Saturday, August 10, 2024
The Yellow Brick Road Through PG(5,2)
Friday, October 25, 2024
The Space Structures Underlying M24
The structures of the title are the even subsets of a six-set and of
an eight-set, viewed modulo set complementation.
The "Brick Space" model of PG(5,2) —
For the M24 relationship between these spaces, of 15 and of 63 points,
see G. M. Conwell's 1910 paper "The 3-Space PG (3,2) and Its Group,"
as well as Conwell heptads in this journal.
Thursday, October 24, 2024
October Story: If It’s Day 24, This Must Be . . . BRICS?
My own interests tend towards . . . not BRICS, but bricks —
I look forward to the November publication of . . .
Thursday, September 19, 2024
The Zen of Brick Space:
Embedding the Null Brick
Embedding the Null Brick
Tuesday, September 17, 2024
Thursday, July 18, 2024
Brick Space
Compare and Contrast
A rearranged illustration from . . .
R. T. Curtis, "A New Combinatorial Approach to M24 ,"
Mathematical Proceedings of the Cambridge Philosophical Society ,
Volume 79 , Issue 1 , January 1976 , pp. 25 – 42
DOI: https://doi.org/10.1017/S0305004100052075 —
The "Brick Space" model of PG(5,2) —
Background: See "Conwell heptads" on the Web.
See as well Nocciolo in this journal and . . .
Friday, July 5, 2024
De Bruyn on the Klein Quadric
— De Bruyn, Bart. “Quadratic Sets on the Klein Quadric.”
JOURNAL OF COMBINATORIAL THEORY SERIES A,
vol. 190, 2022, doi:10.1016/j.jcta.2022.105635.
Related material —
Log24 on Wednesday, July 3, 2024: "The Nutshell Miracle" . . .
In particular, within that post, my own 2019 "nutshell" diagram of PG(5,2):
PG(5,2)
Wednesday, July 3, 2024
The Nutshell Miracle
From a search in this journal for nocciolo —
From a search in this journal for PG(5,2) —
From a search in this journal for Curtis MOG —
Shown above is a rearranged version of the
Miracle Octad Generator (MOG) of R. T. Curtis
("A new combinatorial approach to M24,"
Math. Proc. Camb. Phil. Soc., 79 (1976), 25-42.)
From a search in this journal for Klein Correspondence —
The picture of PG(5,2) above as an expanded nocciolo
shows that the Miracle Octad Generator illustrates
the Klein correspondence.
Update of 10:33 PM ET Friday, July 5, 2024 —
See the July 5 post "De Bruyn on the Klein Quadric."
Sunday, October 11, 2020
Saniga on Einstein
See “Einstein on Acid” by Stephen Battersby
(New Scientist , Vol. 180, issue 2426 — 20 Dec. 2003, 40-43).
That 2003 article is about some speculations of Metod Saniga.
“Saniga is not a professional mystic or
a peddler of drugs, he is an astrophysicist
at the Slovak Academy of Sciences in Bratislava.
It seems unlikely that studying stars led him to
such a way-out view of space and time. Has he
undergone a drug-induced epiphany, or a period
of mental instability? ‘No, no, no,’ Saniga says,
‘I am a perfectly sane person.'”
Some more recent and much less speculative remarks by Saniga
are related to the Klein correspondence —
arXiv.org > math > arXiv:1409.5691:
Mathematics > Combinatorics
[Submitted on 17 Sep 2014]
The Complement of Binary Klein Quadric
as a Combinatorial Grassmannian
By Metod Saniga
“Given a hyperbolic quadric of PG(5,2), there are 28 points
off this quadric and 56 lines skew to it. It is shown that the
(286,563)-configuration formed by these points and lines
is isomorphic to the combinatorial Grassmannian of type
G2(8). It is also pointed out that a set of seven points of
G2(8) whose labels share a mark corresponds to a
Conwell heptad of PG(5,2). Gradual removal of Conwell
heptads from the (286,563)-configuration yields a nested
sequence of binomial configurations identical with part of
that found to be associated with Cayley-Dickson algebras
(arXiv:1405.6888).”
Related entertainment —
See Log24 on the date, 17 Sept. 2014, of Saniga’s Klein-quadric article:
Sunday, December 8, 2019
Geometry of 6 and 8
Just as
the finite space PG(3,2) is
the geometry of the 6-set, so is
the finite space PG(5,2)
the geometry of the 8-set.*
Selah.
