Monday, November 19, 2012

Poetry and Truth

Filed under: General,Geometry — Tags: , , , , — m759 @ 7:59 PM

From today's noon post

"In all his poems with all their enchantments
for the poet himself, there is the final enchantment
that they are true. The significance of the poetic act
then is that it is evidence. It is instance and illustration.
It is an illumination of a surface,
the movement of a self in the rock.
Above all it is a new engagement with life.
It is that miracle to which the true faith of the poet
attaches itself."

— Wallace Stevens at Bard College, March 30, 1951

Stevens also said at Bard that

"When Joan of Arc said: 

Have no fear: what I do, I do by command.
My brothers of Paradise tell me what I have to do.

these words were the words of an hallucination.
No matter what her brothers of Paradise drove her to do,
what she did was never a poetic act of faith in reality
because it could not be."

There are those who would dispute this.

Some related material:

"Ageometretos me eisito."—
"Let no one ignorant of geometry enter."—
Said to be a saying of Plato, part of the
seal of the American Mathematical Society—

A poetic approach to geometry—

"A surface" and "the rock," from All Saints' Day, 2012

Spaces as Hypercubes

— and from 1981—


Some mathematical background for poets in Purgatory—

"… the Klein correspondence underlies Conwell's discussion 
of eight heptads. These play an important role in another
correspondence, illustrated in the Miracle Octad Generator
of R. T. Curtis, that may be used to picture actions
of the large Mathieu group M24."

Monday, June 18, 2012


Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 PM

"Poetry is an illumination of a surface…."

— Wallace Stevens

IMAGE- NY Times online front page, June 18, 2012- New Microsoft 'Surface' computer

Some poetic remarks related to a different surface, Klein's Quartic

This link between the Klein map κ and the Mathieu group M24
is a source of great delight to the author. Both objects were
found in the 1870s, but no connection between them was
known. Indeed, the class of maximal subgroups of M24
isomorphic to the simple group of order 168 (often known,
especially to geometers, as the Klein group; see Baker [8])
remained undiscovered until the 1960s. That generators for
the group can be read off so easily from the map is
immensely pleasing.

— R. T. Curtis, Symmetric Generation of Groups ,
     Cambridge University Press, 2007, page 39

Other poetic remarks related to the simple group of order 168—

Powered by WordPress