Saturday, November 16, 2013

Raiders of the Lost Theorem

Filed under: General,Geometry — Tags: — m759 @ 11:30 AM

IMAGE- The 'atomic square' in Lee Sallows's article 'The Lost Theorem'

Yes. See

The 48 actions of GL(2,3) on a 3×3 coordinate-array A,
when matrices of that group right-multiply the elements of A,
with A =

(1,1) (1,0) (1,2)
(0,1) (0,0) (0,2)
(2,1) (2,0) (2,2)

Actions of GL(2,p) on a pxp coordinate-array have the
same sorts of symmetries, where p is any odd prime.

Note that A, regarded in the Sallows manner as a magic square,
has the constant sum (0,0) in rows, columns, both diagonals, and  
all four broken diagonals (with arithmetic modulo 3).

For a more sophisticated approach to the structure of the
ninefold square, see Coxeter + Aleph.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress