Wednesday, April 12, 2017

Contracting the Spielraum

Filed under: Uncategorized — Tags: , , — m759 @ 10:00 AM

The contraction of the title is from group actions on
the ninefold square  (with the center subsquare fixed)
to group actions on the eightfold cube.

From a post of June 4, 2014

At math.stackexchange.com on March 1-12, 2013:

Is there a geometric realization of the Quaternion group?” —

The above illustration, though neatly drawn, appeared under the
cloak of anonymity.  No source was given for the illustrated group actions.
Possibly they stem from my Log24 posts or notes such as the Jan. 4, 2012,
note on quaternion actions at finitegeometry.org/sc (hence ultimately
from my note “GL(2,3) actions on a cube” of April 5, 1985).

Thursday, December 17, 2015

Hint of Reality

Filed under: Uncategorized — Tags: , — m759 @ 12:45 PM

From an article* in Proceedings of Bridges 2014

As artists, we are particularly interested in the symmetries of real world physical objects.

Three natural questions arise:

1. Which groups can be represented as the group of symmetries of some real-world physical object?

2. Which groups have actually  been represented as the group of symmetries of some real-world physical object?

3. Are there any glaring gaps – small, beautiful groups that should have a physical representation in a symmetric object but up until now have not?

The article was cited by Evelyn Lamb in her Scientific American  
weblog on May 19, 2014.

The above three questions from the article are relevant to a more
recent (Oct. 24, 2015) remark by Lamb:

" finite projective planes [in particular, the 7-point Fano plane,
about which Lamb is writing] 
seem like a triumph of purely 
axiomatic thinking over any hint of reality…."

For related hints of reality, see Eightfold Cube  in this journal.

* "The Quaternion Group as a Symmetry Group," by Vi Hart and Henry Segerman

Wednesday, June 4, 2014

Monkey Business

Filed under: Uncategorized — Tags: — m759 @ 8:48 PM

The title refers to a Scientific American weblog item
discussed here on May 31, 2014:

Some closely related material appeared here on
Dec. 30, 2011:

IMAGE- Quaternion group acting on an eightfold cube

A version of the above quaternion actions appeared
at math.stackexchange.com on March 12, 2013:

"Is there a geometric realization of Quaternion group?" —

The above illustration, though neatly drawn, appeared under the
cloak of anonymity.  No source was given for the illustrated group actions.
Possibly they stem from my Log24 posts or notes such as the Jan. 4, 2012,
note on quaternion actions at finitegeometry.org/sc (hence ultimately
from my note "GL(2,3) actions on a cube" of April 5, 1985).

Saturday, May 31, 2014

Quaternion Group Models:

Filed under: Uncategorized — Tags: — m759 @ 10:00 AM

The ninefold square, the eightfold cube, and monkeys.

IMAGE- Actions of the unit quaternions in finite geometry, on a ninefold square and on an eightfold cube

For posts on the models above, see quaternion
in this journal. For the monkeys, see

"Nothing Is More Fun than a Hypercube of Monkeys,"
Evelyn Lamb's Scientific American  weblog, May 19, 2014:

The Scientific American  item is about the preprint
"The Quaternion Group as a Symmetry Group,"
by Vi Hart and Henry Segerman (April 26, 2014):

See also  Finite Geometry and Physical Space.

Friday, December 28, 2012

Cube Koan

Filed under: Uncategorized — Tags: , , — m759 @ 4:56 AM

From Don DeLillo's novel Point Omega —

I knew what he was, or what he was supposed to be, a defense intellectual, without the usual credentials, and when I used the term it made him tense his jaw with a proud longing for the early weeks and months, before he began to understand that he was occupying an empty seat. "There were times when no map existed to match the reality we were trying to create."

"What reality?"

"This is something we do with every eyeblink. Human perception is a saga of created reality. But we were devising entities beyond the agreed-upon limits of recognition or interpretation. Lying is necessary. The state has to lie. There is no lie in war or in preparation for war that can't be defended. We went beyond this. We tried to create new realities overnight, careful sets of words that resemble advertising slogans in memorability and repeatability. These were words that would yield pictures eventually and then become three-dimensional. The reality stands, it walks, it squats. Except when it doesn't."

He didn't smoke but his voice had a sandlike texture, maybe just raspy with age, sometimes slipping inward, becoming nearly inaudible. We sat for some time. He was slouched in the middle of the sofa, looking off toward some point in a high corner of the room. He had scotch and water in a coffee mug secured to his midsection. Finally he said, "Haiku."

I nodded thoughtfully, idiotically, a slow series of gestures meant to indicate that I understood completely.

