and a Finite Model
Notes by Steven H. Cullinane
May 28, 2007
Part I: A Model of Space-Time
Click on picture to enlarge.
Part II: A Corresponding Finite Model
The Klein quadric also occurs in a finite model of projective 5-space. See a 1910 paper:
G. M. Conwell, The 3-space PG(3,2) and its group, Ann. of Math. 11, 60-76.
Conwell discusses the quadric, and the related Klein correspondence, in detail. This is noted in a more recent paper by Philippe Cara:
Related material:
The projective space PG(5,2), home of the Klein quadric in the finite model, may be viewed as the set of 64 points of the affine space AG(6,2), minus the origin.
The 64 points of this affine space may in turn be viewed as the 64 hexagrams of the Classic of Transformation, China’s I Ching.
There is a natural correspondence between the 64 hexagrams and the 64 subcubes of a 4x4x4 cube. This correspondence leads to a natural way to generate the affine group AGL(6,2). This may in turn be viewed as a group of over a trillion natural transformations of the 64 hexagrams.
Thanks for this.
Are you familar with Terence McKenna’s work with I Ching?
Comment by SuSu — Tuesday, May 29, 2007 @ 3:02 pm
No, and I don’t want to be. I checked out McKenna and found this site on the aging druggie. I didn’t like the hippie scene in the sixties and I don’t like it now. Booze was always my drug of choice. Still, checking further, I found that McKenna’s afterword to Dick’s In Pursuit of Valis was well written.
Related material:
Ontology Alignment,
Three Souls,
Second Billing,
and Logos.
Comment by m759&nextdate=5%2F3%2F2006+23%3A59%3A59.999" target="_blank — Tuesday, May 29, 2007 @ 7:09 pm