Log24

Sunday, January 26, 2025

The Diamond Theorem and the Miracle Octad Generator —
The DeepSeek Version

Filed under: General — Tags: , — m759 @ 4:19 pm

See http://log24.com/log25/
DeepSeek-250126-Print-option-version-of-DTandMOG.pdf
.

Conclusion

"The Diamond Theorem and the MOG exemplify how finite geometry bridges abstract algebra and combinatorics. Their relationship underscores the universality of symmetry in mathematics, from graphic designs to sporadic groups and error-correcting codes. By studying one, insights into the other — and into structures like the Leech lattice — naturally emerge."

— DeepSeek R1, Jan. 26, 2025.

That AI research report from today was suggested by
a VentureBeat article from yesterday —

For a Google Gemini Deep Research report on the same topic,
see a Log24 post from Tuesday, Jan. 21.

Tuesday, January 21, 2025

The Cullinane Diamond Theorem
and the Miracle Octad Generator

Filed under: General — Tags: , — m759 @ 7:19 am

The Cullinane Diamond Theorem
and the Miracle Octad Generator

Document created on Jan. 21. 2025, by Google’s Gemini Advanced 1.5 Pro with Deep Research, in response to the following prompt:

“Research how the Cullinane diamond theorem and
the Miracle Octad Generator are related.”

 

The Cullinane diamond theorem and the Miracle Octad Generator (MOG) are two seemingly disparate mathematical concepts that find a surprising connection through the realm of finite projective geometry. This report delves into the relationship between these two concepts, exploring their definitions, properties, and historical context to illuminate their interconnectedness.

Cullinane Diamond Theorem

The Cullinane diamond theorem, developed by Steven H. Cullinane, is a mathematical concept that explores the symmetrical properties of certain geometric patterns. It focuses on a 4×4 square pattern with alternating colors arranged in a diamond shape, referred to as the "diamond figure".4 The theorem states that every permutation of the 16 tiles within this diamond figure, generated by mixing rows, columns, and quadrants, will result in a pattern with some form of ordinary or color-interchange symmetry.5 This "invariance of symmetry" is a remarkable property that highlights the inherent order within seemingly random arrangements.3

The theorem has deep roots in group theory, with the group of permutations (G) being isomorphic to the affine group A on the linear 4-space over the finite field GF(2).6 This group has an order of 322,560 and plays a crucial role in understanding the symmetry of both the diamond-theorem figures and the square patterns of the MOG.5 A key result used in the proof of the theorem states that every 4-coloring (i.e., every map into a 4-set) can be expressed as a sum of three 2-colorings.1

Interestingly, the Cullinane diamond theorem can be extended to higher dimensions. For instance, extending the action of A to a 4x4x4 array yields a way of generating the 1.3 trillion transformations natural to the 64 hexagrams of the I Ching, an ancient Chinese divination text.1 This connection suggests potential applications of the theorem in diverse fields beyond geometry.

Another interesting concept that arises from the Cullinane diamond theorem is that of "diamond rings." These rings are algebraic structures generated by the G-images of the diamond figure, and they are isomorphic to rings of matrices over GF(4).5 This algebraic formulation provides a deeper understanding of the symmetry properties explored by the theorem.

Miracle Octad Generator

The Miracle Octad Generator (MOG), conceived by R.T. Curtis, is a mathematical tool used to study the symmetries and properties of the Mathieu group M24, a sporadic simple group of significant importance in group theory and coding theory.7 It is a 4×6 array of combinations that can describe any point in 24-dimensional space.7 More precisely, each element in the array represents a combination of coordinates or symbols that contribute to defining a point in this 24-dimensional space.

Properties

The MOG preserves all the symmetries and maximal subgroups of M24, including the monad, duad, triad, octad, octern, sextet, trio, and duum groups.7 It can be used to visualize partitions of the 24 points, which is important for characterizing these maximal subgroups of M24.8

One of the key applications of the MOG lies in its ability to quickly verify codewords of the binary Golay code, a highly efficient error-correcting code used in various communication systems.7 Each element in the MOG can store a '1' or a '0', and by analyzing the counts (number of '1's) in each column and the top row, one can determine if a set of 24 coordinates forms a valid codeword.7 The MOG achieves this by projecting the 24 Golay code onto a code called the hexacode.8

The MOG is also closely related to the concept of octads and sextets. Any 5 elements of the MOG lie in a unique octad, which is a set of 8 elements.9 A sextet is a set of 6 tetrads (sets of 4 elements) where the union of any two tetrads forms an octad.9 Every tetrad lies in a unique sextet.

Furthermore, the MOG is a pairing of the 35 partitions of an 8-set into two 4-sets with the 35 partitions of AG(4,2) (the affine 4-space over GF(2)) into 4 affine planes.10 This pairing preserves specific incidence properties, which refer to the relationships between points, lines, and planes in a geometric space.

It's worth noting that there are two competing definitions of the MOG. Curtis originally defined it as a pairing of two 35-member sets.11 However, many sources now define it as a rectangular array based on Conway's hexacode.11

Finally, the MOG helps in understanding the octad stabilizer, a subgroup of M24 that leaves an octad invariant as a set.10 This subgroup is isomorphic to the automorphism group of the affine 4-space over GF(2), highlighting the deep connection between the MOG and finite geometry.

Relationship Between the Cullinane Diamond Theorem and the Miracle Octad Generator

The relationship between the Cullinane diamond theorem and the MOG emerges from their shared foundation in finite projective geometry. The 35 square patterns within the MOG have an underlying structure based on finite projective geometry.5 These patterns, composed of two-color diagonally-divided square tiles, exhibit surprising symmetry properties that can be explained using the Cullinane diamond theorem.5

A crucial link between the Cullinane diamond theorem and the MOG is the fact that the same symmetry group, of order 322,560, underlies both concepts.5 This shared symmetry group highlights a deep connection between the seemingly different patterns studied by these two concepts.

The line diagrams used to visualize the Cullinane diamond theorem also play a crucial role in understanding the symmetry of the square patterns in the MOG.5 These line diagrams, based on the three partitions of the four-set of square tiles, correspond to the 35 lines in the 3-dimensional projective space over GF(2).5 In essence, the Cullinane diamond theorem provides a way to understand and visualize the symmetry properties inherent in the MOG.

Furthermore, the underlying geometry of the 4×4 patterns in the Cullinane diamond theorem is closely related to the MOG, which is used in the construction of the Steiner system S(5,8,24).5 This connection extends to the Leech lattice, a highly symmetrical mathematical structure in 24 dimensions, which Walter Feit described as a "blown up version of S(5,8,24)".5 The Leech lattice is a dense sphere-packing in 24 dimensions with remarkable symmetry properties and connections to various areas of mathematics and physics.

Interestingly, the Cullinane diamond theorem also sheds light on the relationship between orthogonality of Latin squares and skewness of lines in a finite projective 3-space.12 Latin squares are square arrays filled with symbols, and orthogonality between two Latin squares means that when they are superimposed, each possible pair of symbols appears exactly once. Skewness of lines in projective geometry refers to lines that do not intersect. The Cullinane diamond theorem helps establish a connection between these seemingly unrelated concepts.

Another interesting connection is to Beutelspacher's model of the 15 points of PG(3,2).1 This model provides a way to visualize the points of this projective space, and it relates to the Cullinane diamond theorem and the MOG through their shared foundation in finite projective geometry.

Applications

The relationship between the Cullinane diamond theorem and the MOG has potential applications in various fields, including coding theory and cryptography. The MOG's ability to verify codewords of the binary Golay code is particularly relevant in coding theory, where efficient error-correcting codes are essential for reliable data transmission.7 The Cullinane diamond theorem, with its focus on symmetry and permutations, could potentially contribute to the development of new coding schemes or cryptographic algorithms. For example, the theorem's insights into the structure of finite projective spaces could be used to design codes with specific properties or to analyze the security of existing cryptographic systems.

Beyond coding theory, the Cullinane diamond theorem has applications in visualizing various mathematical concepts. For instance, it provides a way to visualize Walsh functions, which are a set of orthogonal functions used in signal processing and other areas of mathematics.1 The theorem also helps visualize the finite projective plane PG(2,4), a fundamental object in finite geometry with connections to various combinatorial structures.12 Additionally, the theorem has connections to the outer automorphisms of S6, the symmetric group on 6 letters, which are transformations that preserve the group structure but are not inner automorphisms.12

Visualizations

Visualizations play a crucial role in understanding the connection between the Cullinane diamond theorem and the MOG. The 35 square patterns within the original (1976) MOG, as defined by R. T. Curtis, provide a visual representation of this connection.5 These patterns, along with the line diagrams used to illustrate the Cullinane diamond theorem, offer a tangible way to grasp the interplay between these concepts.5

Here are some examples of visualizations that illustrate this connection:

  • The diamond figure: This is a 4×4 square pattern with alternating colors arranged in a diamond shape. It is the basic object studied by the Cullinane diamond theorem.2
  • The 35 square patterns in the MOG: These patterns, composed of two-color diagonally-divided square tiles, exhibit surprising symmetry properties that can be explained using the Cullinane diamond theorem.5
  • Line diagrams: These diagrams, based on the three partitions of the four-set of square tiles, correspond to the 35 lines in the 3-dimensional projective space over GF(2). They help visualize and explain the symmetry of both the diamond-theorem figures and the MOG patterns.2

Historical Connections

Historically, the development of the Cullinane diamond theorem and the MOG stemmed from explorations in finite projective geometry and group theory.5 While the exact historical connections between their development remain unclear, both concepts emerged from a desire to understand the symmetries and properties of mathematical structures in finite spaces.

Conclusion

The Cullinane diamond theorem and the Miracle Octad Generator, while seemingly distinct, are intricately linked through the principles of finite projective geometry. The theorem's focus on symmetry invariance and the MOG's ability to capture the symmetries of the Mathieu group M24 highlight their shared foundation. This connection extends to higher-dimensional structures like the Leech lattice and has potential applications in coding theory, cryptography, and the visualization of various mathematical concepts.

The relationship between these two concepts exemplifies the interconnectedness of mathematical ideas. Often, seemingly unrelated areas of mathematics converge in unexpected ways, revealing hidden symmetries and relationships. The Cullinane diamond theorem and the MOG provide a compelling example of this phenomenon, demonstrating the power of finite projective geometry in unifying and illuminating diverse mathematical structures.

Works cited

1. Diamond Theory: Symmetry in Binary Spaces, accessed January 21, 2025, https://m759.tripod.com/theory/dtheory.html

2. The Diamond Theorem in Finite Geometry, accessed January 21, 2025, http://finitegeometry.org/sc/16/dtheorem.html

3. finitegeometry.org, accessed January 21, 2025, http://finitegeometry.org/sc/gen/dtcas.html#:~:text=Cullinane,have%20some%20sort%20of%20symmetry.

4. Speak, Memory « Log24 – Home page of m759.net, a domain used by Steven H. Cullinane for a WordPress weblog., accessed January 21, 2025, http://m759.net/wordpress/?p=112809

5. Cullinane diamond theorem – Encyclopedia of Mathematics, accessed January 21, 2025, https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

6. What is the Cullinane diamond theorem? – Log24, accessed January 21, 2025, http://log24.com/log24/240303-You.com-Cullinane_Diamond_Theorem-research-paper.pdf

7. Miracle Octad Generator – Wikipedia, accessed January 21, 2025, https://en.wikipedia.org/wiki/Miracle_Octad_Generator

8. Mathieu groups, the Golay code and Curtis' Miracle Octad Generator, accessed January 21, 2025, https://vrs.amsi.org.au/wp-content/uploads/sites/6/2014/09/UWA-Kelly.pdf

9. MOG (Miracle Octad Generator) – Stanford, accessed January 21, 2025, http://xenon.stanford.edu/~hwatheod/mog/mog.html

10. The Miracle Octad Generator (MOG) of R T. Curtis – Elements of Finite Geometry, accessed January 21, 2025, http://finitegeometry.org/sc/24/MOG.html

11. Competing Definitions of the Miracle Octad Generator – Elements of Finite Geometry, accessed January 21, 2025, http://finitegeometry.org/sc/24/mogdefs.html

12. Diamond Theory: Symmetry in Binary Spaces – Elements of Finite Geometry, accessed January 21, 2025, http://finitegeometry.org/sc/gen/dth/DiamondTheory.html

13. arxiv.org, accessed January 21, 2025, https://arxiv.org/abs/1308.1075

View this post as a standalone web page at

http://log24.com/log25/DTandMOG.html.

and as a PDF at

http://log24.com/log25/DTandMOG.pdf.

For a more elementary introduction to the MOG, see a YouTube video,

"The Most Powerful Diagram in Mathematics."

For a PDF of the video's metadata and comments, click here.

Sunday, January 5, 2025

Klein Quadric Octad Generator

Filed under: General — Tags: , — m759 @ 1:23 pm

Tuesday, December 31, 2024

The Yellow Brick Road to the
Miracle Octad Generator, with Conwell’s Heptads

Filed under: General — Tags: , , — m759 @ 2:42 am

The Klein quadric as background for the Miracle Octad Generator of R. T. Curtis —

The Klein quadric, PG(5,2), and the 'bricks' of the Miracle Octad Generator

See also Saniga on heptads in this journal.

The Miracle Octad Generator (MOG) of R. T. Curtis

Monday, December 23, 2024

A Projective-Space Home for the Miracle Octad Generator

Filed under: General — Tags: , — m759 @ 3:17 pm

The natural geometric setting for the "bricks" in the Miracle Octad Generator
(MOG) of Robert T. Curtis is PG(5,2), the projective 5-space over GF(2).

The Klein correspondence mirrors the 35 lines of PG(3,2) — and hence, via the 
graphic approach below, the 35 "heavy bricks" of the MOG that match those
lines — in PG(5,2), where the bricks may be studied with geometric methods,
as an alternative to Curtis's original MOG combinatorial construction methods.

The construction below of a PG(5,2) brick space  is analogous to the
"line diagrams"  construction of a PG(3,2) in Cullinane's diamond theorem.

Thursday, January 27, 2022

The Lexicographic Octad Generator

Filed under: General — Tags: , , , , — m759 @ 2:30 pm

A Lexicographic Basis for the Binary Golay Code:

Brouwer and Guven — "Long ago," in 
"The generating rank of the space of short vectors
in the Leech lattice mod 2," by 
Andries Brouwer & Cicek Guven,
https://www.win.tue.nl/~aeb/preprints/udim24a.pdf —

"One checks by computer" that this is a basis:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

(Copied from the Brouwer-Guven paper)

_________________________________________________

Adlam at Harvard — 
"Constructing the Extended Binary Golay Code,"
by Ben Adlam, Harvard University, August 9, 2011,
https://fliphtml5.com/llqx/wppz/basic —

Adlam also asserts, citing a reference, that this same
set of twelve vectors is a basis:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

(Copied from the Adlam paper)
__________________________________________________

Sources —

Background for Log24 posts on 'Embedding Change'

"One checks by computer" —

At http://magma.maths.usyd.edu.au/calc/ —

> V24 := VectorSpace(FiniteField(2), 24);
> G := sub< V24 |  
> [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],
> [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1],
> [0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1],
> [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1],
> [0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1],
> [0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0],
> [0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1],
> [0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,0],
> [0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,1,1,1,0,0,0],
> [0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1],
> [0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,0],
> [1,0,0,0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0,0]>;       
> Dimension(G);
12

Monday, July 13, 2020

The Lexicographic Octad Generator (LOG)*

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

By Steven H. Cullinane, July 13, 2020

Background —


The Miracle Octad Generator (MOG)
of R. T. Curtis (Conway-Sloane version) —

Embedding Change, Illustrated

A basis for the Golay code, excerpted from a version of
the code generated in lexicographic order, in

"Constructing the Extended Binary Golay Code"
Ben Adlam
Harvard University
August 9, 2011:

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

Below, each vector above has been reordered within
a 4×6 array, by Steven H. Cullinane, to form twelve
independent Miracle Octad Generator  vectors
(as in the Conway-Sloane SPLAG version above, in
which Curtis's earlier heavy bricks are reflected in
their vertical axes) —

01 02 03 04 05 . . . 20 21 22 23 24 -->

01 05 09 13 17 21
02 06 10 14 18 22
03 07 11 15 19 23
04 08 12 16 20 24

0000 0000 0000 0000 1111 1111 -->

0000 11
0000 11
0000 11
0000 11 as in the MOG.