"Haiku means nothing beyond what it is. A pond in summer, a leaf in the wind. It's human consciousness located in nature. It's the answer to everything in a set number of lines, a prescribed syllable count. I wanted a haiku war," he said. "I wanted a war in three lines. This was not a matter of force levels or logistics. What I wanted was a set of ideas linked to transient things. This is the soul of haiku. Bare everything to plain sight. See what's there. Things in war are transient. See what's there and then be prepared to watch it disappear."

What's there—

This view of a die's faces 3, 6, and 5, in counter-
clockwise order (see previous post) suggests a way
of labeling the eight corners  of a die (or cube):

123, 135, 142, 154, 246, 263, 365, 456.

Here opposite faces of the die sum to 7, and the
three faces meeting at each corner are listed
in counter-clockwise order. (This corresponds
to a labeling of one of MacMahon's* 30 colored cubes.)
A similar vertex-labeling may be used in describing 
the automorphisms of the order-8 quaternion group.

For a more literary approach to quaternions, see
Pynchon's novel Against the Day .

* From Peter J. Cameron's weblog:

  "The big name associated with this is Major MacMahon,
   an associate of Hardy, Littlewood and Ramanujan,
   of whom Robert Kanigel said,

His expertise lay in combinatorics, a sort of
glorified dice-throwing, and in it he had made
contributions original enough to be named
a Fellow of the Royal Society.

   Glorified dice-throwing, indeed…"

Wednesday, November 14, 2012

Group Actions

Filed under: Uncategorized — Tags: — m759 @ 4:30 PM

The December 2012 Notices of the American
Mathematical Society  
has an ad on page 1564
(in a review of two books on vulgarized mathematics)
for three workshops next year on "Low-dimensional
Topology, Geometry, and Dynamics"—

(Only the top part of the ad is shown; for further details
see an ICERM page.)

(ICERM stands for Institute for Computational
and Experimental Research in Mathematics.)

The ICERM logo displays seven subcubes of
a 2x2x2 eight-cube array with one cube missing—

The logo, apparently a stylized image of the architecture 
of the Providence building housing ICERM, is not unlike
a picture of Froebel's Third Gift—


Froebel's third gift, the eightfold cube

© 2005 The Institute for Figuring

Photo by Norman Brosterman fom the Inventing Kindergarten
exhibit at The Institute for Figuring (co-founded by Margaret Wertheim)

The eighth cube, missing in the ICERM logo and detached in the
Froebel Cubes photo, may be regarded as representing the origin
(0,0,0) in a coordinatized version of the 2x2x2 array—
in other words the cube invariant under linear , as opposed to
more general affine , permutations of the cubes in the array.

These cubes are not without relevance to the workshops' topics—
low-dimensional exotic geometric structures, group theory, and dynamics.

See The Eightfold Cube, A Simple Reflection Group of Order 168, and 
The Quaternion Group Acting on an Eightfold Cube.

Those who insist on vulgarizing their mathematics may regard linear
and affine group actions on the eight cubes as the dance of
Snow White (representing (0,0,0)) and the Seven Dwarfs—


Sunday, June 17, 2012

Congruent Group Actions

Filed under: Uncategorized — Tags: , — m759 @ 9:00 PM

A Google search today yielded no results
for the phrase "congruent group actions."

Places where this phrase might prove useful include—

Saturday, June 16, 2012

Chiral Problem

Filed under: Uncategorized — Tags: , — m759 @ 1:06 AM

In memory of William S. Knowles, chiral chemist, who died last Wednesday (June 13, 2012)—

Detail from the Harvard Divinity School 1910 bookplate in yesterday morning's post


Detail from Knowles's obituary in this  morning's New York Times

William Standish Knowles was born in Taunton, Mass., on June 1, 1917. He graduated a year early from the Berkshire School, a boarding school in western Massachusetts, and was admitted to Harvard. But after being strongly advised that he was not socially mature enough for college, he did a second senior year of high school at another boarding school, Phillips Academy in Andover, N.H.

Dr. Knowles graduated from Harvard with a bachelor’s degree in chemistry in 1939….

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

From Pilate Goes to Kindergarten

The six congruent quaternion actions illustrated above are based on the following coordinatization of the eightfold cube

Problem: Is there a different coordinatization
 that yields greater symmetry in the pictures of
quaternion group actions?

A paper written in a somewhat similar spirit—

"Chiral Tetrahedrons as Unitary Quaternions"—

ABSTRACT: Chiral tetrahedral molecules can be dealt [with] under the standard of quaternionic algebra. Specifically, non-commutativity of quaternions is a feature directly related to the chirality of molecules….

