Log24

Friday, October 25, 2024

The Space Structures Underlying M24

Filed under: General — Tags: , — m759 @ 12:24 am

The structures of the title are the even subsets of a six-set and of
an eight-set, viewed modulo set complementation.

The "Brick Space" model of PG(5,2) —

Brick space: The 2x4 model of PG(5,2)

For the M24 relationship between these spaces, of 15 and of 63 points,
see G. M. Conwell's 1910 paper "The 3-Space PG (3,2) and Its Group,"
as well as Conwell heptads in this  journal.

Thursday, October 24, 2024

Space Structure

Filed under: General — Tags: , , — m759 @ 6:31 pm

Description of a book to be published in November —

Note the phrase "underlying combinatorial structure." AI scholium —

Thursday, September 12, 2024

Structures

Filed under: General — Tags: — m759 @ 11:30 pm

The New York Times  asks above,

"Are art and science forever divided?
Or are they one and the same?"

A poet's approach . . . 

“The old man of ‘Sailing to Byzantium’ imagined the city’s power
as being able to ‘gather’ him into ‘the artifice of eternity’—
presumably into ‘monuments of unageing intellect,’ immortal and
changeless structures representative of or embodying all knowledge,
linked like a perfect machine at the center of time.”

— Karl Parker, Yeats’ Two Byzantiums 

A mathematician's approach . . .

Compare and contrast the 12-dimensional extended binary Golay code
with the smaller 8-dimensional code below, which also has minimum
weight 8 . . .


From Sept. 20, 2022 —


From September 18, 2022

Perhaps someone can prove there is no  way that adding more generating
codewords can turn the cube-motif code into the Golay code, or perhaps
someone can supply such generating codewords.


Sunday, February 4, 2024

Doily vs. Inscape: Same Abstract Structure, Different Models

Filed under: General — Tags: , — m759 @ 1:24 pm

My own term "inscape" names a square  incarnation of what is also
known as the "Cremona-Richmond configuration," the "generalized
quadrangle of order (2, 2)," and the "doily." —

Monday, December 11, 2023

Structure

Filed under: General — m759 @ 11:01 am

See the title in this journal.

Saturday, September 30, 2023

Underlying Symbolic Structures

Filed under: General — Tags: — m759 @ 8:27 pm

"As McCarthy peers through the screen, or veil, of technological modernity
to reveal the underlying symbolic structures of human experience, 
The Making of Incarnation  weaves a set of stories one inside the other,
rings within rings, a perpetual motion machine."

— Amazon.com description of a novel published on All Souls' Day 
    (Dia de los Muertos), 2021.

See also the underlying symbolic structures of Boolean functions . . .
as discussed, for instance, on Sept. 23 at medium.com

Sunday, May 14, 2023

“The Structure of Space”

Filed under: General — Tags: , , , — m759 @ 1:44 am

The above title. by one Lee E. Mosley, is from 

"CreateSpace Independent Publishing Platform;
1st edition (June 4, 2017).
"

From the preface —

"So simple . . . ."

"Building blocks"? — See the literature of pop physics.

Natural companions to building blocks, are, of course, 
"permutation groups."

See the oeuvre  of physics writer John Baez —
For instance, in a Log24 post from the above Mosley
publication date — June 4, 2017 —

Wednesday, April 19, 2023

New Types of Combinatorial Structure

Filed under: General — Tags: , — m759 @ 11:18 am

(For the above title, see the previous post.)

For instance:  "Zero Sum," April 6, 2023 —

'Galois Additions of Space Partitions'

 

Monday, November 14, 2022

Plot Structure

Filed under: General — Tags: , — m759 @ 2:21 pm

From Peter J. Cameron's weblog today

"It happens sometimes that researchers working in different fields
study the same thing, give it different names, and don’t realise that
there is further work on the subject somewhere else…."

Cameron's example of a theorem connecting work on 
the same thing in different fields —

"Theorem  A partition Δ is equitable for a graph Γ if and only if
the projection matrix onto the subspace of functions constant
on parts of Δ commutes with the adjacency matrix of Γ."

A phrase from Cameron's remarks today —

"Thus we have to consider 'plot structure'…."

For more remarks on different fields and plot structure , see
"Quantum Tesseract Theorem" in this  weblog.

Monday, October 10, 2022

Hidden Structure

The following note from Oct. 10, 1985, was not included
in my finitegeometry.org/sc pages.

'Dreaming Jewels' from October 10, 1985

See some related group actions on the cuboctahedron at right above.

Friday, April 22, 2022

“The History of the Concept of Structure”

Filed under: General — Tags: , — m759 @ 2:41 pm
 

Derrida was the final speaker on the final day. He remained a silent observer for much of the symposium. He looked on as Lacan rose to his feet with obscure questions at the end of each lecture, and as Barthes gently asked for clarification on various moot points. Eventually, however, Derrida, unused to speaking to large audiences, took to the stage, quietly shuffled his notes, and began, ‘Perhaps something has occurred in the history of the concept of structure that could be called an “event”…’ He spoke for less than half an hour. But by the time he was finished the entire structuralist project was in doubt, if not dead. An event had occurred: the birth of deconstruction.

Salmon, Peter. An Event, Perhaps  (pp. 2-3).
Verso Books (Oct. 2020). Kindle Edition. 

Salmon today at Arts & Letters Daily

Thursday, February 3, 2022

Four-Color Structures (Review)

Filed under: General — Tags: , , , — m759 @ 1:30 pm

Four-color decomposition applied to the 8-point binary affine space

Miracle Octad Generator — Analysis of Structure

For those who prefer art that is less abstract — Heartland Sutra.

Monday, November 29, 2021

Abstraction and Structure

Filed under: General — Tags: , , , — m759 @ 6:46 pm

'The Nothing That Is' — The hidden structure of 'Vertical-Horizontal Composition,' 1916, by Sophie Taeuber-Arp

For the mathematical  properties of the vertical and horizontal
white grid lines above, see the Cullinane theorem.

Sunday, November 14, 2021

Greek-Letter Structures

Filed under: General — m759 @ 6:29 pm
 

Α, ϴ, Ω 

Alpha,    Theta,    Omega

Related line

"Falls  the  Shadow."
 

Also from a Culture Desk  of sorts:

Related art — Background colors for the letters in the NPR logo

Friday, October 22, 2021

Frye on Structure

Filed under: General — m759 @ 10:00 am

In search of Frye's "powder-room of the Muses" — See 3×3.

Thursday, June 17, 2021

Syntactic Structures

Filed under: General — m759 @ 11:13 pm

This post was suggested by the repeated occurrences of 
the word "syntactic" in . . .

John F. Fleischauer
(essay date Summer 1989)

Last Updated on May 6, 2015, by eNotes Editorial.
Word Count: 5932

SOURCE: “John Updike's Prose Style:
Definition at the Periphery of Meaning
,” in 
Critique: Studies in Contemporary Fiction, 
Vol. XXX, No. 4, Summer, 1989, pp. 277–90.

"In the following essay, Fleischauer examines
the language and syntax of Updike's prose, particularly
aspects of irony, symbolism, and literary detachment
evoked in his use of descriptive vocabulary and imagery.
"

_______________________________________________________________

“Moons and Junes and Ferris wheels . . . .” — Song lyric quoted in
the post Searching for the May Queen: The Amsterdam Windows .

Saturday, December 5, 2020

Structured

Filed under: General — Tags: — m759 @ 10:00 pm

3x3 array, title in center, for film 'The Group'

See as well Ballet Blanc .

Friday, November 13, 2020

Deep State, Deep Mind, Deep Structure

Filed under: General — Tags: — m759 @ 2:08 pm

. . . .

In Weber’s hands, the professor and the politician
are not figures to be joined. Each remains a lonely hero
of heavy burden, sent to ride against his particular foe:
the overly structured institution of the modern mind,
the overly structured institution of the modern state.”

 

See also Chomsky in this  journal.

Thursday, September 17, 2020

Structure and Mutability . . .

Continues in The New York Times :

"One day — 'I don’t know exactly why,' he writes — he tried to
put together eight cubes so that they could stick together but
also move around, exchanging places. He made the cubes out
of wood, then drilled a hole in the corners of the cubes to link
them together. The object quickly fell apart.

Many iterations later, Rubik figured out the unique design
that allowed him to build something paradoxical:
a solid, static object that is also fluid…." — Alexandra Alter

Another such object: the eightfold cube .

Thursday, August 6, 2020

Structure and Mutability . . .

Filed under: General — Tags: , , — m759 @ 8:33 pm

Continues.

See a Log24 search for Beadgame Space.

This  post might be regarded as a sort of “checked cell”
for the above concepts listed as tags . . .

Related material from a Log24 search for Structuralism

IMAGE- Stella Octangula and Claude Levi-Strauss

Wednesday, June 3, 2020

Structure

Filed under: General — Tags: — m759 @ 2:15 pm

The New Republic , June 1, 2020

“Ehrenreich is a writer of structure:
Her work moves level by level,
starting at the surface of
our most obvious inequalities
before pulling back to reveal
the subtleties of systemic failure.”

Sure she is. Sure it does.

Saturday, May 23, 2020

Structure for Linguists

Filed under: General — Tags: , — m759 @ 11:34 am

"MIT professor of linguistics Wayne O’Neil died on March 22
at his home in Somerville, Massachusetts."

MIT Linguistics, May 1, 2020

The "deep  structure" above is the plane cutting the cube in a hexagon
(as in my note Diamonds and Whirls of September 1984).

See also . . .

IMAGE- Redefining the cube's symmetry planes: 13 planes, not 9.

Wednesday, December 11, 2019

Miracle Octad Generator Structure

Miracle Octad Generator — Analysis of Structure

(Adapted from Eightfold Geometry, a note of April 28, 2010.
See also the recent post Geometry of 6 and 8.)

Thursday, September 12, 2019

Tetrahedral Structures

Filed under: General — Tags: — m759 @ 8:11 pm

In memory of a Church emissary who reportedly died on September 4,
here is a Log24 flashback reposted on that date —

Related poetry —

"To every man upon this earth,
Death cometh soon or late.
And how can man die better
Than facing fearful odds,
For the ashes of his fathers,
and the temples of his gods…?"

— Macaulay, quoted in the April 2013 film "Oblivion"

Related fiction —

Pattern and Structure

Filed under: General — m759 @ 6:11 pm

From the previous post

" . . . Only by the form, the structure,
Can words or music reach
The stillness . . . ."

— Adapted from T. S. Eliot's Four Quartets 
     
by replacing "pattern" with "structure."

Other such replacements

Form and Structure

Filed under: General — m759 @ 11:26 am

In memory of George F. Simmons, a mathematician
who reportedly died Aug. 6 at the age of 94  —

"It seems to me that a worthwhile distinction can be made
between two types of pure mathematics.  The first …
centers attention on particular functions and theorems
which are rich in meaning and history…. The second is
concerned primarily with form and structure."

— George F. Simmons, Introduction to Topology and
     Modern Analysis
(1963)

" . . . Only by the form, the structure, 
Can words or music reach
The stillness . . . ."

— Adapted from T. S. Eliot's Four Quartets 
     
by replacing "pattern" with "structure."

Two posts related to Eliot's theological interests:

Form:  Jan. 10, 2012.
Structure:  June 6, 2016.

Sunday, August 18, 2019

Structure at Pergamon

Filed under: General — Tags: , , — m759 @ 2:35 am

Some background for The Epstein Chronicles

“What modern painters
are trying to do,
if they only knew it,
is paint invariants.”

— James J. Gibson, Leonardo,
Vol. 11, pp. 227-235.
Pergamon Press Ltd., 1978

See also Robert Maxwell,
Frank Oppenheimer,
and the history of Leonardo .

Click the above Pergamon Press image
for Pergamon-related material.

Tuesday, August 13, 2019

Putting the Structure  in Structuralism

Filed under: General — Tags: , , , — m759 @ 8:34 pm

The Matrix of Lévi-Strauss —

(From his “Structure and Form: Reflections on a Work by Vladimir Propp.”
Translated from a 1960 work in French. It appeared in English as
Chapter VIII of Structural Anthropology, Volume 2  (U. of Chicago Press, 1976).
Chapter VIII was originally published in Cahiers de l’Institut de Science
Économique Appliquée 
, No. 9 (Series M, No. 7) (Paris: ISEA, March 1960).)

The structure  of the matrix of Lévi-Strauss —

Illustration from Diamond Theory , by Steven H. Cullinane (1976).

The relevant field of mathematics is not Boolean algebra, but rather
Galois geometry.

Monday, August 5, 2019

The Structure of Nada

Filed under: General — Tags: , — m759 @ 12:41 pm
 

“What did he fear? It was not a fear or dread, It was a nothing that he knew too well. It was all a nothing and a man was a nothing too. It was only that and light was all it needed and a certain cleanness and order. Some lived in it and never felt it but he knew it all was nada y pues nada y nada y pues nada. Our nada who art in nada, nada be thy name thy kingdom nada thy will be nada in nada as it is in nada. Give us this nada our daily nada and nada us our nada as we nada our nadas and nada us not into nada but deliver us from nada; pues nada. Hail nothing full of nothing, nothing is with thee. He smiled and stood before a bar with a shining steam pressure coffee machine.”

— From Ernest Hemingway,
A Clean, Well-Lighted Place

 

Sanskrit (transliterated) —

    nada:
  
  
  the universal sound, vibration.

“So Nada Brahma  means not only God the Creator
is sound; but also (and above all), Creation, the cosmos,
the world, is sound.  And: Sound is the world.”

— Joachim-Ernst Berendt,   
   author of Nada Brahma

 

Grace under Pressure  meets  Phonons under Strain .

Sunday, June 16, 2019

Eliot’s Perpetual Motion Structure*

Filed under: General — Tags: , , , , — m759 @ 11:00 am

From a date described by Peter Woit in his post
Not So Spooky Action at a Distance” (June 11) —

See also The Lost Well.

 * “As a Chinese jar….” — Four Quartets

Friday, May 3, 2019

The Structure of Story Space

Filed under: General — Tags: , , , — m759 @ 11:11 am

T. S. Eliot

Four Quartets

. . . Only by the form, the pattern,
Can words or music reach
The stillness, as a Chinese jar still
Moves perpetually in its stillness.

Lévi-Strauss

A Permanent Order of Wondertale Elements

In Vol. I of Structural Anthropology , p. 209, I have shown that this analysis alone can account for the double aspect of time representation in all mythical systems: the narrative is both “in time” (it consists of a succession of events) and “beyond” (its value is permanent). With regard to Propp’s theories my analysis offers another advantage: I can reconcile much better than Propp himself  his principle of a permanent order of wondertale elements with the fact that certain functions or groups of functions are shifted from one tale to the next (pp. 97-98. p. 108). If my view is accepted, the chronological succession will come to be absorbed into an atemporal matrix structure whose form is indeed constant. The shifting of functions is then no more than a mode of permutation (by vertical columns or fractions of columns).

Or by congruent quarter-sections.

Friday, November 30, 2018

Latin-Square Structure

Filed under: G-Notes,General,Geometry — m759 @ 2:56 am

Continued from March 13, 2011

"…as we saw, there are two different Latin squares of order 4…."
— Peter J. Cameron, "The Shrikhande Graph," August 26, 2010

Cameron counts Latin squares as the same if they are isotopic .
Some further context for Cameron's remark—

A new website illustrates a different approach to Latin squares of order 4 —

https://shc7596.wixsite.com/website .

Tuesday, October 30, 2018

Story Structure, Story Space

Filed under: General — Tags: , — m759 @ 1:00 pm

Constance Grady at Vox  today on a new Netflix series —

We don’t yet have a story structure that allows witches to be powerful for long stretches of time without men holding them back. And what makes the new Sabrina  so exciting is that it seems to be trying to build that story structure itself, in real time, to find a way to let Sabrina have her power and her freedom.

It might fail. But if it does, it will be a glorious and worthwhile failure — the type that comes with trying to pioneer a new kind of story.

See also Story Space  in this  journal.

Sunday, August 5, 2018

Board Structure

Filed under: General,Geometry — m759 @ 11:48 am

http://www.log24.com/log/pix18/180805-I_Ching_Geometry-500w.jpg

http://www.log24.com/log/pix18/180805-White_Queen_d1-500w.jpg

Go Set a Structure

Filed under: General — m759 @ 11:00 am

See the title in this journal.

Thursday, April 5, 2018

Structure

Filed under: General,Geometry — Tags: — m759 @ 11:00 pm

Epiphany

Geometry of the I Ching (Box Style)

Box-style I Ching , January 6, 1989

Thursday, February 16, 2017

Nested Projective Structures

Filed under: General,Geometry — m759 @ 11:00 pm

Two views of nested sequences of projective structures —

From this journal in April 2013:

From the arXiv in September 2014

Saniga's reference [6] is to a paper submitted to the arXiv in May 2014. 

My own note of April 30, 2013, concludes with an historical reference
that indicates the mathematics underlying both my own and Saniga's
remarks —

The exercises at the end of Ch. II in Veblen and Young's 
Projective Geometry, Vol. I  (Ginn, 1910). For instance:

Saturday, September 24, 2016

Core Structure

Filed under: General,Geometry — Tags: , — m759 @ 6:40 am

For the director of "Interstellar" and "Inception"

At the core of the 4x4x4 cube is …

 


                                                      Cover modified.

The Eightfold Cube

Friday, August 26, 2016

Structure a Set, Set a Structure

Filed under: General,Geometry — m759 @ 11:32 pm

http://www.log24.com/log/pix11/110219-SquareRootQuaternion.jpg

A star figure and the Galois quaternion.

The square root of the former is the latter.

See also a search in this journal for "Set a Structure."

Sunday, June 26, 2016

Common Core versus Central Structure

Filed under: General,Geometry — Tags: , , — m759 @ 2:56 pm

Rubik's Cube Core Assembly — Swarthmore Cube Project, 2008 —

"Children of the Common Core" —

There is also a central structure within Solomon's  Cube

'Children of the Central Structure,' adapted from 'Children of the Damned'

For a more elaborate entertainment along these lines, see the recent film

"Midnight Special" —

Tuesday, June 21, 2016

The Central Structure

Filed under: General,Geometry — Tags: , , — m759 @ 8:00 am

“The central poem is the poem of the whole,
The poem of the composition of the whole”

— Wallace Stevens, “A Primitive like an Orb”

The symmetries of the central four squares in any pattern
from the 4×4 version of the diamond theorem  extend to
symmetries of the entire pattern.  This is true also of the
central eight cubes in the 4×4×4  Solomon’s cube .

Monday, June 6, 2016

Structure and Sense

Filed under: General,Geometry — Tags: , — m759 @ 2:01 pm

"… the war of 70-some years ago
has already become something like the Trojan War
had been for the Homeric bards:
a major event in the mythic past
that gives structure and sense to our present reality."

— Justin E. H. Smith, a professor of philosophy at
     the University of Paris 7–Denis Diderot,
     in the New York Times  column "The Stone"
     (print edition published Sunday, June 5, 2016)

In memory of a British playwright who reportedly
died at 90 this morning —

Structure

Sense

A set of 7 partitions of the 2x2x2 cube that is invariant under PSL(2, 7) acting on the 'knight' coordinatization

Monday, April 4, 2016

The Bauersfeld Structure*

Filed under: General,Geometry — m759 @ 8:31 pm

"If you would be a poet, create works capable of
answering the challenge of apocalyptic times,
even if this meaning sounds apocalyptic."

Lawrence Ferlinghetti

"It's a trap!"

Ferlinghetti's friend Erik Bauersfeld,
     who reportedly died yesterday at 93

* See also, in this journal, Galois Cube and Deathtrap.

Friday, February 19, 2016

Go Set a Structure

Filed under: General — m759 @ 12:00 pm

Continues, in memory of author Harper Lee.

For some structures, see Logo and Windows.

Monday, September 28, 2015

Hypercube Structure

Filed under: General,Geometry — m759 @ 1:01 am

Click to enlarge:

Two views of tesseracts as 4D vector spaces over GF(2)

For the hypercube as a vector space over the two-element field GF(2),
see a search in this journal for Hypercube + Vector + Space .

For connections with the related symplectic geometry, see Symplectic
in this journal and Notes on Groups and Geometry, 1978-1986.

For the above 1976 hypercube (or tesseract ), see "Diamond Theory,"
by Steven H. Cullinane, Computer Graphics and Art , Vol. 2, No. 1,
Feb. 1977, pp. 5-7.

Tuesday, July 14, 2015

Go Set a Structure

Filed under: General — Tags: , , , , — m759 @ 2:45 pm

Saturday, June 27, 2015

A Single Finite Structure

Filed under: General,Geometry — Tags: — m759 @ 12:15 pm

"It is as if one were to condense
all trends of present day mathematics
onto a single finite structure…."

— Gian-Carlo Rota, foreword to
A Source Book in Matroid Theory ,
Joseph P.S. Kung, Birkhäuser, 1986

"There is  such a thing as a matroid."

— Saying adapted from a novel by Madeleine L'Engle

Related remarks from Mathematics Magazine  in 2009 —

See also the eightfold cube —

The Eightfold Cube

 .

Friday, October 31, 2014

Structure

Filed under: General,Geometry — m759 @ 3:00 am

On Devil’s Night

Introducing a group of 322,560 affine transformations of Dürer’s ‘Magic’ Square

IMAGE- Introduction to 322,560 Affine Transformations of Dürer's 'Magic' Square

The four vector-space substructures of digits in 1st, 2nd, 3rd, 4th place,
together with the diamond theorem, indicate that Dürer’s square “minus one”
can be transformed by permutations of rows, columns, and quadrants to a
square with (decimal) digits in the usual numerical order, increasing from
top left to bottom right. Such permutations form a group of order 322,560.

(Continued from Vector Addition in a Finite Field, Twelfth Night, 2013.)

Saturday, September 20, 2014

Symplectic Structure

Filed under: General,Geometry — Tags: — m759 @ 11:30 am

(Continued)

The fictional zero theorem  of Terry Gilliam's current film
by that name should not be confused with the zero system
underlying the diamond theorem.

Sunday, September 14, 2014

Structure

Filed under: General — Tags: , — m759 @ 6:00 pm

In memory of cartoonist Tony Auth, who reportedly died today

From a Saturday evening post:

“A simple grid structure makes both evolutionary and developmental sense.”

From a post of June 22, 2003:

Confession in 'The Seventh Seal'

Sunday, August 24, 2014

Symplectic Structure…

In the Miracle Octad Generator (MOG):

The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.

The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.

Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.

Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements  in two pictures, each showing 10 of the
3-subsets.

This pair of pictures corresponds to the 20 Rosenhain tetrads  among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads  among the 35 lines.

See Rosenhain and Göpel tetrads in PG(3,2). Some further background:

Wednesday, August 13, 2014

Symplectic Structure continued

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 pm

Some background for the part of the 2002 paper by Dolgachev and Keum
quoted here on January 17, 2014 —

Related material in this journal (click image for posts) —

Wednesday, August 6, 2014

Symplectic Structure*

Filed under: General,Geometry — Tags: — m759 @ 1:00 pm

From Gotay and Isenberg, "The Symplectization of Science,"
Gazette des Mathématiciens  54, 59-79 (1992):

"… what is the origin of the unusual name 'symplectic'? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure 'line complex group' the 'symplectic group.'
… the adjective 'symplectic' means 'plaited together' or 'woven.'
This is wonderfully apt…."

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  structure** now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).

Some related passages from the literature:

http://www.log24.com/log/pix10B/100915-SteinbergOnChevalleyGroups.jpg

* The title is a deliberate abuse of language .
For the real definition of "symplectic structure," see (for instance)
"Symplectic Geometry," by Ana Cannas da Silva (article written for
Handbook of Differential Geometry, vol 2.) To establish that the
above figure is indeed symplectic , see the post Zero System of
July 31, 2014.

** See Steven H. Cullinane, Inscapes III, 1986

Thursday, May 22, 2014

Visual Structure

Filed under: General,Geometry — Tags: — m759 @ 8:07 pm

“Chaos is order yet undeciphered.”

— The novel The Double , by José Saramago,
on which the recent film "Enemy" was based

For Louise Bourgeois — a post from the date of Galois's death—

http://www.log24.com/log/pix11B/110715-GaloisMemorial-Lg.jpg

For Toronto — Scene from a film that premiered there on Sept. 8, 2013:

Related material: This journal on that date, Sept. 8, 2013:

"I still haven't found what I'm looking for." — Bono

"In fact Surrealism found what it had been looking for
from the first in the 1920 collages [by Max Ernst],
which introduced an entirely original scheme of
visual structure…."

— Rosalind Krauss quoting André Breton*
in "The Master's Bedroom"

* "Artistic Genesis and Perspective of Surrealism"
(1941),
   in Surrealism and Painting  (New York,
Harper & Row, 1972, p. 64).

See also Damnation Morning in this journal.

Saturday, September 7, 2013

Structure and Character

Filed under: General — Tags: , , , , — m759 @ 9:00 pm

(Continued from May 4, 2013)

"I saw a werewolf with a Chinese menu in his hand
Walking through the streets of Soho in the rain"

Warren Zevon

"It is well
That London, lair of sudden
Male and female darknesses,
Has broken her spell."

— D. H. Lawrence in a poem on a London blackout
during a bombing raid in 1917. See also today's previous
posts, Down Under and Howl.

Backstory— Recall, from history's nightmare on this date,
the Battle of Borodino and the second  London Blitz.

Saturday, May 4, 2013

Structure vs. Character

Filed under: General — Tags: , , — m759 @ 12:00 pm

"… Reality is not a given whole. An understanding of this,
a respect for the contingent, is essential to imagination
as opposed to fantasy. Our sense of form, which is an
aspect of our desire for consolation, can be a danger to
our sense of reality as a rich receding background.
Against the consolations of form, the clean crystalline
work, the simplified fantasy-myth, we must pit the
destructive power of the now so unfashionable naturalistic
idea of character.

Real people are destructive of myth, contingency is
destructive of fantasy and opens the way for imagination.
Think of the Russians, those great masters of the contingent.
Too much contingency of course may turn art into journalism.
But since reality is incomplete, art must not be too much
afraid of incompleteness. Literature must always represent a
battle between real people and images; and what it requires
now is a much stronger and more complex conception of the
former."

— Iris Murdoch, January 1961, "Against Dryness"

See also the recent posts Structure and Character.

Friday, May 3, 2013

Structure

Filed under: General,Geometry — Tags: , — m759 @ 6:00 pm

For the Church of St. Frank:

See Strange Correspondences and Eightfold Geometry.

Correspondences , by Steven H. Cullinane, August 6, 2011

The rest is the madness of art.”

Sunday, December 9, 2012

Deep Structure

Filed under: General,Geometry — Tags: , — m759 @ 10:18 am

The concept of "deep structure," once a popular meme,
has long been abandoned by Chomskians.

It still applies, however, to the 1976 mathematics, diamond theory  ,
underlying the formal patterns discussed in a Royal Society paper
this year.

A review of deep structure, from the Wikipedia article Cartesian linguistics

[Numbers in parentheses refer to pages in the original 1966 Harper edition of Chomsky's book Cartesian Linguistics .]

Deep structure vs. surface structure

"Pursuing the fundamental distinction between body and mind, Cartesian linguistics characteristically assumes that language has two aspects" (32). These are namely the sound/character of a linguistic sign and its significance (32). Semantic interpretation or phonetic interpretation may not be identical in Cartesian linguistics (32). Deep structures are often only represented in the mind (a mirror of thought), as opposed to surface structures, which are not.

Deep structures vary less between languages than surface structures. For instance, the transformational operations to derive surface forms of Latin and French may obscure common features of their deep structures (39). Chomsky proposes, "In many respects, it seems to me quite accurate, then, to regard the theory of transformational generative grammar, as it is developing in current work, as essentially a modern and more explicit version of the Port-Royal theory" (39).

Summary of Port Royal Grammar

The Port Royal Grammar is an often cited reference in Cartesian Linguistics  and is considered by Chomsky to be a more than suitable example of Cartesian linguistic philosophy. "A sentence has an inner mental aspect (a deep structure that conveys its meaning) and an outer, physical aspect as a sound sequence"***** This theory of deep and surface structures, developed in Port Royal linguistics, meets the formal requirements of language theory. Chomsky describes it in modern terms as "a base system that generates deep structures and a transformational system that maps these into surface structures", essentially a form of transformational grammar akin to modern studies (42).

The corresponding concepts from diamond theory are

"Deep structure"— The line diagrams indicating the underlying
structure of varying patterns

"A base system that generates deep structures"—
Group actions on square arrays for instance, on the 4×4 square

"A transformational system"— The decomposition theorem 
that maps deep structure into surface structure (and vice-versa)

Sunday, November 29, 2009

“A Structured Sacrifice”

Filed under: General — m759 @ 6:29 pm

Today's homily– from The New York Times–

Latin Mass Appeal.

Related art– 

Black Friday,
Midnight in Dostoevsky, and
A Cross for the Goat Men.

Sunday, November 17, 2024

Weyl, Symmetry, and the MOG
(HTML version of an earlier post)

Filed under: General — Tags: , — m759 @ 1:16 am

Some historical background for a new book by Robert T. Curtis,
The Art of Working with the Mathieu Group M24 

"Space is another example of an entity endowed with a structure.
Here the elements are points, and the structure is established
in terms of certain basic relations between points such as:
A, B, C lie on a straight line, AB is congruent CD, and the like.
What we learn from our whole discussion and what has indeed
become a guiding principle in modern mathematics is this lesson:
Whenever you have to do with a structure endowed entity Σ
try to determine its group of automorphisms
, the group of those
element-wise transformations which leave all structural relations
undisturbed. You can expect to gain a deep insight into the
constitution of Σ in this way. After that you may start to investigate
symmetric configurations of elements, i.e. configurations which are
invariant under a certain subgroup of the group of all automorphisms;
and it may be advisable, before looking for such configurations,
to study the subgroups themselves, e.g. the subgroup of those
automorphisms which leave one element fixed, or leave two distinct
elements fixed, and investigate what discontinuous or finite subgroups
there exist, and so forth."

— Hermann Weyl, Symmetry, Princeton University Press, 1952.
(Page 144 in the Princeton Science Library edition of 1989.)

4×4 Square
       
       
       
       

This square's automorphism group
has 322,560 transformations.

— The diamond theorem  of Steven H. Cullinane.

4×6 Rectangle
           
           
           
           

This rectangle's automorphism group
has 244,823,040 transformations.

— The Miracle Octad Generator  (MOG) of Robert T. Curtis.

The rectangle's automorphism group contains the
square's as a subgroup. The square's automorphism
group leaves invariant a set of 30 eight-subsquare sets
called affine hyperplanes. The rectangle's automorphism
group leaves invariant a set of 759 eight-subsquare sets
called octads.

View this post as a PDF.

Saturday, November 16, 2024

Automorphism Groups: Examples for Weyl

Filed under: General — Tags: — m759 @ 3:17 am

View a PDF of this post.

Keywords: Weyl, symmetry, group, automorphism,
octad, MOG, Curtis, Cullinane.

Wednesday, November 13, 2024

Sigma Sweethearts

Filed under: General — Tags: — m759 @ 10:17 pm

Related reading — Valéry + group in this journal.

Wednesday, October 23, 2024

The Delta Transform

Filed under: General — Tags: , , , — m759 @ 7:04 am

Rothko — "… the elimination of all obstacles between the painter and
the idea, and between the idea and the observer."

Walker Percy has similarly discussed elimination of obstacles between
the speaker and the word, and between the word and the hearer.

Walker Percy's chapter on 'The Delta Factor' from 'Message in the Bottle'

Click images to enlarge.

Related mathematics —

The source: http://finitegeometry.org/sc/gen/typednotes.html.

A document from the above image —

AN INVARIANCE OF SYMMETRY

BY STEVEN H. CULLINANE

We present a simple, surprising, and beautiful combinatorial
invariance of geometric symmetry, in an algebraic setting.

DEFINITION. A delta transform of a square array over a 4-set is
any pattern obtained from the array by a 1-to-1 substitution of the
four diagonally-divided two-color unit squares for the 4-set elements.

THEOREM. Every delta transform of the Klein group table has
ordinary or color-interchange symmetry, and remains symmetric under
the group G of 322,560 transformations generated by combining
permutations of rows and colums with permutations of quadrants.

PROOF (Sketch). The Klein group is the additive group of GF (4);
this suggests we regard the group's table  T as a matrix over that
field. So regarded, T is a linear combination of three (0,1)-matrices
that indicate the locations, in  T, of the 2-subsets of field elements.
The structural symmetry of these matrices accounts for the symmetry
of the delta transforms of  T, and is invariant under G.

All delta transforms of the 45 matrices in the algebra generated by
the images of  T under G are symmetric; there are many such algebras. 

THEOREM. If 1 m ≤ n2+2, there is an algebra of 4m
2n x 2n matrices over GF(4) with all delta transforms symmetric.

An induction proof constructs sets of basis matrices that yield
the desired symmetry and ensure closure under multiplication.

REFERENCE

S. H. Cullinane, Diamond theory (preprint).

Update of 1:12 AM ET on Friday, Oct. 25, 2024 —

The above "invariance of symmetry" document was written in 1978
for submission to the "Research Announcements" section of the
Bulletin of the American Mathematical Society .  This pro forma 
submission was, of course, rejected.  Though written before
I learned of similar underlying structures in the 1974 work of
R. T. Curtis on his "Miracle Octad Generator," it is not without
relevance to his work.

Thursday, October 10, 2024

Position Paper

Filed under: General — m759 @ 4:53 pm

Image reposted here on 9 October last year

Moulin Bleu

Animated 2x2 kaleidoscope figures from Diamond Theory

Kaleidoscope turning…
Shifting pattern
within unalterable structure…

— Roger Zelazny,  Eye of Cat   

Instagram today —

Related art —

From part two of the recent film triptych "Kinds of Kindness" . . .

Window with Couch and Cat

Tuesday, September 24, 2024

Design Workshop

Filed under: General — Tags: — m759 @ 12:01 am

The New York Times  yesterday reported that Marxist theorist
Fredric Jameson died on Sunday. 

Related material from a search for Jameson in this  journal —

Rosalind Krauss in The Optical Unconscious
(MIT Press paperback, 1994):

For a presentation of the Klein Group, see Marc Barbut, "On the Meaning of the Word 'Structure' in Mathematics," in Introduction to Structuralism, ed. Michael Lane (New York: Basic Books, 1970). Claude Lévi-Strauss uses the Klein group in his analysis of the relation between Kwakiutl and Salish masks in The Way of the Masks, trans. Sylvia Modelski (Seattle: University of Washington Press, 1982), p. 125; and in relation to the Oedipus myth in "The Structural Analysis of Myth," Structural Anthropology, trans. Claire Jackobson [sic] and Brooke Grundfest Schoepf (New York: Basic Books, 1963). In a transformation of the Klein Group, A. J. Greimas has developed the semiotic square, which he describes as giving "a slightly different formulation to the same structure," in "The Interaction of Semiotic Constraints," On Meaning (Minneapolis: University of Minnesota Press, 1987), p. 50. Jameson uses the semiotic square in The Political Unconscious (see pp. 167, 254, 256, 277) [Fredric Jameson, The Political Unconscious: Narrative as a Socially Symbolic Act (Ithaca: Cornell University Press, 1981)], as does Louis Marin in "Disneyland: A Degenerate Utopia," Glyph, no. 1 (1977), p. 64.

Sunday, September 22, 2024

The Portable Divinity Box

Filed under: General — Tags: , , , , — m759 @ 9:48 am

In 1978, Harvard moved a structure known as the Morton Prince House
from Divinity Avenue to Prescott Street, where it occupies the former Hurlbut
Parking Lot, which was the vista from my 1960-61 freshman room.

