The natural geometric setting for the "bricks" in the Miracle Octad Generator
(MOG) of Robert T. Curtis is PG(5,2), the projective 5-space over GF(2).
The Klein correspondence mirrors the 35 lines of PG(3,2) — and hence, via the
graphic approach below, the 35 "heavy bricks" of the MOG that match those
lines — in PG(5,2), where the bricks may be studied with geometric methods,
as an alternative to Curtis's original MOG combinatorial construction methods.
The construction below of a PG(5,2) brick space is analogous to the
"line diagrams" construction of a PG(3,2) in Cullinane's diamond theorem.