Tuesday, August 19, 2008

Tuesday August 19, 2008

Filed under: General,Geometry — Tags: — m759 @ 8:30 AM
Three Times

"Credences of Summer," VII,

by Wallace Stevens, from
Transport to Summer (1947)

"Three times the concentred
     self takes hold, three times
The thrice concentred self,
     having possessed
The object, grips it
     in savage scrutiny,
Once to make captive,
     once to subjugate
Or yield to subjugation,
     once to proclaim
The meaning of the capture,
     this hard prize,
Fully made, fully apparent,
     fully found."

Stevens does not say what object he is discussing.

One possibility —

Bertram Kostant, Professor Emeritus of Mathematics at MIT, on an object discussed in a recent New Yorker:

"A word about E(8). In my opinion, and shared by others, E(8) is the most magnificent 'object' in all of mathematics. It is like a diamond with thousands of facets. Each facet offering a different view of its unbelievable intricate internal structure."

Another possibility —

The 4x4 square

  A more modest object —
the 4×4 square.

Update of Aug. 20-21 —

Symmetries and Facets

Kostant's poetic comparison might be applied also to this object.

The natural rearrangements (symmetries) of the 4×4 array might also be described poetically as "thousands of facets, each facet offering a different view of… internal structure."

More precisely, there are 322,560 natural rearrangements– which a poet might call facets*— of the array, each offering a different view of the array's internal structure– encoded as a unique ordered pair of symmetric graphic designs. The symmetry of the array's internal structure is reflected in the symmetry of the graphic designs. For examples, see the Diamond 16 Puzzle.

For an instance of Stevens's "three times" process, see the three parts of the 2004 web page Ideas and Art.

* For the metaphor of rearrangements as facets, note that each symmetry (rearrangement) of a Platonic solid corresponds to a rotated facet: the number of symmetries equals the number of facets times the number of rotations (edges) of each facet–

Platonic solids' symmetry groups

The metaphor of rearrangements as facets breaks down, however, when we try to use it to compute, as above with the Platonic solids, the number of natural rearrangements, or symmetries, of the 4×4 array. Actually, the true analogy is between the 16 unit squares of the 4×4 array, regarded as the 16 points of a finite 4-space (which has finitely many symmetries), and the infinitely many points of Euclidean 4-space (which has infinitely many symmetries).

If Greek geometers had started with a finite space (as in The Eightfold Cube), the history of mathematics might have dramatically illustrated Halmos's saying (Aug. 16) that

"The problem is– the genius is– given an infinite question, to think of the right finite question to ask. Once you thought of the finite answer, then you would know the right answer to the infinite question."

The Greeks, of course, answered the infinite questions first– at least for Euclidean space. Halmos was concerned with more general modern infinite spaces (such as Hilbert space) where the intuition to be gained from finite questions is still of value.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress