind as essentially a relational system whose operation he attempted to describe in the language of group mathematics. "Every act of understanding is based on a group," he says (C, 1:331). "My specialty— reducing everything to the study of a system closed on itself and finite" (C, 19: 645). The transformation model came into play, too. At each moment of mental life the mind is like a group, or relational system, but since mental life is continuous over time, one "group" undergoes a "transformation" and becomes a different group in the next moment. If the mind is constantly being transformed, how do we account for the continuity of the self? Simple; by invoking the notion of the invariant. And so we find passages like this one: "The S[elf] is invariant, origin, locus or field, it's a functional property of consciousness" (C, 15:170 [2:315]). Just as in transformational geometry, something remains fixed in all the projective transformations of the mind's momentary systems, and that something is the Self (le Moi, or just M, as Valéry notates it so that it will look like an algebraic variable). Transformation theory is all over the place. "Mathematical science… reduced to algebra, that is, to the analysis of the transformations of a purely differential being made up of homogeneous elements, is the most faithful document of the properties of grouping, disjunction, and variation in the mind" (O, 1:36). "Psychology is a theory of transformations, we just need to isolate the invariants and the groups" (C, 1:915). "Man is a system that transforms itself" (C, 2:896). O Paul Valéry, Oeuvres (Paris: Pléiade, 1957-60) C Valéry, Cahiers, 29 vols. (Paris: Centre National de le Recherche Scientifique, 1957-61) |
Note also the remarks of George David Birkhoff at Rice University
in 1940 (pdf) on Galois's theory of groups and the related
"theory of ambiguity" in Galois's testamentary letter—
… metaphysical reasoning always relies on the Principle of Sufficient Reason, and… the true meaning of this Principle is to be found in the “Theory of Ambiguity” and in the associated mathematical “Theory of Groups.” If I were a Leibnizian mystic, believing in his “preestablished harmony,” and the “best possible world” so satirized by Voltaire in “Candide,” I would say that the metaphysical importance of the Principle of Sufficient Reason and the cognate Theory of Groups arises from the fact that God thinks multi-dimensionally* whereas men can only think in linear syllogistic series, and the Theory of Groups is the appropriate instrument of thought to remedy our deficiency in this respect. * That is, uses multi-dimensional symbols beyond our grasp. |
Related material:
A medal designed by Leibniz to show how
binary arithmetic mirrors the creation by God
of something (1) from nothing (0).
Another array of 16 strings of 0's and 1's, this time
regarded as coordinates rather than binary numbers—
Some context by a British mathematician —
Imago by Wallace Stevens Who can pick up the weight of Britain, Who can move the German load Or say to the French here is France again? Imago. Imago. Imago. It is nothing, no great thing, nor man Of ten brilliancies of battered gold And fortunate stone. It moves its parade Of motions in the mind and heart, A gorgeous fortitude. Medium man In February hears the imagination's hymns And sees its images, its motions And multitudes of motions And feels the imagination's mercies, In a season more than sun and south wind, Something returning from a deeper quarter, A glacier running through delirium, Making this heavy rock a place, Which is not of our lives composed . . . Lightly and lightly, O my land, Move lightly through the air again. |
“What on earth is a 'concrete universal'?"
— Said to be an annotation (undated)
by Robert M. Pirsig of A History of Philosophy,
by Frederick Copleston, Society of Jesus.
From Aaron Urbanczyk's 2005 review of Christ and Apollo by William Lynch, S.J., a book first published in 1960—
"Lynch's use of analogy vis-a-vis literature provides, in a sense, a philosophical basis to the theoretical paradox popularized by W. K. Wimsatt (1907-1975), which contends that literature is a sort of 'concrete universal.'"
The following figure has often been
offered in this journal as a symbol of Apollo—
Arguments that it is, rather, a symbol of Christ
may be left to the Society of Jesus.
One possible approach—
Urbanczyk's review says that
"Christianity offers the critic
a privileged ontological window…."
"The world was warm and white when I was born:
Beyond the windowpane the world was white,
A glaring whiteness in a leaded frame,
Yet warm as in the hearth and heart of light."
A recently created Wikipedia article says that “The Miracle Octad Generator [MOG] is an array of coordinates, arranged in four rows and six columns, capable of describing any point in 24-dimensional space….” (Clearly any array with 24 parts is so capable.) The article ignores the fact that the MOG, as defined by R.T. Curtis in 1976, is not an array of coordinates, but rather a picture of a correspondence between two sets, each containing 35 structures. (As a later commentator has remarked, this correspondence is a well-known one that preserves a certain incidence property. See Eightfold Geometry.)
From the 1976 paper defining the MOG—
“There is a correspondence between the two systems of 35 groups, which is illustrated in Fig. 4 (the MOG or Miracle Octad Generator).” —R.T. Curtis, “A New Combinatorial Approach to M24,” Mathematical Proceedings of the Cambridge Philosophical Society (1976), 79: 25-42
Curtis’s 1976 Fig. 4. (The MOG.)
The Wikipedia article, like a similar article at PlanetMath, is based on a different definition, from a book first published in 1988—
I have not seen the 1973 Curtis paper, so I do not know whether it uses the 35-sets correspondence definition or the 6×4 array definition. The remarks of Conway and Sloane on page 312 of the 1998 edition of their book about “Curtis’s original way of finding octads in the MOG [Cur2]” indicate that the correspondence definition was the one Curtis used in 1973—
Here the picture of “the 35 standard sextets of the MOG”
is very like (modulo a reflection) Curtis’s 1976 picture
of the MOG as a correspondence between two 35-sets.
A later paper by Curtis does use the array definition. See “Further Elementary Techniques Using the Miracle Octad Generator,” Proceedings of the Edinburgh Mathematical Society (1989) 32, 345-353.
The array definition is better suited to Conway’s use of his hexacode to describe octads, but it obscures the close connection of the MOG with finite geometry. That connection, apparent in the phrases “vector space structure in the standard square” and “parallel 2-spaces” (Conway and Sloane, third ed., p. 312, illustrated above), was not discussed in the 1976 Curtis paper. See my own page on the MOG at finitegeometry.org.
Deep Down Things: The Breathtaking Beauty of Particle Physics, by Bruce A. Schumm, Johns Hopkins University Press, hardcover, Oct. 20, 2004, pp. 94-95–
"In the early 1960s, a physicist at the California Institute of Technology by the name of Murray Gell-Mann interpreted the patterns observed in the emerging array of elementary particles as being due to a symmetry….
Gell-Mann's eightfold way was perhaps the first conscious application of the results of the pure mathematical field of group theory and, in particular, the theory of 'Lie groups,' to a problem in physics."
From the preface–
"I didn't come up with the title for this book. For that, I can thank the people at the Johns Hopkins University Press…. my only reservation about the title is that… it implies a degree of literacy to which I can't lay claim."
Amen.
Remedial reading for those who might have fallen for Schumm's damned nonsense–
"Quantum Mechanics and Group Theory I," by Dallas C. Kennedy
Weyl on what he calls the relativity problem—
"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."
— Hermann Weyl, 1949, "Relativity Theory as a Stimulus in Mathematical Research"
"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."
— Hermann Weyl, 1946, The Classical Groups, Princeton University Press, p. 16
Twenty-four years ago a note of Feb. 20, 1986, supplied an example of such coordinatizations in finite geometry. In that note, the group of mediating transformations acted directly on coordinates within a 4×4 array. When the 4×4 array is embedded in a 4×6 array, a larger and more interesting group, M24 (containing the original group), acts on the larger array. There is no obvious solution to Weyl's relativity problem for M24. That is, there is no obvious way to apply exactly 24 distinct transformable coordinates (or symbol-strings) to the 24 array elements in such a way that the natural group of mediating transformations of the 24 symbol-strings is M24.
There is, however, an assignment of symbol-strings that yields a family of sets with automorphism group M24.
R.D. Carmichael in 1931 on his construction of the Steiner system S(5,8,24)–
"The linear fractional group modulo 23 of order 24•23•11 is often represented as a doubly transitive group of degree 24 on the symbols ∞, 0, 1, 2,…, 22. This transitive group contains a subgroup of order 8 each element of which transforms into itself the set ∞, 0, 1, 3, 12, 15, 21, 22 of eight elements, while the whole group transforms this set into 3•23•11 sets of eight each. This configuration of octuples has the remarkable property that any given set of five of the 24 symbols occurs in one and just one of these octuples. The largest permutation group Γ on the 24 symbols, each element of which leaves this configuration invariant, is a five-fold transitive group of degree 24 and order 24•23•22•21•20•48. This is the Mathieu group of degree 24."
— R. D. Carmichael, 1931, "Tactical Configurations of Rank Two," in American Journal of Mathematics, Vol. 53, No. 1 (Jan., 1931), pp. 217-240
From today's NY Times—
Obituaries for mystery authors
Ralph McInerny and Dick Francis
From the date (Jan. 29) of McInerny's death–
"…although a work of art 'is formed around something missing,' this 'void is its vanishing point, not its essence.'"
– Harvard University Press on Persons and Things (Walpurgisnacht, 2008), by Barbara Johnson
From the date (Feb. 14) of Francis's death–
The EIghtfold Cube
The "something missing" in the above figure is an eighth cube, hidden behind the others pictured.
This eighth cube is not, as Johnson would have it, a void and "vanishing point," but is instead the "still point" of T.S. Eliot. (See the epigraph to the chapter on automorphism groups in Parallelisms of Complete Designs, by Peter J. Cameron. See also related material in this journal.) The automorphism group here is of course the order-168 simple group of Felix Christian Klein.
For a connection to horses, see
a March 31, 2004, post
commemorating the birth of Descartes
and the death of Coxeter–
Putting Descartes Before Dehors
For a more Protestant meditation,
see The Cross of Descartes—
"I've been the front end of a horse
and the rear end. The front end is better."
— Old vaudeville joke
For further details, click on
the image below–
Notre Dame Philosophical Reviews
New York Times, January 12, 2010, 12:26 PM–
"Spider-Man" Musical Will Refund Tickets
"With… direction by Julie Taymor ['Frida'], 'Spider-Man' has been marred by delays….
The musical’s troubles have unfolded at the same time that the next “Spider-Man” movie has been descending into disarray…."
Related material:
"No Great Magic," by Fritz Leiber–
"The white cosmetic came away, showing sallow skin and on it a faint tattoo in the form of an 'S' styled like a yin-yang symbol left a little open.
'Snake!' he hissed. 'Destroyer! The arch-enemy, the eternal opponent!'"
“Ay que bonito es volar
A las dos de la mañana….”
— “La Bruja“
“Inside the church, the grief was real. Sen. Edward Kennedy’s voice caught as he read his lovely eulogy, and when he was done, Caroline Kennedy Schlossberg stood up and hugged him. She bravely read from Shakespeare’s ‘The Tempest‘ (‘Our revels now are ended. We are such stuff as dreams are made on‘). Many of the 315 mourners, family and friends of the Kennedys and Bessettes, swallowed hard through a gospel choir’s rendition of ‘Amazing Grace,’ and afterward, they sang lustily as Uncle Teddy led the old Irish songs at the wake.”
— Newsweek magazine, issue dated August 2, 1999
The Ba gua (Chinese….) are eight diagrams used in Taoist cosmology to represent a range of interrelated concepts. Each consists of three lines, each either ‘broken’ or ‘unbroken,’ representing a yin line or a yang line, respectively. Due to their tripartite structure, they are often referred to as ‘trigrams’ in English. —Wikipedia
Background:
1. "Jesus's Response to Dishonor" 2. For Stephen King, August 11, 2009 3. Art and Man at Yale |
From a 1984 book review:
"After three decades of intensive research by hundreds of group theorists, the century old problem of the classification of the finite simple groups has been solved and the whole field has been drastically changed. A few years ago the one focus of attention was the program for the classification; now there are many active areas including the study of the connections between groups and geometries, sporadic groups and, especially, the representation theory. A spate of books on finite groups, of different breadths and on a variety of topics, has appeared, and it is a good time for this to happen. Moreover, the classification means that the view of the subject is quite different; even the most elementary treatment of groups should be modified, as we now know that all finite groups are made up of groups which, for the most part, are imitations of Lie groups using finite fields instead of the reals and complexes. The typical example of a finite group is
— Jonathan L. Alperin,
review of books on group theory,
Bulletin (New Series) of the American
Mathematical Society 10 (1984) 121, doi:
10.1090/S0273-0979-1984-15210-8
The same example
at Wolfram.com:
Citation data from Wolfram.com:
"GL(2,p) and GL(3,3) Acting on Points"
from The Wolfram Demonstrations Project,
http://demonstrations.wolfram.com/GL2PAndGL33ActingOnPoints/,
Contributed by: Ed Pegg Jr"
As well as displaying Cullinane's 48 pictures of group actions from 1985, the Pegg program displays many, many more actions of small finite general linear groups over finite fields. It illustrates Cullinane's 1985 statement:
"Actions of GL(2,p) on a p×p coordinate-array have the same sorts of symmetries, where p is any odd prime."
Pegg's program also illustrates actions on a cubical array– a 3×3×3 array acted on by GL(3,3). For some other actions on cubical arrays, see Cullinane's Finite Geometry of the Square and Cube.
Prima Materia
(Background: Art Humor: Sein Feld (March 11, 2009) and Ides of March Sermon, 2009)
From Cardinal Manning's review of Kirkman's Philosophy Without Assumptions—
"And here I must confess… that between something and nothing I can find no intermediate except potentia, which does not mean force but possibility."
— Contemporary Review, Vol. 28 (June-November, 1876), page 1017
Furthermore….
Cardinal Manning, Contemporary Review, Vol. 28, pages 1026-1027:
The following will be, I believe, a correct statement of the Scholastic teaching:–
1. By strict process of reason we demonstrate a First Existence, a First Cause, a First Mover; and that this Existence, Cause, and Mover is Intelligence and Power.
2. This Power is eternal, and from all eternity has been in its fullest amplitude; nothing in it is latent, dormant, or in germ: but its whole existence is in actu, that is, in actual perfection, and in complete expansion or actuality. In other words God is Actus Purus, in whose being nothing is potential, in potentia, but in Him all things potentially exist.