From the Log24 post "Very Stable Kool-Aid"

A Letter from Timothy Leary, Ph.D., July 17, 1961

Harvard University
Department of Social Relations
Center for Research in Personality
Morton Prince House
5 Divinity Avenue
Cambridge 38, Massachusetts

July 17, 1961

Dr. Thomas S. Szasz
c/o Upstate Medical School
Irving Avenue
Syracuse 10, New York

Dear Dr. Szasz:

Your book arrived several days ago. I've spent eight hours on it and realize the task (and joy) of reading it has just begun.

The Myth of Mental Illness is the most important book in the history of psychiatry.

I know it is rash and premature to make this earlier judgment. I reserve the right later to revise and perhaps suggest it is the most important book published in the twentieth century.

It is great in so many ways–scholarship, clinical insight, political savvy, common sense, historical sweep, human concern– and most of all for its compassionate, shattering honesty.

. . . .

 

Morton Prince, a Boston neurologist, founded the Journal of Abnormal Psychology in 1906 as an outlet especially for those who took a psychogenic view of neurotic disorders. Through experiments with hypnotism, he added appreciably to knowledge of subconscious and coconscious mental processes; The Dissociation of a Personality (Prince, 1905) still ranks as a classic. He early saw that studying normal people in the depth and detail with which one studied patients could make significant contributions to our whole understanding of human nature. Before his death he established and briefly directed the Harvard Psychological Clinic, devising the research environment out of which presently sprang major contributions to the study of personality.

— "Who Was Morton Prince?," by R. W. White,
Journal of Abnormal Psychology  1992 November;
101(4):604-6.  doi: 10.1037//0021-843x.101.4.604.

See as well Who Was R. W. White?

Friday, August 2, 2024

For Harlan Kane:  The Stevens Title

Filed under: General — m759 @ 6:00 am

Things of August*


Related narratives:

Related mathematics:

'Dreaming Jewels' from October 10, 1985

*

Wednesday, July 31, 2024

My Links — Steven H. Cullinane

Filed under: — m759 @ 4:14 pm

Main webpage of record . . .

Encyclopedia of Mathematics  https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

Supplementary PDF from Jan. 6, 2006  https://encyclopediaofmath.org/images/3/37/Dtheorem.pdf

Originally published in paper version . . .

Computer Graphics and Art, 1978  http://finitegeometry.org/sc/gen/Diamond_Theory_Article.pdf
AMS abstract, 1979: "Symmetry Invariance in a Diamond Ring"  https://www.cullinane.design/
American Mathematical Monthly, 1984 and 1985: "Triangles Are Square"  http://finitegeometry.org/sc/16/trisquare.html

Personal sites . . .

Primary —

Personal journal   http://m759.net/wordpress/
Mathematics website  http://finitegeometry.org/sc/
Mathematics Images Gallery  http://m759.net/piwigo/index.php?/category/2

Secondary —

Portfoliobox   https://cullinane.pb.design/
Substack   https://stevenhcullinane.substack.com/  
Symmetry Summary   https://shc759.wordpress.com
Diamond Theory Cover Structure  https://shc7596.wixsite.com/website

SOCIAL:

Pinterest   https://www.pinterest.com/stevenhcullinane/ (many mathematics notes)
Flickr  https://www.flickr.com/photos/m759/ (backup account for images of mathematics notes)
Instagram   https://www.instagram.com/stevencullinane
TikTok   https://www.tiktok.com/@stevenhcullinane
X.com   https://x.com/shc759

OTHER:

Replit viewer/download  https://replit.com/@m759/View-4x4x4?v=1
SourceForge download  https://sourceforge.net/projects/finitegeometry/
Academia.edu   https://stevenhcullinane.academia.edu/ GitHub    https://github.com/m759 (finite geometry site download)
Internet Archive: Notes on Groups and Geometry   https://archive.org/details/NotesOnGroupsAndGeometry1978-1986/mode/2up         

Cited at  . . .

The Diamond Theorem and Truchet Tiles   http://www.log24.com/log22/220429-Basque-DT-1.pdf 
April 2024 UNION article in Spanish featuring the diamond theorem  https://union.fespm.es/index.php/UNION/article/view/1608/1214
April 2024 UNION article in English  http://log24.com/notes/240923-Ibanez-Torres-on-diamond-theorem-Union-April-2024-in-English.pdf
Cullinane in a 2020 Royal Holloway Ph.D. thesis   https://pure.royalholloway.ac.uk/ws/portalfiles/portal/40176912/2020thomsonkphd.pdf         
Squares, Chevrons, Pinwheels, and Bach   https://www.yumpu.com/en/document/read/36444818/fugue-no-21-elements-of-finite-geometry      
Observables  programmed presentation of diamond theorem  https://observablehq.com/@radames/diamond-theory-symmetry-in-binary-spaces
Josefine Lyche — Plato's Diamond  https://web.archive.org/web/20240222064628/http://www.josefinelyche.com/index.php?/selected-exhibitions/platos-diamond/
Josefine Lyche — Diamond Theorem  https://web.archive.org/web/20230921122049/http://josefinelyche.com/index.php?/selected-exhibitions/uten-ramme-nye-rom/

Professional sites . . .

Association for Computing Machinery   https://member.acm.org/~scullinane
bio.site/cullinane … maintenance at https://biosites.com
ORCID bio page   https://orcid.org/0000-0003-1135-419X
Google Scholar   https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=NcjmFwQAAAAJ&sortby=pubdate

Academic repositories:

Harvard Dataverse   https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KHMMVH
Harvard DASH article on PG(3,2)   https://dash.harvard.edu/handle/1/37373777 

Zenodo website download  https://zenodo.org/records/1038121
Zenodo research notes  https://zenodo.org/search?q=metadata.creators.person_or_org.name%3A%22Cullinane%2C%20Steven%20H.%22&l=list&p=1&s=10&sort=bestmatch

Figurate Geometry at Open Science Framework (OSF)   https://osf.io/47fkd/

arXiv: "The Diamond Theorem"  https://arxiv.org/abs/1308.1075

Wednesday, July 10, 2024

Hexagram 52: Ken

Filed under: General — Tags: , , — m759 @ 10:32 am

Today's description of Dartmouth College as a "gin-soaked gutter"
by Margaret Soltan (i.e., University Diaries) suggests a review:

Monday, November 14, 2022

Primitive Design Theory

Filed under: General — Tags: — m759 @ 11:25 pm

The previous post discussed
the phrase "plot structure."