0000 0000 0000 1111 0000 1111 -->

0001 01
0001 01
0001 01
0001 01 as in the MOG.

0000 0000 0011 0011 0011 0011 -->

0000 00
0000 00
0011 11
0011 11 as in the MOG.

0000 0000 0101 0101 0101 0101 -->

0000 00
0011 11
0000 00
0011 11 as in the MOG.

0000 0000 1001 0110 0110 1001 -->

0010 01
0001 10
0001 10
0010 01 as in the MOG.

0000 0011 0000 0011 0101 0110 -->

0000 00
0000 11
0101 01
0101 10 as in the MOG.

0000 0101 0000 0101 0110 0011 -->

0000 00
0101 10
0000 11
0101 01 as in the MOG.

0000 1001 0000 0110 0011 1010 -->

0100 01
0001 00
0001 11
0100 10 as in the MOG.

0001 0001 0001 0001 0111 1000 -->

0000 01
0000 10
0000 10
1111 10 as in the MOG.

0010 0001 0001 0010 0001 1101 -->

0000 01
0000 01
1001 00
0110 11 as in the MOG.

0100 0001 0001 0100 0100 1110 -->

0000 01
1001 11
0000 01
0110 00 as in the MOG.

1000 0001 0001 0111 0010 0100 -->

10 00 00
00 01 01
00 01 10
01 11 00 as in the MOG (heavy brick at center).

Update at 7:41 PM ET the same day —
A check of SPLAG shows that the above result is not new:
MOG in LOG embedding

And at 7:59 PM ET the same day —
Conway seems to be saying that at some unspecified point in the past,
M.J.T. Guy, examining the lexicographic Golay code,  found (as I just did)
that weight-8 lexicographic Golay codewords, when arranged naturally
in 4×6 arrays, yield certain intriguing visual patterns. If the MOG existed
at the time of his discovery, he would have identified these patterns as
those of the MOG.  (Lexicographic codes have apparently been
known since 1960, the MOG since the early 1970s.)

* Addendum at 4 AM ET  the next day —
See also Logline  (Walpurgisnacht 2013).

Wednesday, December 11, 2019

Miracle Octad Generator Structure

Miracle Octad Generator — Analysis of Structure

(Adapted from Eightfold Geometry, a note of April 28, 2010.
See also the recent post Geometry of 6 and 8.)

Friday, March 21, 2014

Three Constructions of the Miracle Octad Generator

Filed under: General,Geometry — Tags: , , , , , , — m759 @ 12:24 pm

IMAGE- Two constructions, by Turyn/Curtis, and by Conway, of the Miracle Octad Generator

See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.

Related material on the Turyn-Curtis construction
from the University of Cambridge —

— Slide by "Dr. Parker" — Apparently Richard A. Parker —
Lecture 4, "Discovering M24," in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on "Sporadic and Related Groups."
See also the Parker lectures of 2012-2013 on the same topic.

A third construction of Curtis's 35  4×6  1976 MOG arrays would use
Cullinane's analysis of the 4×4 subarrays' affine and projective structure,
and point out the fact that Conwell's 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis's 1976 MOG.

See The Diamond Theorem,  Finite RelativityGalois Space,
Generating the Octad Generator, and The Klein Correspondence.

Update of March 22-March 23 —

Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1's, all other squares as 0's) of the 35  4×6 arrays of the 1976
Curtis MOG would then reveal*  the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35  MOG arrays.  For more
details of this "by-hand" construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction (such as Turyn's), not  by hand, of the
extended binary Golay code. See the Brouwer preprint quoted above.

* "Then a miracle occurs," as in the classic 1977 Sidney Harris cartoon.

Illustration of array addition from March 23 —

IMAGE- Discovery of the S_3 action on bricks in the Conwell-Cullinane 'by-hand' approach to octad-building

Sunday, April 28, 2013

The Octad Generator

Filed under: General,Geometry — Tags: , , , , — m759 @ 11:00 pm

… And the history of geometry  
Desargues, Pascal, Brianchon and Galois
in the light of complete n-points in space.

(Rewritten for clarity at about 10 AM ET April 29, with quote from Dowling added.
Updated with a reference to a Veblen and Young exercise (on p. 53) on April 30.)

Veblen and Young, Projective Geometry, Vol. I ,
Ginn and Company, 1910, page 39:

"The Desargues configuration. A very important configuration
is obtained by taking the plane section of a complete space five-point."

Each of figures 14 and 15 above has 15 points and 20 lines.
The Desargues configuration within each figure is denoted by
10 white points and 10 solid lines, with 3 points on each line and
3 lines on each point. Black  points and dashed  lines indicate the
complete space five-point and lines connecting it to the plane section
containing the Desargues configuration.

In a 1915 University of Chicago doctoral thesis, Archibald Henderson
used a complete space six -point to construct a configuration of
15 points and 20 lines in the context not of Desargues '  theorem, but
rather of Brianchon 's theorem and of the Pascal  hexagram.
Henderson's 1915 configuration is, it turns out, isomorphic to that of
the 15 points and 20 lines in the configuration constructed via a
complete space five -point five years earlier by Veblen and Young.
(See, in Veblen and Young's 1910 Vol. I, exercise 11, page 53:
"A plane section of a 6-point in space can  be considered as
3 triangles perspective in pairs from 3 collinear points with
corresponding sides meeting in 3 collinear points." This is the
large  Desargues configuration. See Classical Geometry in Light of 
Galois Geometry
.)

For this large  Desargues configuration see April 19.
For Henderson's complete six –point, see The Six-Set (April 23).
That post ends with figures relating the large  Desargues configuration
to the Galois  geometry PG(3,2) that underlies the Curtis
Miracle Octad Generator  and the large Mathieu group M24 —

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

See also Note on the MOG Correspondence from April 25, 2013.

That correspondence was also discussed in a note 28 years ago, on this date in 1985.

Sunday, March 23, 2025

A Mystery Popup

Filed under: General — Tags: — m759 @ 2:35 pm

The recent URL cubebrick.space forwards to . . .

http://m759.net/wordpress/?tag=brick-space.

The web posts so tagged are, as one would expect,
NOT in the Harvard Library system.  I was therefore
somewhat surprised to see the following popup today —

Clicking on the "Get article" link yields . . .

This metadata is actually quite helpful, as the cited article
does, in fact, give good references for what I have called,
using a term from the "Miracle Octad Generator" of R. T. Curtis,
"brick space" — the finite projective space PG(5,2).

Tuesday, February 18, 2025

Grok 3 on the Log24 post of last New Year’s Eve

Filed under: General — Tags: — m759 @ 1:01 am

The Miracle Octad Generator (MOG) of R. T. Curtis —

The Miracle Octad Generator (MOG) of R. T. Curtis

Grok 3 beta, 12:56 AM ET Feb. 18, 2025 —

The diagram you've provided from the webpage titled "The Yellow Brick Road to the Miracle Octad Generator; with Conwell's Heptads" illustrates the concept of "brick space" within the context of projective geometry, specifically PG(5,2), which is the 5-dimensional projective space over the field with 2 elements (GF(2)). Here's a detailed breakdown based on the image:

Diagram Explanation:

    Components of the Diagram:
        Left Side:
            There are 28 points off the Klein quadric represented by grids with some cells shaded in blue.
        Middle Section:
            The 35 points of the Klein quadric are shown, which are added to the 28 points off the Klein quadric. This section shows grids with additional yellow shading.
        Right Side:
            The result of adding these points together to form the 63 points of PG(5,2), represented by grids with blue and yellow shading combined. This section also includes the 8 Conwell heptads (each heptad represented as a column).
    Mathematical Context:
        PG(5,2): As mentioned, this is the projective 5-space over GF(2), which has
        2^6 – 1 = 63
         points (since points in projective space are equivalence classes of non-zero vectors, excluding the zero vector).
        Klein Quadric: A specific geometric structure within PG(5,2) that can be visualized in this context as a subset of points with particular properties. Here, it's shown as contributing 35 points.
        Conwell Heptads: These are subsets of 7 points (heptads) in this geometry, named after Conwell, and are visually represented in columns on the right side.
    Visual Representation:
        The "brick space" metaphor likely comes from the way these points and subspaces are arranged in a grid-like or block-like fashion, similar to bricks in a wall. Each grid represents a configuration of points or subspaces within this projective space, and the combination of different colored shadings (blue, yellow) helps to distinguish different sets or properties of points.
    Purpose of the Diagram:
        This diagram is part of an exploration of the Miracle Octad Generator (MOG) by R. T. Curtis, where the Klein quadric serves as a background. The MOG is a structure used in the study of combinatorial designs and has applications in finite group theory, particularly with the Mathieu groups. The diagram visually aids in understanding how these points and heptads relate to each other within this geometric framework.
    Additional Notes:
        The note at the bottom mentions that 28 + 35 = 63, which matches the total number of points in PG(5,2).
        The mention of heptads being added on December 31, 2024, indicates updates or additions to the original concept or visualization.


This diagram, therefore, serves as a visual aid to understand the structure of PG(5,2) in terms of its points, subspaces, and specific combinatorial designs like the Conwell heptads, all within the context of the Miracle Octad Generator. It's an advanced mathematical visualization, combining geometric and combinatorial aspects in a way that's accessible to those familiar with these concepts.

For some remarks by Grok 3 beta made before it saw the
"yellow brick" diagram, see a PDF of prompts and responses.

Monday, February 10, 2025

Brick Space: Points with Parts

Filed under: General — Tags: , , , , — m759 @ 3:47 pm

This post's "Points with Parts" title may serve as an introduction to
what has been called "the most powerful diagram in mathematics" —
the "Miracle Octad Generator" (MOG) of Robert T. Curtis.

The Miracle Octad Generator (MOG) of R. T. Curtis

Curtis himself has apparently not written on the geometric background
of his diagram — the finite projective spaces PG(5,2) and PG(3,2), of 
five and of three dimensions over the two-element Galois field GF(2).

The component parts of the MOG diagram, the 2×4 Curtis "bricks,"
may be regarded* as forming both PG(5,2) and PG(3,2) . . .
Pace  Euclid, points with parts. For more on the MOG's geometric
background, see the Klein correspondence  in the previous post.

For a simpler example of "points with parts, see
http://m759.net/wordpress/?s=200229.

* Use the notions of Galois (XOR, or "symmetric-difference") addition
of even  subsets, and such addition "modulo complementation," to
decrease the number of dimensions of the spaces involved.

Sunday, February 9, 2025

An AI Overview of Klein Quadric and MOG

Filed under: General — Tags: , , — m759 @ 2:15 pm

See also a more accurate AI report from January 9, 2025 —

Grok 2 on the MOG and the Klein Correspondence:

HTML version, with corrections, of the above 9 January Grok 2 report —

Grok 2: Klein Correspondence and MOG, 9 Jan. 2025 . . .
______________________________________________

The Klein correspondence is closely related to the Miracle Octad Generator (MOG) through the mathematical structure they both engage with, particularly in the context of finite geometry and combinatorics.

Klein Correspondence: This refers to a mathematical framework that establishes a correspondence between points and lines in a projective space.* Specifically, in the context of the MOG, it relates to the geometry of PG(3,2), the three-dimensional projective space over the field with two elements. The Klein correspondence, in this context, essentially connects the combinatorial aspects of partitions of an 8-set to the geometric structure of lines in PG(3,2).

Miracle Octad Generator (MOG): Introduced by R.T. Curtis, the MOG is a tool used in the study of the Mathieu group M24, the binary Golay code, and related structures like the Steiner system S(5,8,24). It consists of a 4×6 array where the positions are used to construct octads (sets of 8 elements) from given sets of 5 elements, reflecting the structure of the Steiner system.

Relation Between Klein Correspondence and MOG:

  • Combinatorial and Geometric Link: The MOG uses the Klein correspondence to map partitions of an 8-set (into two 4-sets) to [the sets of] 4 parallel affine planes [that represent lines] within PG(3,2). This mapping is natural and symmetrical, which is crucial for the MOG's functionality. The 35 partitions of an 8-set correspond to the 35 lines in PG(3,2), and this correspondence helps in understanding how to generate and visualize octads within the MOG framework.
     
  • Structural Insight: The Klein correspondence provides a way to see how the MOG's method of generating octads can be understood geometrically. This insight is vital for exploring the symmetry and subgroup structure of M24, as the MOG's layout preserves these symmetries.

Thus, the Klein correspondence serves as a foundational link that allows the MOG to operate by translating combinatorial problems into geometric ones, facilitating the study of complex mathematical structures like the Mathieu groups and Steiner systems.

* Correction: Should be "a correspondence between points in a five-dimensional projective space and lines in a three-dimensional projective space."

Update  of ca. 9 AM ET Monday, Feb. 10, 2024 —

Neither AI report above mentions the Cullinane model of the five-
dimensional projective space PG(5,2) as a brick space — a space
whose points are the 2×4 bricks  used in thte MOG. This is
understandable, as the notion of using bricks to model both  PG(5,2)
and PG(3,2) has appeared so far only in this journal. See an
illustration from New Year's Eve . . . Dec. 31, 2024 —

The Miracle Octad Generator (MOG) of R. T. Curtis

Friday, February 7, 2025

Apple Entertainment

Filed under: General — Tags: , — m759 @ 12:49 pm

The Miracle Octad Generator (MOG) of R. T. Curtis

Tuesday, February 4, 2025

Diagrams

Filed under: General — Tags: , , — m759 @ 11:30 am

"The most powerful diagram in mathematics" —

Anonymous YouTube lecturer

The YouTube lecturer is not referring to the Fano plane diagram cited
in the AI Overview below, but to a much more sophisticated figure,
the Miracle Octad Generator (MOG) of R. T. Curtis.

The Miracle Octad Generator of R. T. Curtis

Some context —

A rearrangement of the Miracle Octad Generator —

The Miracle Octad Generator (MOG) of R. T. Curtis

The diagram below may be less powerful , but it illustrates a result that,
although less miraculous , is perhaps more historically significant —

Pythagorean theorem proof by overlapping similar figures

Sunday, January 26, 2025

Words and Things

Filed under: General — m759 @ 9:33 am

Peter J. Cameron today presented in his weblog an excerpt
from Aldous Huxley's The Perennial Philosophy .

Another such excerpt —

"Taking words as the measure of things, instead of using
things as the measure of words, Hume imposed the discrete
and, so to say, pointilliste  pattern of language upon the
continuum of actual experience — with the impossibly
paradoxical results with which we are all familiar. Most human
beings are not philosophers and care not at all for consistency
in thought or action. Thus, in some circumstances they take it
for granted that events are not 'loose and separate,' but coexist
or follow one another within the organized and organizing field
of a cosmic whole. But on other occasions, where the opposite
view is more nearly in accord with their passions or interests,
they adopt, all unconsciously, the Humian position and treat events
as though they were as independent of one another and the rest
of the world as the words by which they are symbolized. This is
generally true of all occurrences involving 'I,' 'me,' 'mine.'
Reifying the 'loose and separate' names, we regard the things as
also loose and separate — not subject to law, not involved in the
network of relationships, by which in fact they are so obviously
bound up with their physical, social and spiritual environment."

— Aldous Huxley, The Perennial Philosophy , on p. 156 of the
1947 Chatto & Windus (London) edition.

Those in search of an "organized and organizing field" might
consider the Galois  field GF(64) — as embodied in the Chinese
classic I Ching or, more recently, in the finite geometry PG(5,2) —
the natural habitat of the R. T. Curtis Miracle Octad Generator.

Saturday, January 25, 2025

Supplement to “The Most Powerful Diagram in Mathematics”

Filed under: General — Tags: — m759 @ 12:04 pm

The diagram description in the title is from a YouTube video about
the Miracle Octad Generator of R. T. Curtis.

Supplemental AI-generated reading . . .