3. In the power of God, therefore, exists the original matter (prima materia) of all things; but that prima materia is pura potentia, a nihilo distincta, a mere potentiality or possibility; nevertheless, it is not a nothing, but a possible existence. When it is said that the prima materia of all things exists in the power of God, it does not mean that it is of the existence of God, which would involve Pantheism, but that its actual existence is possible.
4. Of things possible by the power of God, some come into actual existence, and their existence is determined by the impression of a form upon this materia prima. The form is the first act which determines the existence and the species of each, and this act is wrought by the will and power of God. By this union of form with the materia prima, the materia secunda or the materia signata is constituted.
5. This form is called forma substantialis because it determines the being of each existence, and is the root of all its properties and the cause of all its operations.
6. And yet the materia prima has no actual existence before the form is impressed. They come into existence simultaneously;
[p. 1027 begins]
as the voice and articulation, to use St. Augustine's illustration, are simultaneous in speech.
7. In all existing things there are, therefore, two principles; the one active, which is the form– the other passive, which is the matter; but when united, they have a unity which determines the existence of the species. The form is that by which each is what it is.
8. It is the form that gives to each its unity of cohesion, its law, and its specific nature.*
When, therefore, we are asked whether matter exists or no, we answer, It is as certain that matter exists as that form exists; but all the phenomena which fall under sense prove the existence of the unity, cohesion, species, that is, of the form of each, and this is a proof that what was once in mere possibility is now in actual existence. It is, and that is both form and matter.
When we are further asked what is matter, we answer readily, It is not God, nor the substance of God; nor the presence of God arrayed in phenomena; nor the uncreated will of God veiled in a world of illusions, deluding us with shadows into the belief of substance: much less is it catter [pejorative term in the book under review], and still less is it nothing. It is a reality, the physical kind or nature of which is as unknown in its quiddity or quality as its existence is certainly known to the reason of man.
* "… its specific nature"
(Click to enlarge) —
For a more modern treatment of these topics, see Werner Heisenberg's Physics and Philosophy. For instance:
"The probability wave of Bohr, Kramers, Slater, however, meant… a tendency for something. It was a quantitative version of the old concept of 'potentia' in Aristotelian philosophy. It introduced something standing in the middle between the idea of an event and the actual event, a strange kind of physical reality just in the middle between possibility and reality."
Compare to Cardinal Manning's statement above:
"… between something and nothing I can find no intermediate except potentia…"
To the mathematician, the cardinal's statement suggests the set of real numbers between 1 and 0, inclusive, by which probabilities are measured. Mappings of purely physical events to this set of numbers are perhaps better described by applied mathematicians and physicists than by philosophers, theologians, or storytellers. (Cf. Voltaire's mockery of possible-worlds philosophy and, more recently, The Onion's mockery of the fictional storyteller Fournier's quantum flux. See also Mathematics and Narrative.)
Regarding events that are not purely physical– those that have meaning for mankind, and perhaps for God– events affecting conception, birth, life, and death– the remarks of applied mathematicians and physicists are often ignorant and obnoxious, and very often do more harm than good. For such meaningful events, the philosophers, theologians, and storytellers are better guides. See, for instance, the works of Jung and those of his school. Meaningful events sometimes (perhaps, to God, always) exhibit striking correspondences. For the study of such correspondences, the compact topological space [0, 1] discussed above is perhaps less helpful than the finite Galois field GF(64)– in its guise as the I Ching. Those who insist on dragging God into the picture may consult St. Augustine's Day, 2006, and Hitler's Still Point.
Dr. Joe Emerson, April 24, 2005–
— Text: I Peter 2:1-9
Dr. Emerson falsely claims that the film "On the Waterfront" was based on a book by the late Budd Schulberg (who died yesterday). (Instead, the film's screenplay, written by Schulberg– similar to an earlier screenplay by Arthur Miller, "The Hook"– was based on a series of newspaper articles by Malcolm Johnson.)
"The movie 'On the Waterfront' is once more in rerun. (That’s when Marlon Brando looked like Marlon Brando. That’s the scary part of growing old when you see what he looked like then and when he grew old.) It is based on a book by Budd Schulberg."
Emerson goes on to discuss the book, Waterfront, that Schulberg wrote based on his screenplay–
"In it, you may remember a scene where Runty Nolan, a little guy, runs afoul of the mob and is brutally killed and tossed into the North River. A priest is called to give last rites after they drag him out."
New York Times today
Dr. Emerson's sermon is, as noted above (Text: I Peter 2:1-9), not mainly about waterfronts, but rather about the "living stones" metaphor of the Big Fisherman.
My own remarks on the date of Dr. Emerson's sermon—
Those who like to mix mathematics with religion may regard the above 4×6 array as a context for the "living stones" metaphor. See, too, the five entries in this journal ending at 12:25 AM ET on November 12 (Grace Kelly's birthday), 2006, and today's previous entry.
Images from Log24 on
December 10, 2006 —
Nobel Prize Day, and
the day after
Kirk Douglas’s birthday—
Kirk Douglas ad for
the film “Diamonds”
(2000)
Images from
Google News
at noon today —
“The serpent’s eyes shine
as he wraps around the vine…”
"My work is motivated by a hope that there may be a way to recapture the ancient and medieval vision of both Beauty and purpose in a way which is relevant to our own century. I even dare to hope that the two ideas may be related, that Beauty is actually part of the meaning and purpose of life."
"The Reverend T. P. Kirkman knew in 1862 that there exists a group of degree 16 and order 322560 with a normal, elementary abelian, subgroup of order 16 [1, p. 108]. Frobenius identified this group in 1904 as a subgroup of the Mathieu group M24 [4, p. 570]…."
1. Biggs N.L., "T. P. Kirkman, Mathematician," Bulletin of the London Mathematical Society 13, 97–120 (1981).
4. Frobenius G., "Über die Charaktere der mehrfach transitiven Gruppen," Sitzungsber. Königl. Preuss. Akad. Wiss. zu Berlin, 558–571 (1904). Reprinted in Frobenius, Gesammelte Abhandlungen III (J.-P. Serre, editor), pp. 335–348. Springer, Berlin (1968).
Olli Pottonen, "Classification of Steiner Quadruple Systems" (Master's thesis, Helsinki, 2005)–
"The concept of group actions is very useful in the study of isomorphisms of combinatorial structures."
"Simplify, simplify."
— Thoreau
"Beauty is bound up
with symmetry."
— Weyl
Pottonen's thesis is
dated Nov. 16, 2005.
For some remarks on
images and theology,
see Log24 on that date.
Click on the above image
for some further details.