* Consider, for the 6-set, the 32
(16, modulo complementation)
0-, 2-, 4-, and 6-subsets,
and, for the 8-set, the 128
(64, modulo complementation)
0-, 2-, 4-, 6-, and 8-subsets.
Update of 11:02 AM ET the same day:
See also Eightfold Geometry, a note from 2010.
Wednesday, July 5, 2017
Imaginarium of a Different Kind
The title refers to that of the previous post, "The Imaginarium."
In memory of a translator who reportedly died on May 22, 2017,
a passage quoted here on that date —
Related material — A paragraph added on March 15, 2017,
to the Wikipedia article on Galois geometry —
George Conwell gave an early demonstration of Galois geometry in 1910 when he characterized a solution of Kirkman's schoolgirl problem as a partition of sets of skew lines in PG(3,2), the three-dimensional projective geometry over the Galois field GF(2).[3] Similar to methods of line geometry in space over a field of characteristic 0, Conwell used Plücker coordinates in PG(5,2) and identified the points representing lines in PG(3,2) as those on the Klein quadric. — User Rgdboer |
Saturday, March 8, 2014
Conwell Heptads in Eastern Europe
“Charting the Real Four-Qubit Pauli Group
via Ovoids of a Hyperbolic Quadric of PG(7,2),”
by Metod Saniga, Péter Lévay and Petr Pracna,
arXiv:1202.2973v2 [math-ph] 26 Jun 2012 —
P. 4— “It was found that Q +(5,2) (the Klein quadric)
has, up to isomorphism, a unique one — also known,
after its discoverer, as a Conwell heptad [18].
The set of 28 points lying off Q +(5,2) comprises
eight such heptads, any two having exactly one
point in common.”
P. 11— “This split reminds us of a similar split of
63 points of PG(5,2) into 35/28 points lying on/off
a Klein quadric Q +(5,2).”
[18] G. M. Conwell, Ann. Math. 11 (1910) 60–76
A similar split occurs in yesterday’s Kummer Varieties post.
See the 63 = 28 + 35 vectors of R8 discussed there.
For more about Conwell heptads, see The Klein Correspondence,
Penrose Space-Time, and a Finite Model.
For my own remarks on the date of the above arXiv paper
by Saniga et. al., click on the image below —
Walter Gropius
Wednesday, June 16, 2010
Geometry of Language
(Continued from April 23, 2009, and February 13, 2010.)
Paul Valéry as quoted in yesterday’s post:
“The S[elf] is invariant, origin, locus or field, it’s a functional property of consciousness” (Cahiers, 15:170 [2: 315])
The geometric example discussed here yesterday as a Self symbol may seem too small to be really impressive. Here is a larger example from the Chinese, rather than European, tradition. It may be regarded as a way of representing the Galois field GF(64). (“Field” is a rather ambiguous term; here it does not, of course, mean what it did in the Valéry quotation.)
From Geometry of the I Ching—
The above 64 hexagrams may also be regarded as
the finite affine space AG(6,2)— a larger version
of the finite affine space AG(4,2) in yesterday’s post.
That smaller space has a group of 322,560 symmetries.
The larger hexagram space has a group of
1,290,157,424,640 affine symmetries.
From a paper on GL(6,2), the symmetry group
of the corresponding projective space PG(5,2),*
which has 1/64 as many symmetries—
For some narrative in the European tradition
related to this geometry, see Solomon’s Cube.
* Update of July 29, 2011: The “PG(5,2)” above is a correction from an earlier error.
Tuesday, August 27, 2024
For Rubik Worshippers
The above is six-dimensional as an affine space, but only five-dimensional
as a projective space . . . the space PG(5, 2).
As the domain of the smallest model of the Klein correspondence and the
Klein quadric, PG (5,2) is not without mathematical importance.
See Chess Bricks and Ovid.group.
This post was suggested by the date July 6, 2024 in a Warren, PA obituary
and by that date in this journal.
Sunday, December 29, 2019
Articulation Raid
“… And so each venture Is a new beginning,
a raid on the inarticulate….”
— T. S. Eliot, “East Coker V” in Four Quartets
arXiv:1409.5691v1 [math.CO] 17 Sep 2014
The Complement of Binary Klein Quadric as
Metod Saniga, Abstract
Given a hyperbolic quadric of PG(5, 2), there are 28 points off this quadric and 56 lines skew to it. It is shown that the Keywords:
Combinatorial Grassmannian − |
See also this journal on the above date — 17 September 2014.