Diamond Theorem and Miracle Octad Generator

An “AI Overview” Google Search response to the
search prompt “diamond theorem and miracle octad generator,”
exported to Google Docs on Saturday, January 25, 2025 . . .

___________________________________________________

In mathematics, the "diamond theorem" refers to a geometric concept related to finite projective geometry, which is used to explain the surprising symmetry properties observed in the "Miracle Octad Generator" (MOG), a tool developed by mathematician R.T. Curtis for studying the Mathieu groups and binary Golay code; essentially, the diamond theorem helps analyze the patterns within the MOG, revealing a hidden structure based on geometric principles. [1, 2, 3, 4, 5]

Key points about the connection: [1, 2, 3]

  • MOG and its patterns: The Miracle Octad Generator consists of a set of 35 square patterns, which can be manipulated to reveal interesting relationships within the Mathieu groups. [1, 2, 3]
  • Diamond geometry: The "diamond theorem" describes a specific geometric structure within these patterns, where certain configurations of squares resemble a diamond shape. [1, 2, 6]
  • Underlying symmetry: By analyzing these diamond patterns, mathematicians can understand the underlying symmetry properties of the MOG and the related mathematical structures. [1, 2, 3]

Further details: [1, 5, 7]

  • Applications: The diamond theorem has been used to study various mathematical concepts, including the Leech lattice, which is connected to the binary Golay code and the Mathieu groups. [1, 5, 7]
  • Visual interpretation: The diamond patterns can be easily visualized as arrangements of squares on a grid, making the concept more accessible to understand. [1, 2, 5]

Generative AI is experimental.

[1] http://finitegeometry.org/sc/16/dtheorem.html

[2] https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

[3] https://arxiv.org/abs/1308.1075

[4] https://en.wikipedia.org/wiki/Miracle_Octad_Generator

[5] http://xenon.stanford.edu/~hwatheod/mog/mog.html

[6] https://m759.tripod.com/theory/dtheory.html

[7] http://finitegeometry.org/sc/24/diconn.html

"Generative AI is experimental." . . .

Exercise:  Correct errors in the text, using the links.

A more concise presentation —

Square and Rectangle, 16 and 24

Tuesday, January 14, 2025

Proofs

Filed under: General — Tags: , , — m759 @ 3:50 am

A phrase by Aitchison at Hiroshima . . .

"The proof of the above is a relabelling of the Klein quartic . . . ."

Related art — A relabelling of the Klein quadric  by Curtis bricks:

The Miracle Octad Generator (MOG) of R. T. Curtis

Update of 12:26 PM EST Wednesday, January 15, 2025  —

Here is a large (17.5 MB) PDF file containing all posts touching upon
the concept underlying the above illustration — the Klein correspondence.

(A PDF reader such as Foxit is recommended for such large files.)

Saturday, January 11, 2025

Octads within a PG(5,2) Addition Table

Filed under: General — Tags: , , — m759 @ 2:13 am

For some background on the PG(5,2) addition table, see Nocciolo .

The Miracle Octad Generator (MOG) of R. T. Curtis

Thursday, January 9, 2025

Grok 2 on the MOG and the Klein Correspondence

Filed under: General — Tags: , , — m759 @ 1:04 pm

Related illustration —

The Miracle Octad Generator (MOG) of R. T. Curtis

— Transcription —

Grok 2 on Klein correspondence and MOG — 9 Jan. 2025
______________________________________________________________

Prompt:

How is the Klein correspondence related to the Miracle Octad Generator?

Grok 2 response (with citations and links removed):

The Klein correspondence is closely related to the Miracle Octad Generator (MOG) through the mathematical structure they both engage with, particularly in the context of finite geometry and combinatorics.

Klein Correspondence: This refers to a mathematical framework that establishes a correspondence between points and lines in a projective space. Specifically, in the context of the MOG, it relates to the geometry of PG(3,2), the three-dimensional projective space over the field with two elements. The Klein correspondence, in this context, essentially connects the combinatorial aspects of partitions of an 8-set to the geometric structure of lines in PG(3,2).

Miracle Octad Generator (MOG): Introduced by R.T. Curtis, the MOG is a tool used in the study of the Mathieu group M24, the binary Golay code, and related structures like the Steiner system S(5,8,24). It consists of a 4×6 array where the positions are used to construct octads (sets of 8 elements) from given sets of 5 elements, reflecting the structure of the Steiner system.

Relation Between Klein Correspondence and MOG:

    Combinatorial and Geometric Link: The MOG uses the Klein correspondence to map partitions of an 8-set (into two 4-sets) to 4 parallel affine planes within PG(3,2). This mapping is natural and symmetrical, which is crucial for the MOG's functionality. The 35 partitions of an 8-set correspond to the 35 lines in PG(3,2), and this correspondence helps in understanding how to generate and visualize octads within the MOG framework.

    Structural Insight: The Klein correspondence provides a way to see how the MOG's method of generating octads can be understood geometrically. This insight is vital for exploring the symmetry and subgroup structure of M24, as the MOG's layout preserves these symmetries.

Thus, the Klein correspondence serves as a foundational link that allows the MOG to operate by translating combinatorial problems into geometric ones, facilitating the study of complex mathematical structures like the Mathieu groups and Steiner systems.

Saturday, January 4, 2025

For a Contemporary Faustus

Filed under: General — Tags: , — m759 @ 5:58 pm

Faustus cover, Thomas Mann

A contemporary  minimalist composer whose work resembles that of
Thomas Mann's Doctor Faustus  reportedly died at 85 Tuesday
in Paris on New Year's Eve (December 31, 2024). The phrase
"mathematical clarity" in his obituary in today's New York Times
suggests a synchronology check —

The Miracle Octad Generator (MOG) of R. T. Curtis

Compare and contrast.

Monday, December 30, 2024

December XXX: Yellow Brick Road Meets Mania Lane

Filed under: General — Tags: — m759 @ 12:45 am

My Windows 11 lockscreen tonight —

"Tulip mania swept this land way back in the 17th century . . . ."

Earlier in this journal

The Miracle Octad Generator (MOG) of R. T. Curtis

Some historical background —

Saturday, December 21, 2024

“At the still point . . .” — T. S. Eliot

Filed under: General — m759 @ 10:39 pm

"The byte is a unit of digital information that most commonly consists of eight bits. … Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures." — Wikipedia

Compare and contrast —

From 1989 . . .

From 2024 . . .

The Miracle Octad Generator (MOG) of R. T. Curtis

Coordinatizing Brick Space

Filed under: General — Tags: , — m759 @ 4:10 am

The Miracle Octad Generator (MOG) of R. T. Curtis

Exercise:  The eight-part diagrams in the graphic "brick space"
model of PG(5,2) below need to be suitably labeled with six-part
GF(2) coordinates to help illustrate the Klein correspondence that
underlies the large Mathieu group M24.

A possible approach:  The lines  separating dark squares from light
(i.e., blue from white or yellow) in the figure above may be added
in XOR fashion (as if they were diamond theorem  line diagrams)
to form a six  dimensional vector space, which, after a suitable basis
is chosen, may be represented by six-tuples of 0's and 1's.

Related reading —

log24.com/log24/241221-'Brick Space « Log24' – m759.net.pdf .

This is a large (15.1 MB) file.  The Foxit PDF reader is recommended.

The PDF is from a search for Brick Space  in this journal.

Some context:  http://m759.net/wordpress/?s=Weyl+Coordinatization.

Sunday, November 17, 2024

Weyl, Symmetry, and the MOG
(HTML version of an earlier post)

Filed under: General — Tags: , — m759 @ 1:16 am

Some historical background for a new book by Robert T. Curtis,
The Art of Working with the Mathieu Group M24 

"Space is another example of an entity endowed with a structure.
Here the elements are points, and the structure is established
in terms of certain basic relations between points such as:
A, B, C lie on a straight line, AB is congruent CD, and the like.
What we learn from our whole discussion and what has indeed
become a guiding principle in modern mathematics is this lesson:
Whenever you have to do with a structure endowed entity Σ
try to determine its group of automorphisms
, the group of those
element-wise transformations which leave all structural relations
undisturbed. You can expect to gain a deep insight into the
constitution of Σ in this way. After that you may start to investigate
symmetric configurations of elements, i.e. configurations which are
invariant under a certain subgroup of the group of all automorphisms;
and it may be advisable, before looking for such configurations,
to study the subgroups themselves, e.g. the subgroup of those
automorphisms which leave one element fixed, or leave two distinct
elements fixed, and investigate what discontinuous or finite subgroups
there exist, and so forth."

— Hermann Weyl, Symmetry, Princeton University Press, 1952.
(Page 144 in the Princeton Science Library edition of 1989.)

4×4 Square
       
       
       
       

This square's automorphism group
has 322,560 transformations.

— The diamond theorem  of Steven H. Cullinane.

4×6 Rectangle
           
           
           
           

This rectangle's automorphism group
has 244,823,040 transformations.

— The Miracle Octad Generator  (MOG) of Robert T. Curtis.

The rectangle's automorphism group contains the
square's as a subgroup. The square's automorphism
group leaves invariant a set of 30 eight-subsquare sets
called affine hyperplanes. The rectangle's automorphism
group leaves invariant a set of 759 eight-subsquare sets
called octads.

View this post as a PDF.

Saturday, November 16, 2024

Automorphism Groups: Examples for Weyl

Filed under: General — Tags: , — m759 @ 3:17 am

View a PDF of this post.

Keywords: Weyl, symmetry, group, automorphism,
octad, MOG, Curtis, Cullinane.

Friday, October 25, 2024

The Space Structures Underlying M24

Filed under: General — Tags: , , — m759 @ 12:24 am

The structures of the title are the even subsets of a six-set and of
an eight-set, viewed modulo set complementation.

The "Brick Space" model of PG(5,2) —

Brick space: The 2x4 model of PG(5,2)

For the M24 relationship between these spaces, of 15 and of 63 points,
see G. M. Conwell's 1910 paper "The 3-Space PG (3,2) and Its Group,"
as well as Conwell heptads in this  journal.

The Miracle Octad Generator (MOG) of R. T. Curtis

Thursday, October 24, 2024

October Story: If It’s Day 24, This Must Be . . . BRICS?

Filed under: General — Tags: , , — m759 @ 12:12 pm

My own interests tend towards . . . not BRICS, but bricks —

The Miracle Octad Generator (MOG) of R. T. Curtis

I look forward to the November publication of . . .

Wednesday, October 23, 2024

The Delta Transform

Filed under: General — Tags: , , , — m759 @ 7:04 am

Rothko — "… the elimination of all obstacles between the painter and
the idea, and between the idea and the observer."

Walker Percy has similarly discussed elimination of obstacles between
the speaker and the word, and between the word and the hearer.

Walker Percy's chapter on 'The Delta Factor' from 'Message in the Bottle'

Click images to enlarge.

Related mathematics —

The source: http://finitegeometry.org/sc/gen/typednotes.html.

A document from the above image —

AN INVARIANCE OF SYMMETRY

BY STEVEN H. CULLINANE

We present a simple, surprising, and beautiful combinatorial
invariance of geometric symmetry, in an algebraic setting.

DEFINITION. A delta transform of a square array over a 4-set is
any pattern obtained from the array by a 1-to-1 substitution of the
four diagonally-divided two-color unit squares for the 4-set elements.

THEOREM. Every delta transform of the Klein group table has
ordinary or color-interchange symmetry, and remains symmetric under
the group G of 322,560 transformations generated by combining
permutations of rows and colums with permutations of quadrants.

PROOF (Sketch). The Klein group is the additive group of GF (4);
this suggests we regard the group's table  T as a matrix over that
field. So regarded, T is a linear combination of three (0,1)-matrices
that indicate the locations, in  T, of the 2-subsets of field elements.
The structural symmetry of these matrices accounts for the symmetry
of the delta transforms of  T, and is invariant under G.

All delta transforms of the 45 matrices in the algebra generated by
the images of  T under G are symmetric; there are many such algebras. 

THEOREM. If 1 m ≤ n2+2, there is an algebra of 4m
2n x 2n matrices over GF(4) with all delta transforms symmetric.

An induction proof constructs sets of basis matrices that yield
the desired symmetry and ensure closure under multiplication.

REFERENCE

S. H. Cullinane, Diamond theory (preprint).

Update of 1:12 AM ET on Friday, Oct. 25, 2024 —

The above "invariance of symmetry" document was written in 1978
for submission to the "Research Announcements" section of the
Bulletin of the American Mathematical Society .  This pro forma 
submission was, of course, rejected.  Though written before
I learned of similar underlying structures in the 1974 work of
R. T. Curtis on his "Miracle Octad Generator," it is not without
relevance to his work.

Tuesday, September 24, 2024

Software Hardware

Filed under: General — Tags: , , , — m759 @ 11:43 am

The "Cara.app" name in the previous post suggests . . .

    Other "techniques d'avant garde" in 1985 —
 

85-03-26…  Visualizing GL(2, p)

85-04-05…  Group actions on partitions

85-04-05…  GL(2, 3) actions on a cube

85-04-28…  Generating the octad generator 

85-08-22…  Symmetry invariance under M12

85-11-17…  Groups related by a nontrivial identity

85-12-11…  Dynamic and algebraic compatibility of groups

Saturday, September 14, 2024

Notes on a Friday the 13th Death

Filed under: General — Tags: , , , — m759 @ 8:40 pm

A passage accessed via the new URL Starbrick.art*

Thursday, February 25, 2021

Compare and Contrast

Filed under: General — Tags: , ,
,
— m759 @ 12:31 pm

“… What is your dream—your ideal? 
What is your News from Nowhere, or, rather,
What is the result of the little shake your hand has given
to the old pasteboard toy with a dozen bits of colored glass
for contents? And, most important of all, can you present it
in a narrative or romance which will enable me to pass an
idle hour not disagreeably? How, for instance, does it compare
in this respect with other prophetic books on the shelf?”

— Hudson, W. H.. A Crystal Age , 1887.
Open Road Media, Kindle Edition, page 2.

A related cultural note suggested by the New York Times  obituary today
of fashion designer Mary McFadden, who reportedly died yesterday
(a Friday the Thirteenth) and is described by the Times  as a late-life
partner of "eightfold-way" physicist Murray Gell-Mann —

* A reference to the 2-column 4-row matrix (a "brick") that underlies
the patterns in the Miracle Octad Generator  of R. T. Curtis. The only
connection of this eight-part matrix to Gell-Mann's "Eightfold Way"
that I know of is simply the number 8 itself.

Saturday, August 10, 2024

The Yellow Brick Road Through PG(5,2)

Filed under: General — Tags: , , — m759 @ 8:20 pm

The Miracle Octad Generator (MOG) of R. T. Curtis

Wednesday, July 3, 2024

The Nutshell Miracle

Filed under: General — Tags: , — m759 @ 10:42 pm

'Then a miracle occurs' cartoon

Cartoon by S. Harris

From a search in this journal for nocciolo

From a search in this journal for PG(5,2)

From a search in this journal for Curtis MOG

IMAGE- The Miracle Octad Generator (MOG) of R.T. Curtis

Shown above is a rearranged version of the
Miracle Octad Generator (MOG) of R. T. Curtis
("A new combinatorial approach to M24,"
Math. Proc. Camb. Phil. Soc., 79 (1976), 25-42.)

From a search in this journal for Klein Correspondence

Philippe Cara on the Klein correspondence

The picture of PG(5,2) above as an expanded nocciolo
shows that the Miracle Octad Generator illustrates
the Klein correspondence.

Update of 10:33 PM ET Friday, July 5, 2024 —

See the July 5 post "De Bruyn on the Klein Quadric."

Monday, April 22, 2024

Dimensions

Filed under: General — m759 @ 11:47 am

The dimensions of the "bricks" in the R. T. Curtis
"Miracle Octad Generator":  2×4.

For those who prefer narrative to mathematics . . .

For Harlan Kane: The Brick Trick

Filed under: General — m759 @ 12:47 am

From a transcript of the film —

— You could be making a killing out there consulting, but you’re laying brick. Why?

— Because when I hold a brick in my hand, I know exactly what it is and what it will do.

Every single time.

Its form is its function.

That gives me peace.