From April 28, 2008:
Religious Art
The black monolith of
One artistic shortcoming The following
One approach to "Transformations play See 4/28/08 for examples |
From Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, pp. 117-118:
"… his point of origin is external nature, the fount to which we come seeking inspiration for our fictions. We come, many of Stevens's poems suggest, as initiates, ritualistically celebrating the place through which we will travel to achieve fictive shape. Stevens's 'real' is a bountiful place, continually giving forth life, continually changing. It is fertile enough to meet any imagination, as florid and as multifaceted as the tropical flora about which the poet often writes. It therefore naturally lends itself to rituals of spring rebirth, summer fruition, and fall harvest. But in Stevens's fictive world, these rituals are symbols: they acknowledge the real and thereby enable the initiate to pass beyond it into the realms of his fictions. Two counter rituals help to explain the function of celebration as Stevens envisions it. The first occurs in 'The Pediment of Appearance,' a slight narrative poem in Transport to Summer. A group of young men enter some woods 'Hunting for the great ornament, The pediment of appearance.' Though moving through the natural world, the young men seek the artificial, or pure form, believing that in discovering this pediment, this distillation of the real, they will also discover the 'savage transparence,' the rude source of human life. In Stevens's world, such a search is futile, since it is only through observing nature that one reaches beyond it to pure form. As if to demonstrate the degree to which the young men's search is misaligned, Stevens says of them that 'they go crying/The world is myself, life is myself,' believing that what surrounds them is immaterial. Such a proclamation is a cardinal violation of Stevens's principles of the imagination. For in 'Notes Toward a Supreme Fiction' he tells us that ... the first idea was not to shape the clouds In imitation. The clouds preceded us. There was a muddy centre before we breathed. There was a myth before the myth began, Venerable and articulate and complete. From this the poem springs: that we live in a place That is not our own and, much more, not ourselves And hard it is in spite of blazoned days. We are the mimics. (Collected Poems, 383-84) Believing that they are the life and not the mimics thereof, the world and not its fiction-forming imitators, these young men cannot find the savage transparence for which they are looking. In its place they find the pediment, a scowling rock that, far from being life's source, is symbol of the human delusion that there exists a 'form alone,' apart from 'chains of circumstance.' A far more productive ritual occurs in 'Sunday Morning.'…." |
For transformations of a more
specifically religious nature,
see the remarks on
Richard Strauss,
"Death and Transfiguration,"
(Tod und Verklärung, Opus 24)
in Mathematics and Metaphor
on July 31, 2008, and the entries
of August 3, 2008, related to the
death of Alexander Solzhenitsyn.
For Mary Gaitskill,
continued from
June 21, 2008:
This minimal art
is the basis of the
chess set image
from Tuesday:
Related images:
“The key is the
cocktail that begins
the proceedings.”
— Brian Harley,
Mate in Two Moves
A Wealth of
Algebraic Structure
A 1987 article by R. T. Curtis on the geometry of his Miracle Octad Generator (MOG) as it relates to the geometry of the 4×4 square is now available online ($20):
Further elementary techniques using the miracle octad generator, by R. T. Curtis. Abstract:
“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”
(Received July 20 1987)
— Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353, doi:10.1017/S0013091500004600.
(Published online by Cambridge University Press 19 Dec 2008.)
In the above article, Curtis explains how two-thirds of his 4×6 MOG array may be viewed as the 4×4 model of the four-dimensional affine space over GF(2). (His earlier 1974 paper (below) defining the MOG discussed the 4×4 structure in a purely combinatorial, not geometric, way.)
For further details, see The Miracle Octad Generator as well as Geometry of the 4×4 Square and Curtis’s original 1974 article, which is now also available online ($20):
A new combinatorial approach to M24, by R. T. Curtis. Abstract:
“In this paper, we define M24 from scratch as the subgroup of S24 preserving a Steiner system S(5, 8, 24). The Steiner system is produced and proved to be unique and the group emerges naturally with many of its properties apparent.”
(Received June 15 1974)
— Mathematical Proceedings of the Cambridge Philosophical Society (1976), 79: 25-42, doi:10.1017/S0305004100052075.
(Published online by Cambridge University Press 24 Oct 2008.)
— Today’s New York Times
review of the Very Rev.
Francis Bowes Sayre Jr.
Related material:
Log24 entries from
the anniversary this
year of Sayre’s birth
and from the date
of his death:
A link from the former
suggests the following
graphic meditation–
(Click on figure for details.)
A link from the latter
suggests another
graphic meditation–
(Click on figure for details.)
Although less specifically
American than the late
Reverend, who was
born in the White House,
hence perhaps irrelevant
to his political views,
these figures are not
without relevance to
his religion, which is
more about metanoia
than about paranoia.
"Credences of Summer," VII,
by Wallace Stevens, from
"Three times the concentred |
One possibility —
Bertram Kostant, Professor Emeritus of Mathematics at MIT, on an object discussed in a recent New Yorker:
"A word about E(8). In my opinion, and shared by others, E(8) is the most magnificent 'object' in all of mathematics. It is like a diamond with thousands of facets. Each facet offering a different view of its unbelievable intricate internal structure."
Another possibility —
A more modest object —
the 4×4 square.
Update of Aug. 20-21 —
Kostant's poetic comparison might be applied also to this object.
More precisely, there are 322,560 natural rearrangements– which a poet might call facets*— of the array, each offering a different view of the array's internal structure– encoded as a unique ordered pair of symmetric graphic designs. The symmetry of the array's internal structure is reflected in the symmetry of the graphic designs. For examples, see the Diamond 16 Puzzle.
For an instance of Stevens's "three times" process, see the three parts of the 2004 web page Ideas and Art.
* For the metaphor of rearrangements as facets, note that each symmetry (rearrangement) of a Platonic solid corresponds to a rotated facet: the number of symmetries equals the number of facets times the number of rotations (edges) of each facet–
If Greek geometers had started with a finite space (as in The Eightfold Cube), the history of mathematics might have dramatically illustrated Halmos's saying (Aug. 16) that
"The problem is– the genius is– given an infinite question, to think of the right finite question to ask. Once you thought of the finite answer, then you would know the right answer to the infinite question."
The Greeks, of course, answered the infinite questions first– at least for Euclidean space. Halmos was concerned with more general modern infinite spaces (such as Hilbert space) where the intuition to be gained from finite questions is still of value.
Preview of a Tom Stoppard play presented at Town Hall in Manhattan on March 14, 2008 (Pi Day and Einstein's birthday):
The play's title, "Every Good Boy Deserves Favour," is a mnemonic for the notes of the treble clef EGBDF.
The place, Town Hall, West 43rd Street. The time, 8 p.m., Friday, March 14. One single performance only, to the tinkle– or the clang?– of a triangle. Echoing perhaps the clang-clack of Warsaw Pact tanks muscling into Prague in August 1968.
The “u” in favour is the British way, the Stoppard way, "EGBDF" being "a Play for Actors and Orchestra" by Tom Stoppard (words) and André Previn (music).
And what a play!– as luminescent as always where Stoppard is concerned. The music component of the one-nighter at Town Hall– a showcase for the Boston University College of Fine Arts– is by a 47-piece live orchestra, the significant instrument being, well, a triangle.
When, in 1974, André Previn, then principal conductor of the London Symphony, invited Stoppard "to write something which had the need of a live full-time orchestra onstage," the 36-year-old playwright jumped at the chance.
One hitch: Stoppard at the time knew "very little about 'serious' music… My qualifications for writing about an orchestra," he says in his introduction to the 1978 Grove Press edition of "EGBDF," "amounted to a spell as a triangle player in a kindergarten percussion band."
Review of the same play as presented at Chautauqua Institution on July 24, 2008:
"Stoppard's modus operandi– to teasingly introduce numerous clever tidbits designed to challenge the audience."
