See also Turyn in this journal.
A Log24 post from the above date —
October 24, 2022 — suggests
a related cinematic image:
"Please wait as your operating system is initiated."
See also Turyn in this journal.
A Log24 post from the above date —
October 24, 2022 — suggests
a related cinematic image:
"Please wait as your operating system is initiated."
Some formal symmetry —
"… each 2×4 "brick" in the 1974 Miracle Octad Generator
Folding a 2×4 Curtis array yet again yields — Steven H. Cullinane on April 19, 2016 — The Folding. |
Related art-historical remarks:
The Shape of Time (Kubler, Yale U.P., 1962).
See yesterday's post The Thing .
Also on May 2, 2020 — A paper on Cubism as Religion is accepted:
Some may question the desirability of acceptance by MDPI.
Acceptance at the Pearly Gates is another matter.
"So to obtain the isomorphism from L2(7) onto L3(2) we simply
— Sphere Packings, Lattices and Groups , |
Compare and contrast —
This post was suggested by a New York Times headline today —
The New York Times 's online T Magazine yesterday —
"A version of this article appears in print on December 4, 2016, on page
M263 of T Magazine with the headline: The Year of Magical Thinking."
* Thanks to Emily Witt for inadvertently publicizing the
Miracle Octad Generator of R. T. Curtis, which
summarizes the 759 octads found in the large Witt design.
A recent post about the eightfold cube suggests a review of two
April 8, 2015, posts on what Northrop Frye called the ogdoad :
As noted on April 8, each 2×4 "brick" in the 1974 Miracle Octad Generator
of R. T. Curtis may be constructed by folding a 1×8 array from Turyn's
1967 construction of the Golay code.
Folding a 2×4 Curtis array yet again yields the 2x2x2 eightfold cube .
Those who prefer an entertainment approach to concepts of space
may enjoy a video (embedded yesterday in a story on theverge.com) —
"Ghost in the Shell: Identity in Space."
As was previously noted here, the construction of the Miracle Octad Generator
of R. T. Curtis in 1974 may have involved his "folding" the 1×8 octads constructed
in 1967 by Turyn into 2×4 form.
This results in a way of picturing a well-known correspondence (Conwell, 1910)
between partitions of an 8-set and lines of the projective 3-space PG(3,2).
For some background related to the "ogdoads" of the previous post, see
A Seventh Seal (Sept. 15, 2014).
Possible title:
A new graphic approach
to an old geometric approach
to a new combinatorial approach
to an old algebraic approach
to M24
Yesterday morning's quote from The Politics of Experience :
"Creation ex nihilo has been pronounced impossible even for
God. But we are concerned with miracles."
Related material:
Curtis + Turyn in this journal and Sidney Harris on theology —
From the abstract of a talk, "Extremal Lattices," at TU Graz
on Friday, Jan. 11, 2013, by Prof. Dr. Gabriele Nebe
(RWTH Aachen) —
"I will give a construction of the extremal even
unimodular lattice Γ of dimension 72 I discovered
in summer 2010. The existence of such a lattice
was a longstanding open problem. The
construction that allows to obtain the
minimum by computer is similar to the one of the
Leech lattice from E8 and of the Golay code from
the Hamming code (Turyn 1967)."
On an earlier talk by Nebe at Oberwolfach in 2011 —
"Exciting new developments were presented by
Gabriele Nebe (Extremal lattices and codes ) who
sketched the construction of her recently found
extremal lattice in 72 dimensions…."
Nebe's Oberwolfach slides include one on
"The history of Turyn's construction" —
Nebe's list omits the year 1976. This was the year of
publication for "A New Combinatorial Approach to M24"
by R. T. Curtis, the paper that defined Curtis's
"Miracle Octad Generator."
Turyn's 1967 construction, uncredited by Curtis, may have
been the basis for Curtis's octad-generator construction.
See Turyn in this journal.
From the MacTutor biography of Otto Neugebauer:
“… two projects which would be among the most important
contributions anyone has made to mathematics. He persuaded
Springer-Verlag to publish a journal reviewing all mathematical
publications, which would complement their reviewing journals
in other topics. In 1931 the first issue of Zentralblatt für Matematik
appeared, edited by Neugebauer.” [Mathematical Reviews was
the other project.]
Neugebauer appeared in Sunday morning’s post In Nomine Patris .
A review from Zentralblatt appeared in the Story Creep link from
this morning’s post Mysterious Correspondences.
(Continued from Beautiful Mathematics, Dec. 14, 2013)
“Seemingly unrelated structures turn out to have
mysterious correspondences.” — Jim Holt, opening
paragraph of a book review in the Dec. 5, 2013, issue
of The New York Review of Books
One such correspondence:
For bibliographic information and further details, see
the March 9, 2014, update to “Beautiful Mathematics.”
See as well posts from that same March 9 now tagged “Story Creep.”
The Folding
Cynthia Zarin in The New Yorker , issue dated April 12, 2004—
“Time, for L’Engle, is accordion-pleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”
The geometry of the 4×4 square array is that of the
3-dimensional projective Galois space PG(3,2).
This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc. on
15 June 1974). Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.
Some history:
Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.
[Rewritten for clarity on Sept. 3, 2014.]
“The more intellectual, less physical, the spell of contemplation
the more complex must be the object, the more close and elaborate
must be the comparison the mind has to keep making between
the whole and the parts, the parts and the whole.”
— The Journals and Papers of Gerard Manley Hopkins ,
edited by Humphry House, 2nd ed. (London: Oxford
University Press, 1959), p. 126, as quoted by Philip A.
Ballinger in The Poem as Sacrament
Related material from All Saints’ Day in 2012:
See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.
Related material on the Turyn-Curtis construction
from the University of Cambridge —
— Slide by "Dr. Parker" — Apparently Richard A. Parker —
Lecture 4, "Discovering M24," in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on "Sporadic and Related Groups."
See also the Parker lectures of 2012-2013 on the same topic.
A third construction of Curtis's 35 4×6 1976 MOG arrays would use
Cullinane's analysis of the 4×4 subarrays' affine and projective structure,
and point out the fact that Conwell's 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis's 1976 MOG.
See The Diamond Theorem, Finite Relativity, Galois Space,
Generating the Octad Generator, and The Klein Correspondence.
Update of March 22-March 23 —
Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1's, all other squares as 0's) of the 35 4×6 arrays of the 1976
Curtis MOG would then reveal* the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35 MOG arrays. For more
details of this "by-hand" construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction (such as Turyn's), not by hand, of the
extended binary Golay code. See the Brouwer preprint quoted above.
* "Then a miracle occurs," as in the classic 1977 Sidney Harris cartoon.
Illustration of array addition from March 23 —
The title, which I dislike, is taken from a 2011 publication
of the MAA, also sold by Cambridge University Press.
Some material relevant to the title adjective:
"For those who have learned something of higher mathematics, nothing could be more natural than to use the word 'beautiful' in connection with it. Mathematical beauty, like the beauty of, say, a late Beethoven quartet, arises from a combination of strangeness and inevitability. Simply defined abstractions disclose hidden quirks and complexities. Seemingly unrelated structures turn out to have mysterious correspondences. Uncanny patterns emerge, and they remain uncanny even after being underwritten by the rigor of logic."— Jim Holt, opening of a book review in the Dec. 5, 2013, issue of The New York Review of Books |
Some relevant links—
The above list was updated on Jan. 31, 2014, to include the
"Strangeness" and "Hidden quirks" links. See also a post of
Jan. 31, 2014.
Update of March 9, 2014 —
The link "Simply defined abstractions" is to the construction of the Steiner
system S(5, 8, 24) described by R. T. Curtis in his 1976 paper defining the
Miracle Octad Generator. It should be noted that this construction is due
to Richard J. Turyn, in a 1967 Sylvania research report. (See Emily Jennings's
talk of 1 Nov. 2012.) Compare the Curtis construction, written in 1974,
with the Turyn construction of 1967 as described in Sphere Packings, Lattices
and Groups , by J. H. Conway and N. J. A. Sloane (first published in 1988).
Powered by WordPress