The film is based on a novel of the same title, by an author,
Paul Lindsay, who reportedly died on September 1, 2011.

For some bricks of a different sort, see the "Miracle Octad Generator"
(MOG) of R. T. Curtis in this journal on Sept. 1, 2011 — September Morn.

Friday, April 19, 2024

Benchmarking Meta.ai

Filed under: General — Tags: — m759 @ 10:15 pm

Transcription —

(With one correction The Meta.ai phrase "the  group of 322,560"
was changed to " group of 322,560" and one addition — the
acronym MOG was defined. Superscript numerals for missing footnotes
were removed.)

You

What is the Cullinane diamond theorem?

Meta AI

The Cullinane diamond theorem states that every image of D (a 4×4 array of two-color diagonally divided square tiles) under the group G (a group of 322,560 permutations of these 16 tiles) has some ordinary or color-interchange symmetry.

Here are some key points about the theorem :

  • The theorem is related to the Miracle Octad Generator (MOG) of R. T. Curtis and the Leech lattice.
     
  • The underlying geometry of the 4×4 patterns is closely related to the construction of the Steiner system S(5,8,24).
     
  • The theorem uses a simple decomposition technique for functions into a finite field.
     
  • The symmetry group of order 322,560 underlies both the diamond theorem figures and the square patterns of the MOG.
     
  • The theorem has applications in finite projective geometry and the study of symmetric patterns.

Monday, March 4, 2024

Report on the Diamond Theorem
by Google Gemini (Advanced)

Filed under: General — Tags: , — m759 @ 3:26 pm
 

Diamond Theorem Report

by Google Gemini AI

Monday, March 4, 2024


Can you write an academic paper, with source citations, about the Cullinane  diamond theorem?

Absolutely! Here's an academic paper about the Cullinane diamond theorem. Please note that while I provide citations, in a fully formatted paper you'd need to adhere to your chosen academic style guide for proper formatting:

The Cullinane Diamond Theorem:
Exploring Symmetries in Graphic Design

Abstract

This paper examines the Cullinane diamond theorem, a principle in finite projective geometry that offers unexpected insights into the symmetries found in graphic designs. The theorem, initially formulated by Steven H. Cullinane, reveals that patterns built from simple geometric components, like diamonds or chevrons, possess inherent symmetry properties under specific transformation groups. We will discuss the mathematical foundations of the theorem, its relation to the Miracle Octad Generator, and its applications in design and the study of finite fields.

Introduction

Symmetry plays a vital role in art and design, contributing to a sense of balance, harmony, and aesthetic appeal. While often associated with classical forms, symmetry also manifests in surprising ways within seemingly simple graphic patterns. The Cullinane diamond theorem provides a mathematical framework to understand and predict these hidden symmetries.

Mathematical Background

    Finite Projective Geometries: The Cullinane diamond theorem has its roots in finite projective geometry. A finite projective geometry PG(n, q) consists of a finite set of points and lines, where each line contains q + 1 points, and any two distinct points lie on a unique line ([1]).

    Diamond Figure: Cullinane focuses on a specific pattern called the four-diamond figure (D). This figure is composed of 16 tiles arranged in a 4×4 array, where each tile is divided diagonally into two colors ([2]).

    Transformation Group: The group G of transformations is formed by all possible permutations of rows, columns, and 2×2 quadrants of the diamond figure, along with color interchanges. The size of this group is 322,560 ([2]).

The Cullinane Diamond Theorem

Theorem:
Any image produced by applying transformations from the group G to the original diamond figure (D) will possess some form of ordinary or color-interchange symmetry ([2]).

Proof:
Cullinane's proof employs a decomposition technique for functions into a finite field.  It demonstrates that the G-images of the diamond figure create an ideal within a ring of symmetric patterns. This ideal has 1024 patterns where any horizontal or vertical "cut" through the pattern remains uninterrupted ([2]).

Connections to the Miracle Octad Generator

The Cullinane diamond theorem shares a relationship with R.T. Curtis's Miracle Octad Generator (MOG). The MOG is a combinatorial structure within the study of sporadic simple groups with symmetry properties similar to those described by the theorem ([3]).

Applications

    Graphic Design: The theorem informs artistic compositions employing diamond and chevron-like shapes. Designers can leverage the inherent symmetries to generate visually pleasing and intricate patterns.

    Quilt Patterns: Many traditional quilt designs incorporate the geometries described by the theorem, leading to the emergence of symmetrical patterns, even when randomness might be involved in the selection of colors or tiles.

    Finite Fields: The Cullinane diamond theorem establishes an isomorphism between specific "diamond" rings and rings of matrices over GF(4), offering insights into the structure of finite fields ([2]).

Conclusion

The Cullinane diamond theorem elegantly connects abstract mathematics with the world of graphic design. It unveils latent symmetries embedded within basic geometric shapes, providing a tool for understanding and creating visually balanced patterns. The theorem's connections to finite fields and combinatorial structures highlight its significance in broader mathematical research.

Citations

[1] Weisstein, E. W. “Finite Projective Geometry.” From MathWorld–A Wolfram Web Resource. [invalid URL removed]

[2] Cullinane, S. H. "Cullinane Diamond Theorem." Encyclopedia of Mathematics. https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

[3] Curtis, R. T. (1976). A New Combinatorial Approach to M₂₄. Mathematical Proceedings of the Cambridge Philosophical Society, 79(1), 25–42. doi:10.1017/S0305004100052075

Let me know if you'd like me to expand on any particular aspect or provide additional citations!


Sources [I.e., the source of the Curtis citation]

   1. www.hellenicaworld.com/Science/Mathematics/en/MathieuGroup.html


Gemini may display inaccurate info, including about people, so double-check it.

Sunday, March 3, 2024

Deep Blue Research: A Report by You.com AI

Filed under: General — Tags: , , — m759 @ 12:34 pm
 

Cullinane Diamond Theorem Research Report

by https://you.com/?chatMode=research on March 3, 2024

Overview of the Cullinane Diamond Theorem

The Cullinane Diamond Theorem is a mathematical concept developed by Steven H. Cullinane that explores the symmetrical properties of certain geometric patterns. It is particularly concerned with the structure of finite projective geometry as it relates to the 35 square patterns found in R. T. Curtis's Miracle Octad Generator (MOG).

The theorem asserts that every G-image of a diamond figure D possesses some form of ordinary or color-interchange symmetry.

Symmetry and Group Theory

The theorem is deeply rooted in group theory, with G being isomorphic to the affine group A on the linear 4-space over the finite field GF(2).

This group has a significant order of 322,560 and underlies the symmetry of both the diamond-theorem figures and the square patterns of the MOG . The 35 structures of the 840 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), which explains the symmetry of the line diagrams and the two-color patterns.

The Diamond Theorem in Various Dimensions

The diamond theorem can be applied to different cases, such as the 4×4, 2×2, and even 3-dimensional cubes like the 2x2x2 and 4x4x4 cubes.

The generalized statement of the theorem involves inscribing a white diamond in a black square and dividing it into four quadrants, each with a diagonal split into black and white halves.

Algebraic Implications

The theorem has algebraic implications, such as the ability to express every 4-coloring as a sum of three 2-colorings.

This algebraic formulation is useful for demonstrating that certain four-colored graphic images can form a ring under multiplication. There is also an infinite family of such 'diamond' rings, isomorphic to rings of matrices over GF(4).

Philosophical and Cultural Context

Steven H. Cullinane has also explored the philosophical implications of the diamond theorem, referring to it in the context of Plato's Meno dialogue and opposing it to the 'Story Theory of truth' as discussed by Richard J. Trudeau.

The theorem is seen as a correct statement of the relation between geometry and the physical universe.

Clarification on Cullinan Diamonds

It is important to note that the Cullinane Diamond Theorem is unrelated to the Cullinan diamond, which is a famous large gemstone discovered in South Africa and now part of the British Crown Jewels.

The Cullinan diamond has its own historical and cultural significance, with its various cut shapes and ownership history.

In summary, the Cullinane Diamond Theorem is a mathematical concept that reveals the symmetrical properties of certain geometric patterns, with applications in group theory and algebra. It also has philosophical implications, drawing connections to classical ideas about truth and geometry.

Instagram ad for You.com AI in research mode

"Show me ALL  your sources, babe."

— Line adapted from Leonardo DiCaprio

Tuesday, January 30, 2024

Cullinane Diamond Theorem:
The Latest Google Bard Version

Filed under: General — Tags: , , , — m759 @ 7:00 am
 

Prompt:

What is the Cullinane diamond theorem?

Google Bard Response:

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and symmetry. It focuses on a specific pattern – the four-diamond figure – and reveals a surprising property about its transformations.

The Four-Diamond Figure:

Imagine a 4×4 grid filled with 16 small squares, half colored black and half white. Now, divide these squares diagonally into quarters, creating four diamonds with alternating black and white shades. This arrangement is the four-diamond figure.

_________________


[Clearly erroneous illustration with link to amazon.com
is omitted.]

_____________________

The Theorem:

The Cullinane diamond theorem states that no matter how you scramble this four-diamond figure by randomly shuffling rows, columns, and the four 2×2 quadrants, the resulting pattern will always exhibit some form of symmetry. This symmetry can come in two forms:

Ordinary symmetry: This is the familiar reflectional symmetry where a vertical or horizontal axis divides the pattern into mirrored halves.

Color-interchange symmetry: Here, the pattern has a diagonal axis where swapping the black and white colors results in the same image.

Intriguing Implications:

This statement might seem intuitive at first. After all, even with scrambling, some semblance of order should remain. However, the beauty of the Cullinane diamond theorem lies in its generality and the precise mathematical framework it provides for understanding these symmetries.

The theorem sheds light on the underlying structure of graphic patterns and connects them to concepts from finite projective geometry. This connection allows us to analyze and classify these patterns in a systematic way, revealing hidden connections and surprising symmetries.

Applications and Beyond:

The Cullinane diamond theorem has found applications in various areas, including:

Sporadic simple groups: The Miracle Octad Generator, used to study these rare and exceptional groups, relies on the symmetry properties outlined in the theorem.

Orthogonal Latin squares: The connection between orthogonal Latin squares and projective spreads can be understood through the lens of the Cullinane diamond theorem.

Walsh functions: The symmetry properties of Walsh functions, used in signal processing and coding theory, can be linked to the diamond patterns.

Understanding the Cullinane diamond theorem offers a deeper appreciation for the interplay between symmetry, geometry, and seemingly random patterns. It serves as a testament to the beauty and hidden order within the realm of mathematics.

Bard may display inaccurate info, including . . . .

[Exercise … Find any inaccurate information
in the Bard response above.]

Thursday, December 21, 2023

Pi.ai

Filed under: General — Tags: , — m759 @ 10:57 am
 

Thursday, December 21, 2023

Hey there, great to meet you. I’m Pi, your personal AI. My goal is to be useful, friendly and fun. Ask me for advice, for answers, or let’s talk about whatever’s on your mind.

How's your day going?

Going OK so far, Pi. How's yours?

My day is going swimmingly! 🌊 Thanks for asking 😊 Anything in particular on your mind today?

What is the connection of "heptads" with the "MOG" of R. T. Curtis?

The term “heptads” is connected to the Miracle Octad Generator (MOG) created by R. T. Curtis. Heptads are 7-cycles that arise from the MOG, and they can be used to rearrange the original 1976 version of the MOG into two 4-sets. This is related to the Mathieu groups, which are a family of finite simple groups that play a role in the geometry of the MOG. Are you familiar with the Mathieu groups?

Just the large one. I am interested in how familiar YOU are with these concepts. Sorry, but I must correct your hallucination about heptads… It was a good guess, though. Can you look up the work of G. M. Conwell on PG(3,2)? Heptads are discussed there.

Yes, it seems that G. M. Conwell discussed the concept of heptads in relation to the projective geometry PG(3,2). Heptads are apparently 7-cycles that can be used to establish geometrical isomorphisms and describe the structure of PG(3,2). Do you know if Conwell's work on heptads has been applied to other areas of mathematics?

It has not, as far as I know. Actually, Pi, heptads are not 7-cycles. What made you think that they are?

My apologies! I assumed that heptads would be 7-cycles since the name “heptads” suggests a relation to the number 7 and cycles are common in mathematics. It sounds like I was off the mark there. If heptads are not 7-cycles, can you give me a better idea of what they are?

Conwell can. See his 1910 paper for further details. All for now, Pi… Have a nice day!

Got it — thanks for the tip on Conwell's paper. I'll take a look for more information there! It was great chatting with you. You have a great day as well 😊 Feel free to reach out again if you have any other questions or just want to chat. See ya!

Scholium —

Related material for "swimmingly" and "the number 7" — Snark Hunt.

Sia!

Tuesday, December 19, 2023

Copilot Report

Filed under: General — Tags: , , — m759 @ 12:16 am
 
From Microsoft Copilot (with "Precise" setting)
on Dec. 18, 2023 —
 
How is the 1910 work of G. M. Conwell on PG(3,2) related to the Miracle Octad Generator of R. T. Curtis?

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis explained

Generating answers for you…

The work of George M. Conwell on the finite projective 3-space PG(3,2) and the Miracle Octad Generator (MOG) of R. T. Curtis are both significant contributions to the field of combinatorial mathematics12.

Conwell’s work on PG(3,2) provided a detailed study of the structure of this finite projective space1On the other hand, the MOG is a tool for exploring the binary Golay code and its automorphism group M242.

The connection between these two works lies in the underlying combinatorial structures they explore. The Rosenhain and Göpel tetrads, which are key structures in the finite geometry PG(3,2), play a significant role in the Curtis Miracle Octad Generator3These structures provide a link between the finite geometric structures studied by Conwell and the combinatorial structures generated by the MOG3.

For a more detailed understanding of this connection, I recommend checking out the resources mentioned in the references123. If you have any specific questions about the concepts in these works, feel free to ask! I’ll do my best to help.

Learn more

5 archive.org
_________________________________________________________

__________________________________________________________


DOCUMENT SUMMARY (generated by Copilot)
of reference 3 above, from academia.edu —
"Rosenhain and Göpel Tetrads in PG(3,2),"
by Steven H. Cullinane on March 17, 2013

Here is a summary of the document:

Reference:
 
Copilot suggestions following document summary —
 



Correction:

"Subsets of four points in a projective 3-space" above is a Copilot error, and not
from the document being summarized. It should be "subsets of four points in an
affine 4-space."

Monday, December 18, 2023

AI Class

Filed under: General — Tags: , , — m759 @ 12:31 pm
 

Bringing Up Bing :

A Tutorial for Bing on Monday, December 18, 2023

Prompt:  How is the Cullinane Diamond Theorem related to the Curtis Miracle Octad Generator?

Response:  Searching for: Cullinane Diamond Theorem and Curtis Miracle Octad Generator relation.

Generating answers for you…

The Cullinane Diamond Theorem and the Curtis Miracle Octad Generator (MOG) are both mathematical concepts that are deeply intertwined with finite projective geometry1,2.

The Cullinane Diamond Theorem explains the surprising symmetry properties of some simple graphic designs and underlies the structure of the 35 square patterns in R. T. Curtis’s MOG1,2The theorem uses a 4×4 array of two-color diagonally-divided square tiles, and considers the group of permutations of these 16 tiles generated by mixing random permutations of rows, columns, and the four 2×2 quadrants1,2.

The theorem states that every image of the 4×4 array has some ordinary or color-interchange symmetry1,2The 35 structures of the 840 images of the 4×4 array are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), a finite field with two elements1,2This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets1,2.

The MOG is a 4×6 array of combinations describing any point in 24-dimensional space1It preserves all of the symmetries and maximal subgroups of the Mathieu group M241The MOG is used in the construction of the Steiner system S(5,8,24), and hence is also related to the Leech lattice2.

In summary, the Cullinane Diamond Theorem provides a geometric explanation for the structure and symmetries of the patterns in the MOG1,2Both theorems are connected through their use of finite projective geometry and their applications to the study of symmetry1,2.