— Jane Vranish, Pittsburgh Post-Gazette, Saturday, August 2, 2008
"The leader of the band is tired
And his eyes are growing old
But his blood runs through
My instrument
And his song is in my soul."
— Dan Fogelberg
"He's watching us all the time."
Finnegans Wake, Book II, Episode 2, pp. 296-297:
I'll make you to see figuratleavely the whome of your eternal geomater. And if you flung her headdress on her from under her highlows you'd wheeze whyse Salmonson set his seel on a hexengown.1 Hissss!, Arrah, go on! Fin for fun! 1 The chape of Doña Speranza of the Nacion. |
Reciprocity From my entry of Sept. 1, 2003:
"…the principle of taking and giving, of learning and teaching, of listening and storytelling, in a word: of reciprocity…. … E. M. Forster famously advised his readers, 'Only connect.' 'Reciprocity' would be Michael Kruger's succinct philosophy, with all that the word implies." — William Boyd, review of Himmelfarb, a novel by Michael Kruger, in The New York Times Book Review, October 30, 1994 Last year's entry on this date:
The picture above is of the complete graph K6 … Six points with an edge connecting every pair of points… Fifteen edges in all. Diamond theory describes how the 15 two-element subsets of a six-element set (represented by edges in the picture above) may be arranged as 15 of the 16 parts of a 4×4 array, and how such an array relates to group-theoretic concepts, including Sylvester's synthematic totals as they relate to constructions of the Mathieu group M24. If diamond theory illustrates any general philosophical principle, it is probably the interplay of opposites…. "Reciprocity" in the sense of Lao Tzu. See Reciprocity and Reversal in Lao Tzu. For a sense of "reciprocity" more closely related to Michael Kruger's alleged philosophy, see the Confucian concept of Shu (Analects 15:23 or 24) described in Kruger's novel is in part about a Jew: the quintessential Jewish symbol, the star of David, embedded in the K6 graph above, expresses the reciprocity of male and female, as my May 2003 archives illustrate. The star of David also appears as part of a graphic design for cubes that illustrate the concepts of diamond theory: Click on the design for details. Those who prefer a Jewish approach to physics can find the star of David, in the form of K6, applied to the sixteen 4×4 Dirac matrices, in
A Graphical Representation The star of David also appears, if only as a heuristic arrangement, in a note that shows generating partitions of the affine group on 64 points arranged in two opposing triplets. Having thus, as the New York Times advises, paid tribute to a Jewish symbol, we may note, in closing, a much more sophisticated and subtle concept of reciprocity due to Euler, Legendre, and Gauss. See |
"Finn MacCool ate the Salmon of Knowledge."
Wikipedia:
"George Salmon spent his boyhood in Cork City, Ireland. His father was a linen merchant. He graduated from Trinity College Dublin at the age of 19 with exceptionally high honours in mathematics. In 1841 at age 21 he was appointed to a position in the mathematics department at Trinity College Dublin. In 1845 he was appointed concurrently to a position in the theology department at Trinity College Dublin, having been confirmed in that year as an Anglican priest."
Related material:
Arrangements for
56 Triangles.
For more on the
arrangement of
triangles discussed
in Finnegans Wake,
see Log24 on Pi Day,
March 14, 2008.
Happy birthday,
Martin Sheen.
Bertram Kostant, Professor Emeritus of Mathematics at MIT, on an object discussed in this week's New Yorker:
Hermann Weyl on the hard core of objectivity:
Steven H. Cullinane on the symmetries of a 4×4 array of points:
A Structure-Endowed Entity
"A guiding principle in modern mathematics is this lesson: Whenever you have to do with a structure-endowed entity S, try to determine its group of automorphisms, the group of those element-wise transformations which leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution of S in this way." — Hermann Weyl in Symmetry Let us apply Weyl's lesson to the following "structure-endowed entity."
What is the order of the resulting group of automorphisms? |
The above group of
automorphisms plays
a role in what Weyl,
following Eddington,
called a "colorful tale"–
This puzzle shows
that the 4×4 array can
also be viewed in
thousands of ways.
"You can make 322,560
pairs of patterns. Each
pair pictures a different
symmetry of the underlying
16-point space."
— Steven H. Cullinane,
July 17, 2008
For other parts of the tale,
see Ashay Dharwadker,
the Four-Color Theorem,
and Usenet Postings.
CHANGE FEW CAN BELIEVE IN |
Page 67 —
“… Bill and Violet were married. The wedding was held in the Bowery loft on June 16th, the same day Joyce’s Jewish Ulysses had wandered around Dublin. A few minutes before the exchange of vows, I noted that Violet’s last name, Blom, was only an o away from Bloom, and that meaningless link led me to reflect on Bill’s name, Wechsler, which carries the German root for change, changing, and making change. Blooming and changing, I thought.”
For Hustvedt’s discussion of Wechsler’s art– sculptured cubes, which she calls “tightly orchestrated semantic bombs” (p. 169)– see Log24, May 25, 2008.
(after David Wechsler,
1896-1981, chief
psychologist at Bellevue)
These cubes are used to
make 3×3 patterns for
psychological testing.
Related 3×3 patterns appear
in “nine-patch” quilt blocks
and in the following–
Don Park at docuverse.com, Jan. 19, 2007: “How to draw an Identicon A 9-block is a small quilt using only 3 types of patches, out of 16 available, in 9 positions. Using the identicon code, 3 patches are selected: one for center position, one for 4 sides, and one for 4 corners. Positions and Rotations For center position, only a symmetric patch is selected (patch 1, 5, 9, and 16). For corner and side positions, patch is rotated by 90 degree moving clock-wise starting from top-left position and top position respectively.” |
From a weblog by Scott Sherrill-Mix:
“… Don Park came up with the original idea for representing users with geometric shapes….” Claire | 20-Dec-07 at 9:35 pm | Permalink “This reminds me of a flash demo by Jarred Tarbell |
Jared Tarbell at levitated.net, May 15, 2002:
“The nine block is a common design pattern among quilters. Its construction methods and primitive building shapes are simple, yet produce millions of interesting variations. Figure A. Four 9 block patterns,
arbitrarily assembled, show the grid composition of the block. Each block is composed of 9 squares, arranged in a 3 x 3 grid. Each square is composed of one of 16 primitive shapes. Shapes are arranged such that the block is radially symmetric. Color is modified and assigned arbitrarily to each new block.
The basic building blocks of the nine block are limited to 16 unique geometric shapes. Each shape is allowed to rotate in 90 degree increments. Only 4 shapes are allowed in the center position to maintain radial symmetry.
Figure B. The 16 possible shapes allowed |
Such designs become of mathematical interest when their size is increased slightly, from square arrays of nine blocks to square arrays of sixteen. See Block Designs in Art and Mathematics.
(This entry was suggested by examples of 4×4 Identicons in use at Secret Blogging Seminar.)
The black monolith of
Kubrick's 2001 is, in
its way, an example
of religious art.
One artistic shortcoming
(or strength– it is, after
all, monolithic) of
that artifact is its
resistance to being
analyzed as a whole
consisting of parts, as
in a Joycean epiphany.
The following
figure does
allow such
an epiphany.
One approach to
the epiphany:
"Transformations play
a major role in
modern mathematics."
– A biography of
Felix Christian Klein
The above 2×4 array
(2 columns, 4 rows)
furnishes an example of
a transformation acting
on the parts of
an organized whole:
For other transformations
acting on the eight parts,
hence on the 35 partitions, see
"Geometry of the 4×4 Square,"
as well as Peter J. Cameron's
"The Klein Quadric
and Triality" (pdf),
and (for added context)
"The Klein Correspondence,
Penrose Space-Time, and
a Finite Model."
For a related structure–
not rectangle but cube–
see Epiphany 2008.
Symbology:
“Also known as ‘processual symbolic analysis,’ this concept was developed by Victor Turner in the mid-1970s to refer to the use of symbols within cultural contexts, in particular ritual. In anthropology, symbology originated as part of Victor Turner’s concept of ‘comparative symbology.’ Turner (1920-1983) was professor of Anthropology at Cornell University, the University of Chicago, and finally he was Professor of Anthropology and Religion at the University of Virginia.” —Wikipedia
Symbology and Communitas:
From Beth Barrie’s
“Victor Turner“— “‘The positional meaning of a symbol derives from its relationship to other symbols in a totality, a Gestalt, whose elements acquire their significance from the system as a whole’ (Turner, 1967:51). Turner considered himself a comparative symbologist, which suggests he valued his contributions to the study of ritual symbols. It is in the closely related study of ritual processes that he had the most impact.
The most important contribution Turner made to the field of anthropology is his work on liminality and communitas. Believing the liminal stage to be of ‘crucial importance’ in the ritual process, Turner explored the idea of liminality more seriously than other anthropologists of his day. As noted earlier Turner elaborated on van Gennep’s concept of liminality in rites of passage. Liminality is a state of being in between phases. In a rite of passage the individual in the liminal phase is neither a member of the group she previously belonged to nor is she a member of the group she will belong to upon the completion of the rite. The most obvious example is the teenager who is neither an adult nor a child. ‘Liminal entities are neither here nor there; they are betwixt and between the positions assigned and arrayed by law, custom, convention, and ceremonial’ (Turner, 1969:95). Turner extended the liminal concept to modern societies in his study of liminoid phenomena in western society. He pointed out the similarities between the ‘leisure genres of art and entertainment in complex industrial societies and the rituals and myths of archaic, tribal and early agrarian cultures’ (1977:43). Closely associated to liminality is communitas which describes a society during a liminal period that is ‘unstructured or rudimentarily structured [with] a relatively undifferentiated comitatus, community, or even communion of equal individuals who submit together to the general authority of the ritual elders’ (Turner, 1969:96). The notion of communitas is enhanced by Turner’s concept of anti-structure. In the following passage Turner clarifies the ideas of liminal, communitas and anti-structure:
It is the potential of an anti-structured liminal person or liminal society (i.e., communitas) that makes Turner’s ideas so engaging. People or societies in a liminal phase are a ‘kind of institutional capsule or pocket which contains the germ of future social developments, of societal change’ (Turner, 1982:45). Turner’s ideas on liminality and communitas have provided scholars with language to describe the state in which societal change takes place.”
Turner, V. (1967). The forest of symbols: Aspects of Ndembu ritual. Ithaca, NY: Cornell University Press. Turner, V. (1969). The ritual process: structure and anti-structure. Chicago: Aldine Publishing Co. Turner, V. (1977). Variations of the theme of liminality. In Secular ritual. Ed. S. Moore & B. Myerhoff. Assen: Van Gorcum, 36-52. Turner, V. (1982). From ritual to theater: The human seriousness of play. New York: PAJ Publications. |
Related material on Turner in Log24:
Aug. 27, 2006 and Aug. 30, 2006. For further context, see archive of Aug. 19-31, 2006.
Related material on Cuernavaca:
Google search on Cuernavaca + Log24.
Serious
"I don't think the 'diamond theorem' is anything serious, so I started with blitzing that."
— Charles Matthews at Wikipedia, Oct. 2, 2006
"The 'seriousness' of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas."
— G. H. Hardy, A Mathematician's Apology
Matthews yesterday deleted references to the diamond theorem and related material in the following Wikipedia articles:
Affine group
Reflection group
Symmetry in mathematics
Incidence structure
Invariant (mathematics)
Symmetry
Finite geometry
Group action
History of geometry
This would appear to be a fairly large complex of mathematical ideas.
See also the following "large complex" cited, following the above words of Hardy, in Diamond Theory:
Affine geometry, affine planes, affine spaces, automorphisms, binary codes, block designs, classical groups, codes, coding theory, collineations, combinatorial, combinatorics, conjugacy classes, the Conwell correspondence, correlations, design theory, duads, duality, error correcting codes, exceptional groups, finite fields, finite geometry, finite groups, finite rings, Galois fields, generalized quadrangles, generators, geometry, GF(2), GF(4), the (24,12) Golay code, group actions, group theory, Hadamard matrices, hypercube, hyperplanes, hyperspace, incidence structures, invariance, Karnaugh maps, Kirkman's schoolgirl problem, Latin squares, Leech lattice, linear groups, linear spaces, linear transformations, Mathieu groups, matrix theory, Meno, Miracle Octad Generator, MOG, multiply transitive groups, octads, the octahedral group, orthogonal arrays, outer automorphisms, parallelisms, partial geometries, permutation groups, PG(3,2), polarities, Polya-Burnside theorem, projective geometry, projective planes, projective spaces, projectivities, Reed-Muller codes, the relativity problem, Singer cycle, skew lines, sporadic simple groups, Steiner systems, symmetric, symmetry, symplectic, synthemes, synthematic, tesseract, transvections, Walsh functions, Witt designs.
Big Rock
Thanks to Ars Mathematica, a link to everything2.com:
“In mathematics, a big rock is a result which is vastly more powerful than is needed to solve the problem being considered. Often it has a difficult, technical proof whose methods are not related to those of the field in which it is applied. You say ‘I’m going to hit this problem with a big rock.’ Sard’s theorem is a good example of a big rock.”
Another example:
Properties of the Monster Group of R. L. Griess, Jr., may be investigated with the aid of the Miracle Octad Generator, or MOG, of R. T. Curtis. See the MOG on the cover of a book by Griess about some of the 20 sporadic groups involved in the Monster:
The MOG, in turn, illustrates (via Abstract 79T-A37, Notices of the American Mathematical Society, February 1979) the fact that the group of automorphisms of the affine space of four dimensions over the two-element field is also the natural group of automorphisms of an arbitrary 4×4 array.
This affine group, of order 322,560, is also the natural group of automorphisms of a family of graphic designs similar to those on traditional American quilts. (See the diamond theorem.)
This top-down approach to the diamond theorem may serve as an illustration of the “big rock” in mathematics.
For a somewhat simpler, bottom-up, approach to the theorem, see Theme and Variations.
For related literary material, see Mathematics and Narrative and The Diamond as Big as the Monster.
Bagombo Snuff Box
(in memory of
Burt Kerr Todd)
“Well, it may be the devil
or it may be the Lord
But you’re gonna have to
serve somebody.”
— “Bob Dylan”
(pseudonym of Robert Zimmerman),
quoted by “Bob Stewart”
on July 18, 2005
“Bob Stewart” may or may not be the same person as “crankbuster,” author of the “Rectangular Array Theorem” or “RAT.” This “theorem” is intended as a parody of the “Miracle Octad Generator,” or “MOG,” of R. T. Curtis. (See the Usenet group sci.math, “Steven Cullinane is a Crank,” July 2005, messages 51-60.)
“Crankbuster” has registered at Math Forum as a teacher in Sri Lanka (formerly Ceylon). For a tall tale involving Ceylon, see the short story “Bagombo Snuff Box” in the book of the same title by Kurt Vonnegut, who has at times embodied– like Martin Gardner and “crankbuster“– “der Geist, der stets verneint.”
Here is my own version (given the alleged Ceylon background of “crankbuster”) of a Bagombo snuff box:
Related material:
(continued from
Life of the Party, March 24)
Exhibit A —
From (presumably) a Princeton student
(see Activity, March 24):
Exhibit B —
From today's Sunday comics:
Exhibit C —
From a Smith student with the
same name as the Princeton student
(i.e., Dagwood's "Twisterooni" twin):
Related illustrations
("Visual Stimuli") from
the Smith student's game —
Literary Exercise:
Continuing the Smith student's
Psychonauts theme,
compare and contrast
two novels dealing with
similar topics:
A Wrinkle in Time,
by the Christian author
Madeleine L'Engle,
and
Psychoshop,
by the secular authors
Alfred Bester and
Roger Zelazny.
Presumably the Princeton student
would prefer the Christian fantasy,
the Smith student the secular.
Those who prefer reality to fantasy —
not as numerous as one might think —
may examine what both 4×4 arrays
illustrated above have in common:
their structure.
Both Princeton and Smith might benefit
from an application of Plato's dictum:
On Beauty
“Something beautiful fills the mind yet invites the search for something beyond itself, something larger or something of the same scale with which it needs to be brought into relation. Beauty, according to its critics, causes us to gape and suspend all thought. This complaint is manifestly true: Odysseus does stand marveling before the palm; Odysseus is similarly incapacitated in front of Nausicaa; and Odysseus will soon, in Book 7, stand ‘gazing,’ in much the same way, at the season-immune orchards of King Alcinous, the pears, apples, and figs that bud on one branch while ripening on another, so that never during the cycling year do they cease to be in flower and in fruit. But simultaneously what is beautiful prompts the mind to move chronologically back in the search for precedents and parallels, to move forward into new acts of creation, to move conceptually over, to bring things into relation, and does all this with a kind of urgency as though one’s life depended on it.”
The above symbol of Apollo suggests, in accordance with Scarry’s remarks, larger structures. Two obvious structures are the affine 4-space over GF(3), with 81 points, and the affine plane over GF(32), also with 81 points. Less obvious are some related projective structures. Joseph Malkevitch has discussed the standard method of constructing GF(32) and the affine plane over that field, with 81 points, then constructing the related Desarguesian projective plane of order 9, with
Miniquaternion geometry: An introduction to the study of projective planes, by T. G. Room and P. B. Kirkpatrick. Cambridge Tracts in Mathematics and Mathematical Physics, No. 60. Cambridge University Press, London, 1971. viii+176 pp.
For “miniquaternions” of a different sort, see my entry on Visible Mathematics for Hamilton’s birthday last year:
Inscape
My entry for New Year's Day links to a paper by Robert T. Curtis*
from The Arabian Journal for Science and Engineering
(King Fahd University, Dhahran, Saudi Arabia),
Volume 27, Number 1A, January 2002.
From that paper:
"Combinatorially, an outer automorphism [of S6] can exist because the number of unordered pairs of 6 letters is equal to the number of ways in which 6 letters can be partitioned into three pairs. Which is to say that the two conjugacy classes of odd permutations of order 2 in S6 contain the same number of elements, namely 15. Sylvester… refers to the unordered pairs as duads and the partitions as synthemes. Certain collections of five synthemes… he refers to as synthematic totals or simply totals; each total is stabilized within S6 by a subgroup acting triply transitively on the 6 letters as PGL2(5) acts on the projective line. If we draw a bipartite graph on (15+15) vertices by joining each syntheme to the three duads it contains, we obtain the famous 8-cage (a graph of valence 3 with minimal cycles of length 8)…."
Here is a way of picturing the 8-cage and a related configuration of points and lines:
Diamond Theory shows that this structure
can also be modeled by an "inscape"
made up of subsets of a
4×4 square array:
The illustration below shows how the
points and lines of the inscape may
be identified with those of the
Cremona-Richmond configuration.
For Loomis Dean
See also
For Rita Moreno
on Her Birthday
(Dec. 11, 2005)
Los Angeles Times
Tuesday, Dec. 13, 2005
OBITUARIES LOOMIS DEAN Loomis Dean, 88; By Jon Thurber, Times Staff Writer
Loomis Dean, a Life magazine photographer who made memorable pictures of the royalty of both Europe and Hollywood, has died. He was 88.
Dean died Wednesday [December 7, 2005] at Sonoma Valley Hospital in Sonoma, Calif., of complications from a stroke, according to his son, Christopher. In a photographic career spanning six decades, Dean's leading images included shirtless Hollywood mogul Darryl F. Zanuck trying a one-handed chin-up on a trapeze bar, the ocean liner Andrea Doria listing in the Atlantic and writer Ernest Hemingway in Spain the year before he committed suicide. One of his most memorable photographs for Life was of cosmopolitan British playwright and composer Noel Coward in the unlikely setting of the Nevada desert. Dean shot 52 covers for Life, either as a freelance photographer or during his two stretches as a staffer with the magazine, 1947-61 and 1966-69. After leaving the magazine, Dean found steady freelance work in magazines and as a still photographer on film sets, including several of the early James Bond movies starring Sean Connery. Born in Monticello, Fla., Dean was the son of a grocer and a schoolteacher. When the Dean family's business failed during the Depression, they moved to Sarasota, Fla., where Dean's father worked as a curator and guide at the John and Mable Ringling Museum of Art. Dean studied engineering at the University of Florida but became fascinated with photography after watching a friend develop film in a darkroom. He went off to what is now the Rochester Institute of Technology, which was known for its photography school. After earning his degree, Dean went to work for the Ringling circus as a junior press agent and, according to his son, cultivated a side job photographing Ringling's vast array of performers and workers. He worked briefly as one of Parade magazine's first photographers but left after receiving an Army Air Forces commission during World War II. During the war, he worked in aerial reconnaissance in the Pacific and was along on a number of air raids over Japan. His first assignment for Life in 1946 took him back to the circus: His photograph of clown Lou Jacobs with a giraffe looking over his shoulder made the magazine's cover and earned Dean a staff job. In the era before television, Life magazine photographers had some of the most glamorous work in journalism. Life assigned him to cover Hollywood. In 1954, the magazine published one of his most memorable photos, the shot of Coward dressed for a night on the town in New York but standing alone in the stark Nevada desert. Dean had the idea of asking Coward, who was then doing a summer engagement at the Desert Inn in Las Vegas, to pose in the desert to illustrate his song "Mad Dogs and Englishmen Go Out in the Midday Sun." As Dean recalled in an interview with John Loengard for the book "Life Photographers: What They Saw," Coward wasn't about to partake of the midday sun. "Oh, dear boy, I don't get up until 4 o'clock in the afternoon," Dean recalled him saying. But Dean pressed on anyway. As he related to Loengard, he rented a Cadillac limousine and filled the back seat with a tub loaded with liquor, tonic and ice cubes — and Coward. The temperature that day reached 119 as Coward relaxed in his underwear during the drive to a spot about 15 miles from Las Vegas. According to Dean, Coward's dresser helped him into his tuxedo, resulting in the image of the elegant Coward with a cigarette holder in his mouth against his shadow on the dry lake bed. "Splendid! Splendid! What an idea! If we only had a piano," Coward said of the shoot before hopping back in the car and stripping down to his underwear for the ride back to Las Vegas. In 1956, Life assigned Dean to Paris. While sailing to Europe on the Ile de France, he was awakened with the news that the Andrea Doria had collided with another liner, the Stockholm. The accident occurred close enough to Dean's liner that survivors were being brought aboard. His photographs of the shaken voyagers and the sinking Andrea Doria were some of the first on the accident published in a U.S. magazine. During his years in Europe, Dean photographed communist riots and fashion shows in Paris, royal weddings throughout Europe and noted authors including James Jones and William S. Burroughs. He spent three weeks with Hemingway in Spain in 1960 for an assignment on bullfighting. In 1989, Dean published "Hemingway's Spain," about his experiences with the great writer. In 1965, Dean won first prize in a Vatican photography contest for a picture of Pope Paul VI. The prize included an audience with the pope and $750. According to his son, it was Dean's favorite honor. In addition to his son, he is survived by a daughter, Deborah, and two grandsons. Instead of flowers, donations may be made to the American Child Photographer's Charity Guild (www.acpcg.com) or the Make-A-Wish Foundation. |
Related material:
The Big Time
(Log 24, July 29, 2003):
|
“There is a pleasantly discursive treatment of Pontius Pilate’s unanswered question ‘What is truth?'”