Saturday, May 19, 2012


Filed under: Uncategorized — Tags: — m759 @ 8:00 PM

"The  group of 8" is a phrase from politics, not mathematics.
Of the five groups of order 8 (see today's noon post),

the one pictured* in the center, Z2 × Z2 × Z2 , is of particular
interest. See The Eightfold Cube. For a connection of this 
group of 8 to the last of the five pictured at noon, the
quaternion group, see Finite Geometry and Physical Space.

* The picture is of the group's cycle graph.

Monday, May 7, 2012

More on Triality

Filed under: Uncategorized — Tags: — m759 @ 4:20 PM

John Baez wrote in 1996 ("Week 91") that

"I've never quite seen anyone come right out
and admit that triality arises from the
permutations of the unit vectors i, j, and k
in 3d Euclidean space."

Baez seems to come close to doing this with a
somewhat different i , j , and kHurwitz
— in his 2005 book review
quoted here yesterday.

See also the Log24 post of Jan. 4 on quaternions,
and the following figures. The actions on cubes
in the lower figure may be viewed as illustrating
(rather indirectly) the relationship of the quaternion
group's 24 automorphisms to the 24 rotational
symmetries of the cube.

IMAGE- Actions of the unit quaternions in finite geometry, on a ninefold square and on an eightfold cube

Sunday, January 22, 2012


Filed under: Uncategorized — Tags: — m759 @ 8:09 PM

From life's box of chocolates

Happy birthday to Piper Laurie.

* Those who prefer their
souvenirs without sentiment
may consult the quaternions.

Wednesday, January 4, 2012


Filed under: Uncategorized — Tags: , — m759 @ 8:00 PM

I revised the cubes image and added a new link to
an explanatory image in posts of Dec. 30 and Jan. 3
(and at finitegeometry.org). (The cubes now have
quaternion "i , j , k " labels and the cubes now
labeled "k " and "-k " were switched.)

I found some relevant remarks here and here.

Tuesday, January 3, 2012


Filed under: Uncategorized — Tags: — m759 @ 7:48 AM

In memory of artist Ronald Searle

IMAGE- Ronald Searle, 'Pythagoras puzzled by one of my theorums,' from 'Down with Skool'

Searle reportedly died at 91 on December 30th.

From Log24 on that date

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Update of 9:29 PM EST Jan. 3, 2012



From RationalWiki

Theorum (rhymes with decorum, apparently) is a neologism proposed by Richard Dawkins in The Greatest Show on Earth  to distinguish the scientific meaning of theory from the colloquial meaning. In most of the opening introduction to the show, he substitutes "theorum" for "theory" when referring to the major scientific theories such as evolution.

Problems with "theory"

Dawkins notes two general meanings for theory; the scientific one and the general sense that means a wild conjecture made up by someone as an explanation. The point of Dawkins inventing a new word is to get around the fact that the lay audience may not thoroughly understand what scientists mean when they say "theory of evolution". As many people see the phrase "I have a theory" as practically synonymous with "I have a wild guess I pulled out of my backside", there is often confusion about how thoroughly understood certain scientific ideas are. Hence the well known creationist argument that evolution is "just  a theory" – and the often cited response of "but gravity is also just  a theory".

To convey the special sense of thoroughness implied by the word theory in science, Dawkins borrowed the mathematical word "theorem". This is used to describe a well understood mathematical concept, for instance Pythagoras' Theorem regarding right angled triangles. However, Dawkins also wanted to avoid the absolute meaning of proof associated with that word, as used and understood by mathematicians. So he came up with something that looks like a spelling error. This would remove any person's emotional attachment or preconceptions of what the word "theory" means if it cropped up in the text of The Greatest Show on Earth , and so people would (in "theory ") have no other choice but to associate it with only the definition Dawkins gives.

This phrase has completely failed to catch on, that is, if Dawkins intended it to catch on rather than just be a device for use in The Greatest Show on Earth . When googled, Google will automatically correct the spelling to theorem instead, depriving this very page its rightful spot at the top of the results.

See also


Some backgound— In this journal, "Diamond Theory of Truth."

Friday, December 30, 2011

Quaternions on a Cube

Filed under: Uncategorized — Tags: , — m759 @ 5:48 AM

The following picture provides a new visual approach to
the order-8 quaternion  group's automorphisms.

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Here the cube is called "eightfold" because the eight vertices,
like the eight subcubes of a 2×2×2 cube,* are thought of as
independently movable. See The Eightfold Cube.

See also…

Related material: Robin Chapman and Karen E. Smith
on the quaternion group's automorphisms.

* See Margaret Wertheim's Christmas Eve remarks on mathematics
and the following eightfold cube from an institute she co-founded—

Froebel's third gift, the eightfold cube
© 2005 The Institute for Figuring

Photo by Norman Brosterman
fom the Inventing Kindergarten
exhibit at The Institute for Figuring
(co-founded by Margaret Wertheim)

Powered by WordPress