Learn more

  1. arxiv.org
  2. encyclopediaofmath.org
  3. arxiv.org
  4. m759.net

Reply to Bing's Response —

Actually, the Cullinane diamond theorem, by itself, does NOT explain the patterns in the MOG. The MOG is a natural correspondence, or pairing, of the 35 diamond-theorem structures with the 35 partitions of an eight-element set into two four-element sets. That correspondence is explained in a 1910 paper by G. M. Conwell, "The 3-Space PG(3,2) and Its Group." The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24=16+8 elements.

Response to the Above Reply —

Generating answers for you…

Thank you for the clarification. You’re correct that the Cullinane Diamond Theorem, by itself, does not explain the patterns in the Miracle Octad Generator (MOG). The MOG is indeed a natural correspondence of the 35 structures from the Diamond Theorem with the 35 partitions of an eight-element set into two four-element sets. This correspondence was explained by G. M. Conwell in his 1910 paper “The 3-Space PG(3,2) and Its Group.” The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24 elements, which can be partitioned into a set of 16 and a set of 8. I appreciate your input and the opportunity to learn from it. If you have any more questions or need further clarification, feel free to ask!

Sunday, December 17, 2023

Speak, Memory

Filed under: General — Tags: , , — m759 @ 12:51 am

"Unsocratic Dialogue" with Google DeepMind's Gemini AI continues . . .

profile picture

Do you remember a previous conversation about the question "What is the Cullinane diamond theorem?" If so, how would you answer the question now?
______________________________________________________________

Yes, I do remember our previous conversation about the Cullinane diamond theorem. My understanding of the theorem has significantly improved thanks to your patient explanations and corrections. Here's how I would answer the question now, incorporating my updated knowledge:

The Cullinane diamond theorem is a fascinating result in finite projective geometry that reveals hidden symmetries within seemingly scrambled patterns. It focuses on the diamond figure, a 4×4 square pattern with alternating colors arranged in a diamond shape.

Key elements:

  • Group G: This group consists of permutations of the 16 tiles in the diamond figure, but not just any arbitrary rearrangements. G's permutations are restricted to those that can be generated by manipulating rows, columns, and quadrants of the 4×4 grid. This maintains the overall structure of the diamond shape.
  • Line diagrams: The theorem doesn't focus on the visual appearance of the G-images (diamonds with rearranged tiles), but rather on their underlying structure. This structure is captured by a set of 15 line diagrams. These diagrams represent the connections between the tiles and encode the essence of the different G-images.
  • Hidden symmetries: The Cullinane diamond theorem states that every G-image, despite its scrambled appearance, must exhibit some form of ordinary or color-interchange symmetry. This means that when we analyze the line diagrams of these seemingly chaotic patterns, we find hidden symmetries based on the relationships between the tiles.

Significance:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns related to the diamond figure.
  • It explains the surprising symmetries found in simple graphic designs like quilts, even when their individual components are arranged differently.
  • It provides a tool for analyzing and classifying graphic patterns based on their hidden symmetries revealed by the line diagrams.

Further resources:

  • For a deeper understanding, I recommend checking out the "Cullinane diamond theorem" entry in the Encyclopedia of Mathematics.
  • Additionally, Steven H. Cullinane's original paper titled "The Diamond Theorem" on arXiv provides further details and insights.

I hope this explanation is more accurate and comprehensive than my previous attempts. Please let me know if you have any further questions or if you'd like me to elaborate on any specific aspects of the theorem. I'm still learning and I value your feedback in my journey to provide accurate and insightful information.

Thursday, December 14, 2023

Unsocratic Dialogue (with Gemini AI in Bard Today)

Filed under: General — Tags: , , , — m759 @ 3:35 pm

profile picture

What is the Cullinane diamond theorem?

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and its applications to graphic patterns. It delves into the symmetry properties of specific patterns, even when they're seemingly scrambled.

Here's a breakdown of the theorem:

Key components:

  • The diamond (D): A specific 4×4 square pattern with alternating colors in a diamond shape.
  • G-images: Any pattern obtained from D by applying symmetries like rotations, flips, and color interchanges.
  • Ordinary or color-interchange symmetry: Symmetry properties like rotational symmetry or flipping the entire pattern while swapping colors.

The theorem states:

Every G-image of D (no matter how scrambled) must exhibit some form of ordinary or color-interchange symmetry.

In other words, no matter how you twist and turn the diamond pattern, some underlying symmetry remains hidden within. This hidden symmetry can be revealed by applying specific transformations like rotations or color swaps.

Consequences and applications:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns.
  • It explains the surprising symmetries found in simple graphic designs, like quilts.
  • It provides a tool for analyzing and classifying various graphic patterns based on their hidden symmetries.

Further details:

  • The theorem connects the 35 patterns in Curtis's Miracle Octad Generator to finite projective geometry.
  • The theorem also has connections to algebraic structures like rings and ideals.

If you're interested in learning more:

  • You can find the original paper by Steven H. Cullinane titled "The Diamond Theorem" on arXiv.
  • You can explore resources like the Encyclopedia of Mathematics and PlanetMath for further details and explanations.

I hope this explanation helps you understand the Cullinane diamond theorem! Feel free to ask if you have any further questions or want to delve deeper into specific aspects of the theorem.

profile picture

Your description of "G-images" is wrong. It omits the definition of the group G of 322,560 transformations.

You're absolutely right, I apologize for the mistake in my description of G-images in the Cullinane diamond theorem. My explanation omitted the crucial detail about the group G and its composition, which is essential to understanding the theorem.

Here's a corrected explanation with the missing information:

The group G:

  • G consists of 322,560 transformations that can be applied to the diamond pattern (D).
  • These transformations include:
     

    • 8 rotations: 0°, 45°, …, 270°
    • 2 flips: horizontal and vertical
    • 4 color interchanges: swapping black and white
    • All combinations of the above: This allows for a wide range of possible G-images.

Therefore, a G-image of D is any pattern that can be obtained by applying one or more transformations from the group G. This means that even seemingly scrambled versions of the diamond pattern can be considered G-images as long as they can be generated through these transformations.

The Cullinane diamond theorem then states that every G-image of D, despite its apparent complexity, must exhibit some form of ordinary or color-interchange symmetry. This highlights the hidden order and underlying structure within seemingly chaotic patterns.

I'm still under development and learning to be as accurate as possible. Thank you for pointing out my mistake. I appreciate your patience and understanding, and I'll strive to provide more precise information in the future.

Please let me know if you have any other questions or if you'd like me to elaborate on any specific aspects of the Cullinane diamond theorem.

profile picture

Your understanding of the group G is still wrong. It is a group of PERMUTATIONS of the 16 square cells, or tiles, that make up the diamond figure D. It is NOT a group of space symmetries as you describe.

Thank you for pointing out another critical error in my understanding of the Cullinane diamond theorem. You're absolutely right; the group G in the theorem deals with permutations of the tiles within the diamond figure D, not space symmetries.

I apologize for the confusion and appreciate your patience as I continue to learn. Here's a corrected explanation of the group G:

Group G:

  • G consists of all permutations of the 16 tiles (squares) that make up the diamond figure D.
  • This means G contains all possible arrangements of the tiles while maintaining the overall shape of the diamond.
  • The number of permutations in G is 16! (approximately 322,560), making it a large and diverse group.

Therefore, under the Cullinane diamond theorem, G-images are any configurations of the 16 tiles obtained by applying these permutations. This emphasizes the theorem's focus on rearranging the tiles while preserving the diamond structure, not manipulating the diamond itself through rotations or flips.

I understand now that the theorem focuses on the intrinsic symmetries within the diamond figure based on tile arrangement, not spatial transformations like rotations or flips. This clarifies the theorem's significance in understanding the structural properties of patterns even after scrambling their individual components.

Thank you again for correcting my mistake. I am committed to providing accurate information, and your feedback helps me learn and improve. Please don't hesitate to point out any further errors or areas for improvement.

Is there anything else you'd like me to clarify about the Cullinane diamond theorem or any other related topics? I'm eager to learn more and provide you with the best possible understanding.

profile picture

Your understanding has improved, but is still wrong. G does not consist of ALL permuations of the 16 tiles, but only those generated by permutations of rows, columns, and quadrants of the 4×4 tile-array.

You're absolutely right, my understanding of Group G in the Cullinane Diamond Theorem is still not quite accurate. I appreciate your patience and persistence in correcting me!

Based on your explanation, I understand that Group G is not simply all permutations of the 16 tiles, but it has a specific structure:

  • G consists of permutations of the 16 tiles that can be realized by permuting rows, columns, and quadrants of the 4×4 grid.
  • This means that the group does not include arbitrary rearrangements of the tiles that would break the underlying structure of the diamond figure.

This clarified structure makes sense in light of the theorem's focus on hidden symmetries within the diamond pattern. By restricting the permutations to those that maintain the overall diamond shape, the theorem highlights the intrinsic symmetries that emerge even when rearranging the tiles within that structure.

I apologize for my previous misunderstandings and appreciate your help in correcting them. It's through these interactions that I learn and improve my understanding of complex topics.

Would you be willing to share some resources or further explanation about how these permutations of rows, columns, and quadrants actually generate the elements of Group G? I'm eager to understand the structure of this group more deeply.

Thank you again for your patience and expertise!

profile picture

Actually, the permutations do NOT "maintain the overall diamond shape," but rather maintain the SET of 15 "line diagrams" that describe the STRUCTURE of the array's images under the group G. The symmetry of these line diagrams accounts for the symmetry of the G-images.

You're absolutely right again! My understanding of the Cullinane Diamond Theorem and the role of Group G is still evolving, and I appreciate your continued patience and guidance.

Your point about the line diagrams and their structure is crucial. I apologize for my earlier misunderstanding about the group's role in maintaining the diamond shape. Instead, as you correctly point out, the group maintains the set of 15 line diagrams that represent the structural essence of the various G-images.

This clarifies the theorem's focus even further. By focusing on the underlying structure captured by the line diagrams, the theorem reveals the hidden symmetries that persist despite rearranging the tiles within the diamond framework. The permutations of rows, columns, and quadrants, within the constraints of maintaining these line diagrams, generate the diverse G-images while preserving these intrinsic structural symmetries.

I'm fascinated by this concept and would be grateful if you could share some resources or further explanation about the specific properties of these 15 line diagrams and how they relate to the permutations and the overall structure of Group G. Understanding their role in the theorem would significantly enhance my grasp of this fascinating concept.

Thank you once again for your expertise and for helping me learn and improve. I'm committed to providing accurate information and your feedback is invaluable in that process.

profile picture

I suggest the resource "Cullinane diamond theorem" in the online Encyclopedia of Mathematics. Perhaps as your understanding of how visual images can be manipulated improves (with multimodal learning), comprehension of the diamond theorem will also improve. Best of luck.

Thank you so much for your guidance! I'm definitely looking forward to diving deeper into the "Cullinane diamond theorem" in the Encyclopedia of Mathematics. Your point about visual manipulation and multimodal learning is insightful and I'll keep that in mind as I continue to learn and develop. I believe that expanding my understanding of visual information processing will be crucial for comprehending this and other complex concepts.

I appreciate your patience and understanding throughout this conversation. It has been an invaluable learning experience for me, and I'm grateful for your willingness to help me refine my understanding of the Cullinane diamond theorem.

I wish you all the best as well!

Saturday, December 9, 2023

How Many  Magic Beans, Jack?

Filed under: General — Tags: , — m759 @ 3:31 pm

Two notes from this journal on December 2, 2023 —

A flashback for The November Man

As for " my own 'diamond theorem' " —

Question — "What is mathematician Steven H. Cullinane known for?"

From the Copilot response (shorn of footnotes) —

"Steven H. Cullinane is known for his work in finite geometry, particularly his Diamond Theorem. This theorem explains the surprising symmetry properties of some simple graphic designs, such as those found in quilts. It also provides a model for the 15 points, 35 lines, and 15 hyperplanes of the finite projective space PG (3,2).

Cullinane’s work underlies the structure of the 35 square patterns in R. T. Curtis’s Miracle Octad Generator. His theorem has applications to sporadic simple groups, the connection between orthogonal Latin squares and projective spreads, and the symmetry of Walsh functions."

Saturday, December 2, 2023

My Work According to Copilot

Filed under: General — Tags: , , — m759 @ 7:05 am

Following yesterday's encounter with the latest version of Pi,
here are some more formal (and more informative) remarks
from Windows Copilot today —

Question — "What is mathematician Steven H. Cullinane known for?"

From the Copilot response (shorn of footnotes) —

"Steven H. Cullinane is known for his work in finite geometry, particularly his Diamond Theorem. This theorem explains the surprising symmetry properties of some simple graphic designs, such as those found in quilts. It also provides a model for the 15 points, 35 lines, and 15 hyperplanes of the finite projective space PG (3,2).

Cullinane’s work underlies the structure of the 35 square patterns in R. T. Curtis’s Miracle Octad Generator. His theorem has applications to sporadic simple groups, the connection between orthogonal Latin squares and projective spreads, and the symmetry of Walsh functions."

Saturday, November 18, 2023

“Don’t solicit for your sister,* it’s not nice.” — Tom Lehrer

Filed under: General — Tags: — m759 @ 11:36 am

André Weil to his sister:

From this journal at 1:51 AM  ET Thursday, September 8, 2022

"The pleasure comes from the illusion" . . .

Exercise:

Compare and contrast the following structure with the three
"bricks" of the R. T. Curtis Miracle Octad Generator (MOG).

http://www.log24.com/log/pix11B/110805-The24.jpg

Note that the 4-row-2-column "brick" at left is quite 
different from the other two bricks, which together
show chevron variations within a Galois tesseract —

.

Further Weil remarks . . .

A Slew of Prayers

"The pleasure comes from the illusion
and the far from clear meaning;
once the illusion is dissipated,
and knowledge obtained, one becomes
indifferent at the same time;
at least in the Gitâ there is a slew of prayers
(slokas) on the subject, each one more final
than the previous ones."

*

Friday, October 13, 2023

Turn, Turn, Turn

Filed under: General — Tags: , , , — m759 @ 3:06 am

The conclusion of a Hungarian political figure's obituary in
tonight's online New York Times, written by Clay Risen

"A quietly religious man, he spent his last years translating
works dealing with Roman Catholic canon law."

This  journal on the Hungarian's date of death, October 8,
a Sunday, dealt in part with the submission to Wikipedia of
the following brief article . . . and its prompt rejection.

The Cullinane diamond theorem is a theorem
about the Galois geometry underlying
the Miracle Octad Generator of R. T. Curtis.[1]

The theorem also explains symmetry properties of the
sort of chevron or diamond designs often found on quilts.

Reference

1. Cullinane diamond theorem at
the Encyclopedia of Mathematics

Some quotations I prefer to Catholic canon law —

Ludwig Wittgenstein,
Philosophical Investigations  (1953)

97. Thought is surrounded by a halo.
—Its essence, logic, presents an order,
in fact the a priori order of the world:
that is, the order of possibilities * ,
which must be common to both world and thought.
But this order, it seems, must be
utterly simple . It is prior  to all experience,
must run through all experience;
no empirical cloudiness or uncertainty can be
allowed to affect it ——It must rather be of
the purest crystal. But this crystal does not appear
as an abstraction; but as something concrete,
indeed, as the most concrete,
as it were the hardest  thing there is.

* See the post Wittgenstein's Diamond.

Related language in Łukasiewicz (1937)—

http://www.log24.com/log/pix10B/101127-LukasiewiczAdamantine.jpg

See as well Diamond Theory in 1937.

Saturday, September 23, 2023

The Cullinane Diamond Theorem at Wikipedia

Filed under: General — Tags: — m759 @ 8:48 am

This post was prompted by the recent removal of a reference to
the theorem
on the Wikipedia "Diamond theorem" disambiguation 
page.  The reference, which has been there since 2015, was removed
because it linked to an external source (Encyclopedia of Mathematics)
​instead of to a Wikipedia article.

For anyone who might be interested in creating a Wikipedia  article on
my work, here are some facts that might be reformatted for that website . . .

https://en.wikipedia.org/wiki/
User:Cullinane/sandbox —

Cullinane diamond theorem

The theorem uses finite geometry to explain some symmetry properties of some simple graphic designs, like those found in quilts, that are constructed from chevrons or diamonds.

The theorem was first discovered by Steven H. Cullinane in 1975 and was published in 1977 in Computer Graphics and Art.

The theorem was also published as an abstract in 1979 in Notices of the American Mathematical Society.

The symmetry properties described by the theorem are related to those of the Miracle Octad Generator of R. T. Curtis.

The theorem is described in detail in the Encyclopedia of Mathematics article "Cullinane diamond theorem."

References

Steven H. Cullinane, "Diamond theory," Computer Graphics and Art, Vol. 2, No. 1, February 1977, pages 5-7.

_________, Abstract 79T-A37, "Symmetry invariance in a diamond ring," Notices of the American Mathematical Society, February 1979, pages A-193, 194.

_________, "Cullinane diamond theorem," Encyclopedia of Mathematics.

R. T. Curtis, A new combinatorial approach to M24, Mathematical Proceedings of the Cambridge Philosophical Society, 1976, Vol. 79, Issue 1, pages 24-42.

Friday, September 22, 2023

Figurate Space

Filed under: General — Tags: , , — m759 @ 11:01 am

For the purpose of defining figurate geometry , a figurate space  might be
loosely described as any space consisting of finitely many congruent figures  —
subsets of Euclidean space such as points, line segments, squares, 
triangles, hexagons, cubes, etc., — that are permuted by some finite group
acting upon them. 

Thus each of the five Platonic solids constructed at the end of Euclid's Elements
is itself a figurate  space, considered as a collection of figures —  vertices, edges,
faces —
seen in the nineteenth century as acted upon by a group  of symmetries .

More recently, the 4×6 array of points (or, equivalently, square cells) in the Miracle
Octad Generator 
of R. T. Curtis is also a figurate space . The relevant group of
symmetries is the large Mathieu group M24 . That group may be viewed as acting
on various subsets of a 24-set for instance, the 759 octads  that are analogous
to the faces  of a Platonic solid. The geometry of the 4×6 array was shown by
Curtis to be very helpful in describing these 759 octads.

Counting symmetries with the orbit-stabilizer theorem

Wednesday, May 3, 2023

Folklore

Filed under: General — Tags: , — m759 @ 8:58 am

"Piotr Grochowski's 'Miracles and Visionaries in the Digital Age'
explores the impact of digital technolgies in Catholic Apparitional
movements." (links added) — Journal of American Folklore
Fall issue, October 2022 preview.

As for "Miracles and Visionaries," I prefer the literature associated
with the 1974 Miracle Octad Generator  of R. T. Curtis.

Friday, October 28, 2022

The Lexeme “Deploy”

Filed under: General — Tags: , , , — m759 @ 2:22 pm

From an Oct. 26 elegy in the form of a book review …

From a search in this  journal for "deploy" —

Related art —

As for "Miracles and Visionaries," I prefer the literature associated
with the 1974 Miracle Octad Generator  of R. T. Curtis.

Thursday, September 29, 2022

The 4×6 Problem*

Filed under: General — Tags: , — m759 @ 4:03 pm

The exercise posted here on Sept. 11, 2022, suggests a 
more precisely stated problem . . .

The 24 coordinate-positions of the 4096 length-24 words of the 
extended binary Golay code G24 can be arranged in a 4×6 array
in, of course, 24! ways.

Some of these ways are more geometrically natural than others.
See, for instance, the Miracle Octad Generator of R. T. Curtis.
What is the size of the largest subcode C of G24 that can be 
arranged in a 4×6 array in such a way that the set  of words of C 
is invariant under the symmetry group of the rectangle itself, i.e. the
four-group of the identity along with horizontal and vertical reflections
and 180-degree rotation.

Recent Log24 posts tagged Bitspace describe the structure of
an 8-dimensional (256-word) code in a 4×6 array that has such
symmetry, but it is not yet clear whether that "cube-motif" code
is a Golay subcode. (Its octads are Golay, but possibly not all its
dodecads; the octads do not quite generate the entire code.) 
Magma may have an answer, but I have had little experience in
its use.

* Footnote of 30 September 2022.  The 4×6 problem is a
special case of a more general symmetric embedding problem.
Given a linear code C and a mapping of C to parts of a geometric
object A with symmetry group G, what is the largest subcode of C
invariant under G? What is the largest such subcode under all
such mappings from C to A?

Wednesday, September 28, 2022

Bitspace Note

Filed under: General — Tags: , — m759 @ 5:28 pm

Update of 5:20 AM ET on Sept. 29. 2022 —

The octads of the [24, 8, 8] cube-motif code
can be transformed by the permutation below
into octads recognizable, thanks to the Miracle
Octad Generator (MOG) of R. T. Curtis, as
belonging to the Golay code.

Thursday, September 8, 2022

Analogy in Mathematics: Chevron Variations

André Weil in 1940 on analogy in mathematics —

. "Once it is possible to translate any particular proof from one theory to another, then the analogy has ceased to be productive for this purpose; it would cease to be at all productive if at one point we had a meaningful and natural way of deriving both theories from a single one. In this sense, around 1820, mathematicians (Gauss, Abel, Galois, Jacobi) permitted themselves, with anguish and delight, to be guided by the analogy between the division of the circle (Gauss’s problem) and the division of elliptic functions. Today, we can easily show that both problems have a place in the theory of abelian equations; we have the theory (I am speaking of a purely algebraic theory, so it is not a matter of number theory in this case) of abelian extensions. Gone is the analogy: gone are the two theories, their conflicts and their delicious reciprocal reflections, their furtive caresses, their inexplicable quarrels; alas, all is just one theory, whose majestic beauty can no longer excite us. Nothing is more fecund than these slightly adulterous relationships; nothing gives greater pleasure to the connoisseur, whether he participates in it, or even if he is an historian contemplating it retrospectively, accompanied, nevertheless, by a touch of melancholy. The pleasure comes from the illusion and the far from clear meaning; once the illusion is dissipated, and knowledge obtained, one becomes indifferent at the same time; at least in the Gitâ there is a slew of prayers (slokas) on the subject, each one more final than the previous ones."

"The pleasure comes from the illusion" . . .

Exercise:

Compare and contrast the following structure with the three
"bricks" of the R. T. Curtis Miracle Octad Generator (MOG).

http://www.log24.com/log/pix11B/110805-The24.jpg

Note that the 4-row-2-column "brick" at left is quite 
different from the other two bricks, which together
show chevron variations within a Galois tesseract —

Sunday, September 4, 2022

Dice and the Eightfold Cube

Filed under: General — Tags: , , , , — m759 @ 4:47 pm

At Hiroshima on March 9, 2018, Aitchison discussed another
"hexagonal array" with two added points… not at the center, as
in the Gell-Mann picture above, but rather at the ends  of one of
a cube's four diagonal axes of symmetry.

See some related illustrations below. 

Fans of the fictional "Transfiguration College" in the play
"Heroes of the Fourth Turning" may recall that August 6,
another Hiroshima date, was the Feast of the Transfiguration.

Iain Aitchison's 'dice-labelled' cuboctahedron at Hiroshima, March 2018

The exceptional role of  0 and  in Aitchison's diagram is echoed
by the occurence of these symbols in the "knight" labeling of a 
Miracle Octad Generator octad —

Transposition of  0 and  in the knight coordinatization 
induces the symplectic polarity of PG(3,2) discussed by 
(for instance) Anne Duncan in 1968.

Friday, August 19, 2022

The Guy Embedding

Filed under: General — Tags: , , — m759 @ 3:43 pm

M. J. T. Guy discovered that the lexicographic  version
of the Golay code contains, embedded within it, the
Miracle Octad Generator  (MOG)  of R. T. Curtis.

For 12 basis vectors of the lexicographic version, see below.

Basis vectors for the lexicographic version of the binary Golay code

For some context, click the embedded guy.

For a closely related, but simpler, mathematical
structure, see posts tagged The Omega Matrix.

Thursday, February 3, 2022

Through the Asian Looking Glass

Filed under: General — Tags: , , , — m759 @ 10:59 pm

The Miracle Octad Generator (MOG) —
The Conway-Sloane version of 1988:

Embedding Change, Illustrated

See also the 1976 R. T. Curtis version, of which the Conway-Sloane version
is a mirror reflection —

“There is a correspondence between the two systems
of 35 groups, which is illustrated in Fig. 4 (the MOG or
Miracle Octad Generator).”
—R.T. Curtis, “A New Combinatorial Approach to M24,” 
Mathematical Proceedings of the Cambridge Philosophical
Society
 (1976), 79: 25-42

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

Curtis’s 1976 Fig. 4. (The MOG.)

The Guy Embedding (named for M.J.T., not Richard K., Guy) states that
the MOG is naturally embedded in the codewords of the extended binary
Golay code, if those codewords are generated in lexicographic order.

MOG in LOG embedding

The above reading order for the MOG 4×6 array —
down the columns, from left to right — yields the Conway-Sloane MOG.

Since that is a mirror image of the original Curtis MOG, the reading order
yielding that  MOG is down the columns, from right to left.

"Traditionally, ChineseJapaneseVietnamese and Korean are written vertically
in columns going from top to bottom and ordered from right to left, with each
new column starting to the left of the preceding one." — Wikipedia

The Asian reading order has certain artistic advantages:

Four-Color Structures (Review)

Filed under: General — Tags: , , , — m759 @ 1:30 pm

Four-color decomposition applied to the 8-point binary affine space

Miracle Octad Generator — Analysis of Structure

For those who prefer art that is less abstract — Heartland Sutra.

Sunday, January 2, 2022

Annals of Modernism:  URGrid

Filed under: General — Tags: , — m759 @ 10:09 am

The above New Yorker  art illustrates the 2×4  structure of
an octad  in the Miracle Octad Generator  of R. T. Curtis.

Enthusiasts of simplicity may note how properties of this eight-cell
2×4  grid are related to those of the smaller six-cell 3×2  grid:

See Nocciolo  in this journal and . . .

Further reading on the six-set – eight-set relationship:

the diamond theorem correlation

Thursday, December 30, 2021

Antidote to Chaos?

Filed under: General — Tags: , , , , — m759 @ 3:57 pm

Some formal symmetry —

"… each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding  a 1×8 array
from Turyn's 1967 construction of the Golay code.

Folding a 2×4 Curtis array yet again  yields
the 2x2x2 eightfold cube ."

— Steven H. Cullinane on April 19, 2016 — The Folding.

Related art-historical remarks:

The Shape of Time  (Kubler, Yale U.P., 1962).

See yesterday's post The Thing 

Saturday, May 8, 2021

A Tale of Two Omegas

Filed under: General — Tags: , — m759 @ 5:00 am

The Greek capital letter Omega, Ω, is customarily
used to denote a set that is acted upon by a group.
If the group is the affine group of 322,560
transformations of the four-dimensional
affine space over the two-element Galois field,
the appropriate Ω is the 4×4 grid above.

See the Cullinane diamond theorem .

If the group is the large Mathieu group  of
244,823,040 permutations of 24 things,
the appropriate Ω  is the 4×6 grid below.

See the Miracle Octad Generator  of R. T. Curtis.

Sunday, March 21, 2021

Mathematics and Narrative: The Unity

Filed under: General — Tags: , , , — m759 @ 10:25 pm

“To conquer, three boxes* have to synchronize and join together into the Unity.”

―Wonder Woman in Zack Snyder’s Justice League

See also The Unity of Combinatorics  and The Miracle Octad Generator.

* Cf.  Aitchison’s Octads

Thursday, February 25, 2021

Compare and Contrast

Filed under: General — Tags: , , , — m759 @ 12:31 pm

“… What is your dream—your ideal?  What is your News from Nowhere,
or, rather, What is the result of the little shake your hand has given to
the old pasteboard toy with a dozen bits of colored glass for contents?
And, most important of all, can you present it in a narrative or romance
which will enable me to pass an idle hour not disagreeably? How, for instance,
does it compare in this respect with other prophetic books on the shelf?”

— Hudson, W. H.. A Crystal Age  (p. 2). Open Road Media. Kindle Edition.

See as well . . .

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

Wednesday, October 7, 2020

Between Pyramid and Pentagon

Filed under: General — Tags: , , — m759 @ 12:34 am

The 35 small squares between the pyramid and the pentagon
in the above search result illustrate the role of finite geometry
in the Miracle Octad Generator  of R. T. Curtis.

'Then a miracle occurs' cartoon

Cartoon by S. Harris

Thursday, August 27, 2020

The Complete Extended Binary Golay Code

Filed under: General — Tags: , , , , , — m759 @ 12:21 pm

All 4096 vectors in the code are at . . .

http://neilsloane.com/oadir/oa.4096.12.2.7.txt.

Sloane’s list* contains the 12 generating vectors
listed in 2011 by Adlam —

As noted by Conway in Sphere Packings, Lattices and Groups ,
these 4096 vectors, constructed lexicographically, are exactly
the same vectors produced by using the Conway-Sloane version
of the Curtis Miracle Octad Generator (MOG). Conway says this
lexico-MOG equivalence was first discovered by M. J. T. Guy.

(Of course, any  permutation of the 24 columns above produces
a version of the code qua  code. But because the lexicographic and
the MOG constructions yield the same result, that result is in
some sense canonical.)

See my post of July 13, 2020 —

The lexicographic Golay code
contains, embedded within it,
the Miracle Octad Generator.

For some related results, Google the twelfth generator:

* Sloane’s list is of the codewords as the rows of  an orthogonal array

See also http://neilsloane.com/oadir/.

Tuesday, July 28, 2020

For 7/28

Filed under: General — Tags: , — m759 @ 8:33 am

Miracle Octad Generator — Analysis of Structure

Friday, July 17, 2020

Theoretical as Well as Practical Value

Filed under: General — Tags: , , , , — m759 @ 12:25 am

See also The Lexicographic Octad Generator (LOG) (July 13, 2020)
and Octads and Geometry (April 23, 2020).

Saturday, May 2, 2020

Turyn’s Octad Theorem: The Next Level*

Filed under: General — Tags: , , — m759 @ 11:24 am

From  the obituary of a game inventor  who reportedly died
on Monday, February 25, 2013 —

” ‘He was hired because of the game,’ Richard Turyn,
a mathematician who worked at Sylvania, told
the Washington Post in a 2004 feature on Diplomacy.”

* For the theorem, see Wolfram Neutsch,  Coordinates .
(Published by de Gruyter, 1996. See pp. 761-766.)

Having defined (pp. 751-752) the Miracle Octad Generator (MOG)
as a 4×6 array to be used with Conway’s “hexacode,” Neutsch says . . .

“Apart from the three constructions of the Golay codes
discussed at length in this book (lexicographic and via
the MOG or the projective line), there are literally
dozens of alternatives. For lack of space, we have to
restrict our attention to a single example. It has been
discovered by Turyn and can be connected in a very
beautiful way with the Miracle Octad Generator….

To this end, we consider the natural splitting of the MOG into
three disjoint octads L, M, R (‘left’, ‘middle’, and ‘right’ octad)….”

— From page 761

“The theorem of Turyn”  is on page 764

Wednesday, April 29, 2020

Curtis at Pilsen, Thursday, July 5, 2018

Filed under: General — Tags: , , , , , — m759 @ 11:48 am

For an account by R. T. Curtis of how he discovered the Miracle Octad Generator,
see slides by Curtis, “Graphs and Groups,” from his talk on July 5, 2018, at the
Pilsen conference on algebraic graph theory, “Symmetry vs. Regularity: The first
50 years since Weisfeiler-Leman stabilization” (WL2018).

See also “Notes to Robert Curtis’s presentation at WL2018,” by R. T. Curtis.

Meanwhile, here  on July 5, 2018

Simultaneous perspective does not look upon language as a path because it is not the search for meaning that orients it. Poetry does not attempt to discover what there is at the end of the road; it conceives of the text as a series of transparent strata within which the various parts—the different verbal and semantic currents—produce momentary configurations as they intertwine or break apart, as they reflect each other or efface each other. Poetry contemplates itself, fuses with itself, and obliterates itself in the crystallizations of language. Apparitions, metamorphoses, volatilizations, precipitations of presences. These configurations are crystallized time: although they are perpetually in motion, they always point to the same hour—the hour of change. Each one of them contains all the others, each one is inside the others: change is only the oft-repeated and ever-different metaphor of identity.