— H. S. M. Coxeter, 1987, introduction to Richard J. Trudeau’s remarks on the “Story Theory” of truth as opposed to the “Diamond Theory” of truth in The Non-Euclidean Revolution
“A new epistemology is emerging to replace the Diamond Theory of truth. I will call it the ‘Story Theory’ of truth: There are no diamonds. People make up stories about what they experience. Stories that catch on are called ‘true.’ The Story Theory of truth is itself a story that is catching on. It is being told and retold, with increasing frequency, by thinkers of many stripes*….”
— Richard J. Trudeau in
The Non-Euclidean Revolution
“‘Deniers’ of truth… insist that each of us is trapped in his own point of view; we make up stories about the world and, in an exercise of power, try to impose them on others.”
— Jim Holt in The New Yorker.
(Click on the box below.)
Exercise of Power:
Show that a white horse–
a figure not unlike the
symbol of the mathematics
publisher Springer–
is traced, within a naturally
arranged rectangular array of
polynomials, by the powers of x
modulo a polynomial
irreducible over a Galois field.
This horse, or chess knight–
“Springer,” in German–
plays a role in “Diamond Theory”
(a phrase used in finite geometry
in 1976, some years before its use
by Trudeau in the above book).
Related material
On this date:
In 1490, The White Knight
(Tirant lo Blanc )–
a major influence on Cervantes–
was published, and in 1910
the Mexican Revolution began.
Illustration:
Zapata by Diego Rivera,
Museum of Modern Art,
New York
“First published in the Catalan language in Valencia in 1490…. Reviewing the first modern Spanish translation in 1969 (Franco had ruthlessly suppressed the Catalan language and literature), Mario Vargas Llosa hailed the epic’s author as ‘the first of that lineage of God-supplanters– Fielding, Balzac, Dickens, Flaubert, Tolstoy, Joyce, Faulkner– who try to create in their novels an all-encompassing reality.'”
Apostolos Doxiadis on last month's conference on "mathematics and narrative"–
Doxiadis is describing how talks by two noted mathematicians were related to
"… a sense of a 'general theory bubbling up' at the meeting… a general theory of the deeper relationship of mathematics to narrative…. "
Doxiadis says both talks had "a big hole in the middle."
"Both began by saying something like: 'I believe there is an important connection between story and mathematical thinking. So, my talk has two parts. [In one part] I’ll tell you a few things about proofs. [And in the other part] I’ll tell you about stories.' …. And in both talks it was in fact implied by a variation of the post hoc propter hoc, the principle of consecutiveness implying causality, that the two parts of the lectures were intimately related, the one somehow led directly to the other."
"And the hole?"
"This was exactly at the point of the link… [connecting math and narrative]… There is this very well-known Sidney Harris cartoon… where two huge arrays of formulas on a blackboard are connected by the sentence ‘THEN A MIRACLE OCCURS.’ And one of the two mathematicians standing before it points at this and tells the other: ‘I think you should be more explicit here at step two.’ Both… talks were one half fascinating expositions of lay narratology– in fact, I was exhilarated to hear the two most purely narratological talks at the meeting coming from number theorists!– and one half a discussion of a purely mathematical kind, the two parts separated by a conjunction roughly synonymous to ‘this is very similar to this.’ But the similarity was not clearly explained: the hole, you see, the ‘miracle.’ Of course, both [speakers]… are brilliant men, and honest too, and so they were very clear about the location of the hole, they did not try to fool us by saying that there was no hole where there was one."
"At times, bullshit can only be countered with superior bullshit."
— Norman Mailer
Many Worlds and Possible Worlds in Literature and Art, in Wikipedia:
"The concept of possible worlds dates back to a least Leibniz who in his Théodicée tries to justify the apparent imperfections of the world by claiming that it is optimal among all possible worlds. Voltaire satirized this view in his picaresque novel Candide….
Borges' seminal short story El jardín de senderos que se bifurcan ("The Garden of Forking Paths") is an early example of many worlds in fiction."
Background:
Modal Logic in Wikipedia
Possible Worlds in Wikipedia
Possible-Worlds Theory, by Marie-Laure Ryan
(entry for The Routledge Encyclopedia of Narrative Theory)
— Many Dimensions, by Charles Williams, 1931 (Eerdmans paperback, April 1979, pp. 43-44)
— Aion, by C. G. Jung, 1951 (Princeton paperback, 1979, p. 236)
"Its discoverer was of the opinion that he had produced the equivalent of the primordial protomatter which exploded into the Universe."
"We symbolize
logical necessity with the box and logical possibility with the diamond
"The possibilia that exist,
— Michael Sudduth, |
“Mike Nichols, who oversaw Monty Python’s Spamalot, picked up the prize for directing a musical.
A somewhat flustered Nichols told the audience he had forgotten what he intended to say, but then went on to thank his company and Eric Idle, ‘from whom all blessings flow.'”
One of my
favorite books:
Excerpt from the chapter
“All Blessings Flow (Very Large Array)”–
“I started to cry. My search was over.
In a home for the deranged I had found
the last of the holy Thirty-Six….
‘Beam me up, Scotty.'”
Related material:
entries of Dec. 11-13, 2002,
and entries of
All Souls’ Day, 2004,
and of June 8, 2003.
Powered by WordPress