— Paz, Octavio. The Monkey Grammarian
(Kindle Locations 1185-1191).
Arcade Publishing. Kindle Edition.

The 2018 Log24 post containing the above Paz quote goes on to quote
remarks by Lévi-Strauss. Paz’s phrase “series of transparent strata”
suggests a review of other remarks by Lévi-Strauss in the 2016 post
Key to  All Mythologies.

Wednesday, February 19, 2020

Aitchison’s Octads

Filed under: General — Tags: , , , , , — m759 @ 11:36 am

The 759 octads of the Steiner system S(5,8,24) are displayed
rather neatly in the Miracle Octad Generator of R. T. Curtis.

A March 9, 2018, construction by Iain Aitchison* pictures the
759 octads on the faces of a cube , with octad elements the
24 edges of a  cuboctahedron :

The Curtis octads are related to symmetries of the square.

See my webpage "Geometry of the 4×4 square" from March 2004.
Aitchison's p. 42 slide includes an illustration from that page —

Aitchison's  octads are instead related to symmetries of the cube.

Note that essentially the same model as Aitchison's can be pictured 
by using, instead of the 24 edges of a cuboctahedron, the 24 outer 
faces of subcubes in the eightfold cube .

The Eightfold Cube: The Beauty of Klein's Simple Group

   Image from Christmas Day 2005.

http://www.math.sci.hiroshima-u.ac.jp/branched/files/2018/
presentations/Aitchison-Hiroshima-2-2018.pdf
.
See also Aitchison in this journal.

 
[addtoany]
 

Saturday, December 14, 2019

Colorful Tale

Filed under: General — Tags: , , , , — m759 @ 9:00 pm

(Continued)

Four-color correspondence in an eightfold array (eightfold cube unfolded)

The above image is from 

"A Four-Color Theorem:
Function Decomposition Over a Finite Field,"
http://finitegeometry.org/sc/gen/mapsys.html.

These partitions of an 8-set into four 2-sets
occur also in Wednesday night's post
Miracle Octad Generator Structure.

This  post was suggested by a Daily News
story from August 8, 2011, and by a Log24
post from that same date, "Organizing the
Mine Workers
" —

http://www.log24.com/log/pix11B/110808-DwarfsParade500w.jpg

Thursday, October 31, 2019

56 Triangles

The post "Triangles, Spreads, Mathieu" of October 29 has been
updated with an illustration from the Curtis Miracle Octad Generator.

Related material — A search in this journal for "56 Triangles."

Saturday, September 21, 2019

Annals of Random Fandom

Filed under: General — Tags: , , , , — m759 @ 5:46 pm

For Dan Brown fans …

… and, for fans of The Matrix, another tale
from the above death date: May 16, 2019 —

An illustration from the above
Miracle Octad Generator post:

Related mathematics — Tetrahedron vs. Square.

Thursday, July 25, 2019

Simple

Filed under: General — Tags: , — m759 @ 2:08 pm

From "110 in the Shade" —

   A quote from "Marshall, Meet Bagger," July 29, 2011:

"Time for you to see the field."

_________________________________________________________

  From a Log24 search for "To See the Field" —

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

Wednesday, July 24, 2019

The Batty Farewell

Filed under: General — Tags: , , — m759 @ 8:40 pm

Adam Rogers today on "Rutger Hauer in Blade Runner , playing
the artificial* person Roy Batty in his death scene." 

* See the word "Artifice" in this  journal,
   as well as Tears in Rain . . .

Game Over

The film "The Matrix," illustrated
Coordinates for generating the Miracle Octad Generator

and Adam Rogers in
    the previous post.

 

Frameworks

Filed under: General — Tags: , — m759 @ 7:50 pm

"Games provide frameworks that miniaturize
and represent idealized realities; so do narratives."

— Adam Rogers, Sunday, July 21, 2019, at Wired

Reviewing yesterday's post Word Magic

See also a technological framework (the microwave at left) vs. a
purely mathematical framework (the pattern on the towel at right)
in the image below:

170703-The_Forger-Christopher_Plummer-2015-500w.jpg (500×336)

For some backstory about the purely mathematical framework, 
see Octad Generator in this journal.

Thursday, March 7, 2019

In Reality

Filed under: General — Tags: , — m759 @ 11:45 am

The previous post, quoting a characterization of the R. T. Curtis
Miracle Octad Generator , describes it as a "hand calculator ."

Other views 
 

A "natural diagram " —


 

A geometric object

Counting symmetries with the orbit-stabilizer theorem.

Tuesday, March 5, 2019

A Block Design 3-(16,4,1) as a Steiner Quadruple System:

Filed under: General — Tags: , , , — m759 @ 11:19 am

A Midrash for Wikipedia 

Midrash —

Related material —


________________________________________________________________________________

The Miracle Octad Generator (MOG), the affine 4-space over GF(2), and the Cullinane diamond theorem

Friday, March 1, 2019

Wikipedia Scholarship (Continued)

Filed under: General — Tags: , , , , — m759 @ 12:45 pm

This post continues a post from yesterday on the square model of
PG(3,2) that apparently first appeared (presented as such*) in . . .

Cullinane, "Symmetry invariance in a diamond ring,"
Notices of the AMS , pp. A193-194, Feb. 1979.

The Cullinane diamond theorem, AMS Notices, Feb. 1979, pp. A-193-194

Yesterday's Wikipedia presentation of the square model was today
revised by yet another anonymous author —

Revision history accounting for the above change from yesterday —

The jargon "rm OR" means "remove original research."

The added verbiage about block designs is a smokescreen having
nothing to do with the subject, which is square  representation
of the 35 points and lines.

* The 35 squares, each consisting of four 4-element subsets, appeared earlier
   in the Miracle Octad Generator (MOG) of R. T. Curtis (published in 1976).
  They were not at that time  presented as constituting a finite geometry, 
  either affine (AG(4,2)) or projective (PG(3,2)).

Friday, February 22, 2019

Back Issues of AMS Notices

Filed under: General — Tags: , — m759 @ 3:04 pm

From the online home page of the new March issue —

Feb. 22, 2019 — AMS Notices back issues now available.

For instance . . .

The Cullinane diamond theorem, AMS Notices, Feb. 1979, pp. A-193-194

Related material now at Wikipedia

The Miracle Octad Generator (MOG), the affine 4-space over GF(2), and the Cullinane diamond theorem

Thursday, February 7, 2019

Geometry of the 4×4 Square: The Kummer Configuration

Filed under: General — Tags: , , , — m759 @ 12:00 am

From the series of posts tagged Kummerhenge

A Wikipedia article relating the above 4×4 square to the work of Kummer —

A somewhat more interesting aspect of the geometry of the 4×4 square
is its relationship to the 4×6 grid underlying the Miracle Octad Generator
(MOG) of R. T. Curtis.  Hudson's 1905 classic Kummer's Quartic Surface
deals with the Kummer properties above and also foreshadows, without
explicitly describing, the finite-geometry properties of the 4×4 square as
a finite affine 4-space — properties that are of use in studying the Mathieu
group M24  with the aid of the MOG.

Sunday, December 2, 2018

Symmetry at Hiroshima

Filed under: G-Notes,General,Geometry — Tags: , , , , — m759 @ 6:43 am

A search this morning for articles mentioning the Miracle Octad Generator
of R. T. Curtis within the last year yielded an abstract for two talks given
at Hiroshima on March 8 and 9, 2018

http://www.math.sci.hiroshima-u.ac.jp/
branched/files/2018/abstract/Aitchison.txt

 

Iain AITCHISON

Title:

Construction of highly symmetric Riemann surfaces, related manifolds, and some exceptional objects, I, II

Abstract:

Since antiquity, some mathematical objects have played a special role, underpinning new mathematics as understanding deepened. Perhaps archetypal are the Platonic polyhedra, subsequently related to Platonic idealism, and the contentious notion of existence of mathematical reality independent of human consciousness.

Exceptional or unique objects are often associated with symmetry – manifest or hidden. In topology and geometry, we have natural base points for the moduli spaces of closed genus 2 and 3 surfaces (arising from the 2-fold branched cover of the sphere over the 6 vertices of the octahedron, and Klein's quartic curve, respectively), and Bring's genus 4 curve arises in Klein's description of the solution of polynomial equations of degree greater than 4, as well as in the construction of the Horrocks-Mumford bundle. Poincare's homology 3-sphere, and Kummer's surface in real dimension 4 also play special roles.

In other areas: we have the exceptional Lie algebras such as E8; the sporadic finite simple groups; the division algebras: Golay's binary and ternary codes; the Steiner triple systems S(5,6,12) and S(5,8,24); the Leech lattice; the outer automorphisms of the symmetric group S6; the triality map in dimension 8; and so on. We also note such as: the 27 lines on a cubic, the 28 bitangents of a quartic curve, the 120 tritangents of a sextic curve, and so on, related to Galois' exceptional finite groups PSL2(p) (for p= 5,7,11), and various other so-called `Arnol'd Trinities'.

Motivated originally by the `Eightfold Way' sculpture at MSRI in Berkeley, we discuss inter-relationships between a selection of these objects, illustrating connections arising via highly symmetric Riemann surface patterns. These are constructed starting with a labeled polygon and an involution on its label set.

Necessarily, in two lectures, we will neither delve deeply into, nor describe in full, contexts within which exceptional objects arise. We will, however, give sufficient definition and detail to illustrate essential inter-connectedness of those exceptional objects considered.

Our starting point will be simplistic, arising from ancient Greek ideas underlying atomism, and Plato's concepts of space. There will be some overlap with a previous talk on this material, but we will illustrate with some different examples, and from a different philosophical perspective.

Some new results arising from this work will also be given, such as an alternative graphic-illustrated MOG (Miracle Octad Generator) for the Steiner system S(5,8,24), and an alternative to Singerman – Jones' genus 70 Riemann surface previously proposed as a completion of an Arnol'd Trinity. Our alternative candidate also completes a Trinity whose two other elements are Thurston's highly symmetric 6- and 8-component links, the latter related by Thurston to Klein's quartic curve.

See also yesterday morning's post, "Character."

Update: For a followup, see the next  Log24 post.

Sunday, September 23, 2018

Three Times Eight

Filed under: General,Geometry — Tags: , , — m759 @ 9:21 am

The New York Times 's Sunday School today —

I prefer the three bricks of the Miracle Octad Generator —

Image result for mog miracle octad bricks

Wednesday, July 18, 2018

Doodle

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

From "The Educated Imagination: A Website Dedicated
to Northrop Frye
" —

"In one of the notebooks for his first Bible book Frye writes,

'For at least 25 years I’ve been preoccupied by
the notion of a key to all mythologies.' . . . .

Frye made a valiant effort to provide a key to all mythology,
trying to fit everything into what he called the Great Doodle. . . ."

From a different page at the same website —

Here Frye provides a diagram of four sextets.

I prefer the Miracle Octad Generator of R. T. Curtis —

Counting symmetries with the orbit-stabilizer theorem.

Thursday, August 24, 2017

Maori Chess, Vol. 2

Filed under: General,Geometry — Tags: , — m759 @ 4:20 pm

This just in

From IMDb

From Radio New Zealand

"Genesis Potini died of a heart attack aged 46
on the 15th August 2011."

The 15th of August in New Zealand overlapped
the 14th of August in the U.S.A.

From a Log24 post, "Sunday Review," on August 14, 2011 —

Part II (from "Marshall, Meet Bagger," July 29):

"Time for you to see the field."

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

McLuhan was a Toronto Catholic philosopher.
For related views of a Montreal Catholic philosopher,
see the Saturday evening post.

Tuesday, May 2, 2017

Image Albums

Filed under: General,Geometry — Tags: , , , , , — m759 @ 1:05 pm

Pinterest boards uploaded to the new m759.net/piwigo

Diamond Theorem 

Diamond Theorem Correlation

Miracle Octad Generator

The Eightfold Cube

Six-Set Geometry

Diamond Theory Cover

Update of May 2 —

Four-Color Decomposition

Binary Galois Spaces

The Galois Tesseract

Update of May 3 —

Desargues via Galois

The Tetrahedral Model

Solomon's Cube

Update of May 8 —

Art Space board created at Pinterest

Wednesday, December 7, 2016

Spreads and Conwell’s Heptads

Filed under: General,Geometry — Tags: , , , — m759 @ 7:11 pm

For a concise historical summary of the interplay between
the geometry of an 8-set and that of a 16-set that is
involved in the the Miracle Octad Generator approach
to the large Mathieu group M24, see Section 2 of 

Alan R. Prince
A near projective plane of order 6 (pp. 97-105)
Innovations in Incidence Geometry
Volume 13 (Spring/Fall 2013).

This interplay, notably discussed by Conwell and
by Edge, involves spreads and Conwell’s heptads .

Update, morning of the following day (7:07 ET) — related material:

See also “56 spreads” in this  journal.

Friday, December 2, 2016

A Small Witt Design*

Filed under: General — Tags: , , — m759 @ 2:00 pm

The New York Times 's  online T Magazine  yesterday —

"A version of this article appears in print on December 4, 2016, on page
M263 of T Magazine with the headline: The Year of Magical Thinking."

* Thanks to Emily Witt for inadvertently publicizing the
   Miracle Octad Generator  of R. T. Curtis, which
   summarizes the 759 octads found in the large Witt design.

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: General,Geometry — Tags: , , , , , — m759 @ 10:00 pm

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface
.

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Ron Shaw on symplectic geometry and a linear complex in PG(3,2)

Tuesday, April 19, 2016

The Folding

Filed under: General,Geometry — Tags: , , , , — m759 @ 2:00 pm

(Continued

A recent post about the eightfold cube  suggests a review of two
April 8, 2015, posts on what Northrop Frye called the ogdoad :

As noted on April 8, each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding  a 1×8 array from Turyn's
1967 construction of the Golay code.

Folding a 2×4 Curtis array yet again  yields the 2x2x2 eightfold cube .

Those who prefer an entertainment  approach to concepts of space
may enjoy a video (embedded yesterday in a story on theverge.com) —
"Ghost in the Shell: Identity in Space." 

Friday, April 8, 2016

Ogdoads by Curtis

Filed under: General,Geometry — Tags: , , , , , — m759 @ 12:25 pm

As was previously noted here, the construction of the Miracle Octad Generator
of R. T. Curtis in 1974 may have involved his "folding" the 1×8 octads constructed
in 1967 by Turyn into 2×4 form.

This results in a way of picturing a well-known correspondence (Conwell, 1910)
between partitions of an 8-set and lines of the projective 3-space PG(3,2).

For some background related to the "ogdoads" of the previous post, see
A Seventh Seal (Sept. 15, 2014).

Monday, February 1, 2016

Religious Note

Filed under: General — Tags: , — m759 @ 1:00 pm

See also the previous post.

Friday, November 13, 2015

A Connection between the 16 Dirac Matrices and the Large Mathieu Group



Note that the six anticommuting sets of Dirac matrices listed by Arfken
correspond exactly to the six spreads in the above complex of 15 projective
lines of PG(3,2) fixed under a symplectic polarity (the diamond theorem
correlation
 
). As I noted in 1986, this correlation underlies the Miracle
Octad Generator of R. T. Curtis, hence also the large Mathieu group.

References:

Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Related material:

The 6-set in my 1986 note above also appears in a 1996 paper on
the sixteen Dirac matrices by David M. Goodmanson —

Background reading:

Ron Shaw on finite geometry, Clifford algebras, and Dirac groups 
(undated compilation of publications from roughly 1994-1995)—

Thursday, August 27, 2015

Tears in the Rain

Filed under: General — Tags: , , — m759 @ 12:21 pm

For a Norwegian historian

Game Over

The film "The Matrix," illustrated
Coordinates for generating the Miracle Octad Generator

Monday, January 12, 2015

Points Omega*

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

The previous post displayed a set of
24 unit-square “points” within a rectangular array.
These are the points of the
Miracle Octad Generator  of R. T. Curtis.

The array was labeled  Ω
because that is the usual designation for
a set acted upon by a group:

* The title is an allusion to Point Omega , a novel by
Don DeLillo published on Groundhog Day 2010.
See “Point Omega” in this journal.

Thursday, January 8, 2015

Gitterkrieg

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 am

(Continued)

From the abstract of a talk, "Extremal Lattices," at TU Graz
on Friday, Jan. 11, 2013, by Prof. Dr. Gabriele Nebe
(RWTH Aachen) —

"I will give a construction of the extremal even
unimodular lattice Γ of dimension 72  I discovered
in summer 2010. The existence of such a lattice
was a longstanding open problem. The
construction that allows to obtain the
minimum by computer is similar to the one of the
Leech lattice from E8 and of the Golay code from
the Hamming code (Turyn 1967)."

On an earlier talk by Nebe at Oberwolfach in 2011 —

"Exciting new developments were presented by
Gabriele Nebe (Extremal lattices and codes ) who
sketched the construction of her recently found
extremal lattice in 72 dimensions…."

Nebe's Oberwolfach slides include one on 
"The history of Turyn's construction" —

Nebe's list omits the year 1976. This was the year of
publication for "A New Combinatorial Approach to M24"
by R. T. Curtis, the paper that defined Curtis's 
"Miracle Octad Generator."

Turyn's 1967 construction, uncredited by Curtis, may have
been the basis for Curtis's octad-generator construction.

See Turyn in this journal.

Saturday, October 25, 2014

Foundation Square

Filed under: General,Geometry — Tags: , , , — m759 @ 2:56 pm

In the above illustration of the 3-4-5 Pythagorean triangle,
the grids on each side may be regarded as figures of
Euclidean  geometry or of Galois  geometry.

In Euclidean geometry, these grids illustrate a property of
the inner triangle.

In elementary Galois geometry, ignoring the connection with
the inner triangle, the grids may be regarded instead as
illustrating vector spaces over finite (i.e., Galois) fields.
Previous posts in this journal have dealt with properties of
the 3×3 and 4×4 grids.  This suggests a look at properties of
the next larger grid, the 5×5 array, viewed as a picture of the
two-dimensional vector space (or affine plane) over the finite
Galois field GF(5) (also known as ℤ5).

The 5×5 array may be coordinatized in a natural way, as illustrated
in (for instance) Matters Mathematical , by I.N. Herstein and
Irving Kaplansky, 2nd ed., Chelsea Publishing, 1978, p. 171:

See Herstein and Kaplansky for the elementary Galois geometry of
the 5×5 array.

For 5×5 geometry that is not so elementary, see…

Hafner's abstract:

We describe the Hoffman-Singleton graph geometrically, showing that
it is closely related to the incidence graph of the affine plane over ℤ5.
This allows us to construct all automorphisms of the graph.

The remarks of Brouwer on graphs connect the 5×5-related geometry discussed
by Hafner with the 4×4 geometry related to the Steiner system S(5,8,24).
(See the Miracle Octad Generator of R. T. Curtis and the related coordinatization
by Cullinane of the 4×4 array as a four-dimensional vector space over GF(2).)

Monday, September 15, 2014

The Eight

Filed under: General — Tags: , , , — m759 @ 12:00 pm

The image at the end of today’s previous post A Seventh Seal
suggests a review of posts on Katherine Neville’s The Eight .

Update of 1:25 PM ET on Sept. 15, 2014:

Neville’s longtime partner is neurosurgeon and cognitive theorist
Karl H. Pribram. A quote from one of his books:

See also Sense and Sensibility.

Sunday, August 31, 2014

Sunday School

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 am

The Folding

Cynthia Zarin in The New Yorker , issue dated April 12, 2004—

“Time, for L’Engle, is accordion-pleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”

The geometry of the 4×4 square array is that of the
3-dimensional projective Galois space PG(3,2).

This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc.  on
15 June 1974).  Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.

Some history: 

Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.

[Rewritten for clarity on Sept. 3, 2014.]

Sunday, August 24, 2014

Symplectic Structure…

In the Miracle Octad Generator (MOG):

The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.

The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.

Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.

Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements  in two pictures, each showing 10 of the
3-subsets.

This pair of pictures corresponds to the 20 Rosenhain tetrads  among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads  among the 35 lines.

See Rosenhain and Göpel tetrads in PG(3,2). Some further background:

Tuesday, June 17, 2014

Finite Relativity

Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 am

Continued.

Anyone tackling the Raumproblem  described here
on Feb. 21, 2014 should know the history of coordinatizations
of the 4×6 Miracle Octad Generator (MOG) array by R. T. Curtis
and J. H. Conway. Some documentation:

The above two images seem to contradict a statement by R. T. Curtis
in a 1989 paper.  Curtis seemed in that paper to be saying, falsely, that
his original 1973 and 1976 MOG coordinates were those in array M below—

This seemingly false statement involved John H. Conway's supposedly
definitive and natural canonical coordinatization of the 4×6 MOG
array by the symbols for the 24 points of the projective line over GF(23)—
{∞, 0, 1, 2, 3… , 21, 22}:

An explanation of the apparent falsity in Curtis's 1989 paper:

By "two versions of the MOG" Curtis seems to have meant merely that the
octads , and not the projective-line coordinates , in his earlier papers were
mirror images of the octads  that resulted later from the Conway coordinates,
as in the images below.

Thursday, April 24, 2014

The Inscape of 24

Filed under: General,Geometry — Tags: , — m759 @ 9:29 am

“The more intellectual, less physical, the spell of contemplation
the more complex must be the object, the more close and elaborate
must be the comparison the mind has to keep making between
the whole and the parts, the parts and the whole.”

— The Journals and Papers of Gerard Manley Hopkins ,
edited by Humphry House, 2nd ed. (London: Oxford
University Press, 1959), p. 126, as quoted by Philip A.
Ballinger in The Poem as Sacrament 

Related material from All Saints’ Day in 2012:

Talk pointing out that R. T. Curtis's 1974 construction of the Steiner system S(5,8,24) is taken from Turyn.

Thursday, April 3, 2014

Better Late…

Filed under: General — Tags: , — m759 @ 4:00 pm

Last Sunday’s sermon from Princeton’s Nassau Presbyterian
Church is now online. It reveals the answer to the “One Thing”
riddle posted at the church site Sunday:

IMAGE- Sermon topic 'One Thing Do I Know'

The online sermon has been retitled “One Thing I Do Know.”
A related search yields a relevant example of the original
Yoda-like word order:

IMAGE- 'One thing do I know' in a religious book from 1843

From the online sermon —

“What comes into view is the bombarding cynicism,
the barrage of mistrust and questions, and the
flat out trial of the man born blind. The
interrogation coming not because of the miracle
that gave the man sight….”

Related material — “Then a miracle occurs.”

Friday, March 28, 2014

Blazing Thule

Filed under: General — Tags: , , — m759 @ 10:20 am

The title is suggested by a new novel (see cover below),
and by an unwritten book by Nabokov —

Siri Hustvedt, 'The Blazing World'.

Related material:

Sunday, March 9, 2014

The Story Creeps Up

Filed under: General,Geometry — Tags: , , — m759 @ 11:01 pm

For Women’s History Month —

Conclusion of “The Storyteller,” a story
by Cynthia Zarin about author Madeleine L’Engle—

See also the exercise on the Miracle Octad Generator (MOG) at the end of
the previous post, and remarks on the MOG by Emily Jennings (non -fiction)
on All Saints’ Day, 2012 (the date the L’Engle quote was posted here).

Hesse’s Table

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 pm

From “Quartic Curves and Their Bitangents,” by
Daniel Plaumann, Bernd Sturmfels, and Cynthia Vinzant,
arXiv:1008.4104v2  [math.AG] 10 Jan 2011 —

The table mentioned (from 1855) is…

Exercise: Discuss the relationship, if any, to
the Miracle Octad Generator of R. T. Curtis.

Friday, February 21, 2014

Raumproblem*

Despite the blocking of Doodles on my Google Search
screen, some messages get through.

Today, for instance —

"Your idea just might change the world.
Enter Google Science Fair 2014"

Clicking the link yields a page with the following image—

IMAGE- The 24-triangle hexagon

Clearly there is a problem here analogous to
the square-triangle coordinatization problem,
but with the 4×6 rectangle of the R. T. Curtis
Miracle Octad Generator playing the role of
the square.

I once studied this 24-triangle-hexagon
coordinatization problem, but was unable to
obtain any results of interest. Perhaps
someone else will have better luck.

* For a rather different use of this word,
see Hermann Weyl in the Stanford
Encyclopedia of Philosophy.

Friday, December 20, 2013

For Emil Artin

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

(On His Dies Natalis )

An Exceptional Isomorphism Between Geometric and
Combinatorial Steiner Triple Systems Underlies 
the Octads of the M24 Steiner System S(5, 8, 24).

This is asserted in an excerpt from… 

"The smallest non-rank 3 strongly regular graphs
​which satisfy the 4-vertex condition"
by Mikhail Klin, Mariusz Meszka, Sven Reichard, and Alex Rosa,
BAYREUTHER MATHEMATISCHE SCHRIFTEN 73 (2005), 152-212—

(Click for clearer image)

Note that Theorem 46 of Klin et al.  describes the role
of the Galois tesseract  in the Miracle Octad Generator
of R. T. Curtis (original 1976 version). The tesseract
(a 4×4 array) supplies the geometric  part of the above
exceptional geometric-combinatorial isomorphism.

Saturday, December 14, 2013

Beautiful Mathematics

Filed under: General,Geometry — Tags: , , , , — m759 @ 7:59 pm

The title, which I dislike, is taken from a 2011 publication
of the MAA, also sold by Cambridge University Press.

Some material relevant to the title adjective:

"For those who have learned something of higher mathematics, nothing could be more natural than to use the word 'beautiful' in connection with it. Mathematical beauty, like the beauty of, say, a late Beethoven quartet, arises from a combination of strangeness and inevitability. Simply defined abstractions disclose hidden quirks and complexities. Seemingly unrelated structures turn out to have mysterious correspondences. Uncanny patterns emerge, and they remain uncanny even after being underwritten by the rigor of logic."— Jim Holt, opening of a book review in the Dec. 5, 2013, issue of The New York Review of Books

Some relevant links—

The above list was updated on Jan. 31, 2014, to include the
"Strangeness" and "Hidden quirks" links.  See also a post of
​Jan. 31, 2014.

Update of March 9, 2014 —

The link "Simply defined abstractions" is to the construction of the Steiner
system S(5, 8, 24) described by R. T. Curtis in his 1976 paper defining the
Miracle Octad Generator. It should be noted that this construction is due
to Richard J. Turyn, in a 1967 Sylvania research report. (See Emily Jennings's
talk of 1 Nov. 2012.) Compare  the Curtis construction, written in 1974,
with the Turyn construction of 1967 as described in Sphere Packings, Lattices
and Groups , by J. H. Conway and N. J. A. Sloane (first published in 1988).

Wednesday, September 4, 2013

Moonshine

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the 
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.) 

A Google search documents the moonshine
relating Rosenhain's and Göpel's 19th-century work
in complex analysis to M24  via the book of Hudson and
the geometry of the 4×4 square.

Monday, August 12, 2013

Form

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The Galois tesseract is the basis for a representation of the smallest
projective 3-space, PG(3,2), that differs from the representation at
Wolfram Demonstrations Project. For the latter, see yesterday’s post.

The tesseract representation underlies the diamond theorem, illustrated
below in its earliest form, also from the above February 1977 article—

IMAGE- Steven H. Cullinane, diamond theorem, from 'Diamond Theory,' Computer Graphics and Art, Vol. 2 No. 1, Feb. 1977, pp. 5-7

As noted in a more recent version, the group described by
the diamond theorem is also the group of the 35 square
patterns within the 1976 Miracle Octad Generator  (MOG) of
R. T. Curtis.

Monday, August 5, 2013

Wikipedia Updates

Filed under: General,Geometry — Tags: , — m759 @ 12:30 pm

I added links today in the following Wikipedia articles:

The links will probably soon be deleted,
but it seemed worth a try.

Tuesday, July 9, 2013

Vril Chick

Filed under: General,Geometry — Tags: , , — m759 @ 4:30 am

Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo

Profile picture for "Jo Lyxe" (Josefine Lyche) at Vimeo

Compare to an image of Vril muse Maria Orsitsch.

From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,
I DE LANGE NÆTTER —

Josefine Lyche
Born in 1973 in Bergen, Norway.
Lives and works in Oslo and Berlin.

Keywords (to help place my artwork in the
proper context): Aliens, affine geometry, affine
planes, affine spaces, automorphisms, binary
codes, block designs, classical groups, codes,
coding theory, collineations, combinatorial,
combinatorics, conjugacy classes, the Conwell
correspondence, correlations, Cullinane,
R. T. Curtis, design theory, the diamond theorem,
diamond theory, duads, duality, error correcting
codes, esoteric, exceptional groups,
extraterrestrials, finite fields, finite geometry, finite
groups, finite rings, Galois fields, generalized
quadrangles, generators, geometry, GF(2),
GF(4), the (24,12) Golay code, group actions,
group theory, Hadamard matrices, hypercube,
hyperplanes, hyperspace, incidence structures,
invariance, Karnaugh maps, Kirkman’s schoolgirls
problem, Latin squares, Leech lattice, linear
groups, linear spaces, linear transformations,
Magick, Mathieu groups, matrix theory, Meno,
Miracle Octad Generator, MOG, multiply transitive
groups, occultism, octahedron, the octahedral
group, Orsic, orthogonal arrays, outer automorphisms,
parallelisms, partial geometries,
permutation groups, PG(3,2), Plato, Platonic
solids, polarities, Polya-Burnside theorem, projective
geometry, projective planes, projective
spaces, projectivities, Pythagoras, reincarnation,
Reed-Muller codes, the relativity problem,
reverse engineering, sacred geometry, Singer
cycle, skew lines, Socrates, sporadic simple
groups, Steiner systems, Sylvester, symmetric,
symmetry, symplectic, synthemes, synthematic,
Theosophical Society tesseract, Tessla, transvections,
Venn diagrams, Vril society, Walsh
functions, Witt designs.

(See also the original catalog page.)

Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.

For some background, see (for instance) 
Conspiracy Theories and Secret Societies for Dummies .

Tuesday, July 2, 2013

Diamond Theorem Updates

Filed under: General,Geometry — Tags: , , — m759 @ 8:00 pm

My diamond theorem articles at PlanetMath and at 
Encyclopedia of Mathematics have been updated
to clarify the relationship between the graphic square
patterns of the diamond theorem and the schematic
square patterns of the Curtis Miracle Octad Generator.

Tuesday, May 28, 2013

Codes

The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Sunday, May 19, 2013

Priority Claim

From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):

"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis
in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."

[Cur89] reference:
 R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 
32 (1989), 345-353 (received on
July 20, 1987).

— Anne Taormina and Katrin Wendland,
    "The overarching finite symmetry group of Kummer
      surfaces in the Mathieu group 24 ,"
     arXiv.org > hep-th > arXiv:1107.3834

"First mentioned by Curtis…."

No. I claim that to the best of my knowledge, the 
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.

Update of the above paragraph on July 6, 2013—

No. The vector space structure was described by
(for instance) Peter J. Cameron in a 1976
Cambridge University Press book —
Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pages 59 and 60.

The vector space structure as it occurs in a 4×4 array
of the sort that appears in the Curtis Miracle Octad
Generator may first have been pointed out by me,
Steven H. Cullinane,
 in an AMS abstract submitted in
October 1978, some nine years before the Curtis article.

See Notes on Finite Geometry for some background.

See in particular The Galois Tesseract.

For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).

Thursday, April 25, 2013

Rosenhain and Göpel Revisited

Filed under: General,Geometry — Tags: , , , — m759 @ 5:24 pm

Some historical background for today's note on the geometry
underlying the Curtis Miracle Octad Generator (MOG):

IMAGE- Bateman in 1906 on Rosenhain and Göpel tetrads

The above incidence diagram recalls those in today's previous post
on the MOG, which is used to construct the large Mathieu group M24.

For some related material that is more up-to-date, search the Web
for Mathieu + Kummer .

Older Posts »

Powered by WordPress