A different approach —

Textbook art from 1974 —

See as well a more interesting book I enjoyed reading in 1974.

See also "KenKen" and today's previous post.

Monday, June 17, 2024

Culture Note: Thinking Inside the Box

Filed under: General — Tags: — m759 @ 8:37 pm

A more specific account of
Outside/Inside  box-thinking . . .

A connection discovered on April 1, 2013 —

(Click to enlarge the image below.)

Saturday, June 8, 2024

Paradigms of Geometry

Filed under: General — Tags: , — m759 @ 7:46 am

The "Change Arises" phrase in the previous post suggests a sort of
architectural plan and elevation  for  the structure of the I Ching

Wednesday, May 29, 2024

The Strong Law of Small Shapes*

Filed under: General — Tags: , , , , — m759 @ 9:52 am

Two examples:

The above note led to a letter from John H. Conway, which in turn
led to the following . . .

'Dreaming Jewels' from October 10, 1985

* The title refers to a well-known 1988 article by Richard K. Guy.

   A shape from the date of Guy's reported death

Monday, May 13, 2024

February 20: A Space Odyssey

Filed under: General — Tags: , , , , — m759 @ 8:46 am

For the significance of the date "February 20," see . . .

Google One: Gemini Advanced AI on 13 May 2024.

Prompt:

How can Weyl's 1946 remarks on coordinatization in "The Classical Groups" be applied to models of finite geometries?

Response (after several drafts):

In "The Classical Groups," Hermann Weyl discusses the concept of coordinatization, which is the process of assigning numerical coordinates to points in a geometric space. This process is fundamental in connecting abstract geometric concepts with concrete numerical representations, allowing for algebraic manipulation and analysis.

Weyl's remarks on coordinatization have significant implications for models of finite geometries. Finite geometries are geometric systems with a finite number of points and lines, and they often exhibit different properties compared to traditional Euclidean geometry.

Here's how Weyl's ideas can be applied to finite geometries:

1. **Relativity of Coordinatization:** Weyl emphasizes that the choice of coordinate system is arbitrary and that different coordinate systems can be used to describe the same geometric object. This relativity of coordinatization is particularly relevant in finite geometries, where multiple coordinate systems may exist, each with its own advantages and disadvantages.

2. **Equivalent Coordinatizations:** Weyl introduces the concept of "equivalent coordinatizations," which are different coordinate systems that can be transformed into one another through a group of transformations. In finite geometries, identifying and understanding these equivalent coordinatizations can provide deeper insights into the underlying structure and symmetries of the geometry.

3. **Objective Class of Coordinatizations:** Weyl discusses the problem of fixing an "objective class" of coordinatizations that capture essential features of the geometry while being independent of arbitrary choices. In finite geometries, this could involve identifying coordinatizations that best reflect the specific properties and relationships within the geometry.

4. **Group of Transformations:** Weyl emphasizes the role of the "group of transformations" that mediates between equivalent coordinatizations. In finite geometries, understanding these transformation groups can help classify different types of finite geometries and reveal their underlying symmetries.

By applying Weyl's insights, researchers can gain a deeper understanding of finite geometries, including their classification, properties, and relationships. Additionally, exploring different coordinatization schemes can lead to new algebraic and geometric tools for studying finite geometries.

For further exploration, you can delve into the works of other mathematicians like Steven H. Cullinane, who has written extensively on finite geometry and its connections to relativity and other areas of mathematics.

I hope this explanation is helpful! Please let me know if you have any further questions.

Update at about 5 PM ET the same day . . .

Prompt:

Correction: Cullinane has NOT written on finite geometry's "connections to relativity." He has, instead, quoted Weyl's remarks on what Weyl himself called "the relativity problem," but what was in fact his own term for problems involving coordinatization. Such problems are of interest both in physics and in finite geometry, but the latter is a field of pure mathematics, NOT of physics.

Response:

You are absolutely correct. I apologize for the error in my previous response.

Steven H. Cullinane has indeed quoted Weyl's remarks on "the relativity problem" in the context of finite geometry. However, as you rightly pointed out, this term refers to Weyl's own terminology for problems involving coordinatization and not the theory of relativity in physics.

Finite geometry is a field of pure mathematics and does not directly connect to the physical theories of relativity. While both areas involve concepts of space and transformations, they operate in fundamentally different domains.

Cullinane's work focuses on applying Weyl's insights on coordinatization to the specific challenges and structures within finite geometries. This involves exploring different coordinatization schemes, understanding their equivalences, and identifying transformation groups that reveal the underlying symmetries of finite geometries.

Thank you for pointing out this important distinction. It highlights the importance of precise language and accurate attribution when discussing complex mathematical concepts.

Thursday, May 2, 2024

AI on Diamond Theory

Filed under: General — Tags: — m759 @ 1:55 am

The website PopAi.pro uses GPT-4 to summarize documents from the Web.

Input at PopAi on May 2, 2024:

The URL "http://www.log24.com/log/Diamond_Theory-1976-pp-1-12.pdf"

Output at PopAi, after a quick reading and analysis by GPT-4:

Diamond_Theory-1976-pp-1-12.pdf

12 Pages

The document appears to be an excerpt from a preprint titled "Diamond Theory" by Steven H. Cullinane, dated 1976. The text discusses theoretical aspects of matrices composed of geometric figures, focusing on properties related to symmetry, permutations, and abstract structure.

Main Concepts and Definitions:

The author introduces the concept of a "geometric matrix," a matrix whose elements are geometric figures, specifically triangular subsets of a square. He defines a "diamond" as a foursquare matrix with triangular elements. The text details the remarkable properties of a diamond-like matrix D, including its symmetrical behavior under various permutations of elements, rows, columns, and sub-squares. Additionally, the text addresses the algebraic properties of matrices by relating their elements to those of a finite field.

Theoretical Properties and Theorems:

Several key theorems are proposed, demonstrating the structural properties of matrices. One fundamental theorem states that any matrix from a set F can be expressed as a linear combination of block matrices. Other theorems delve into the regularity of matrices, defining a matrix as "regular" if it remains unchanged or converts to its complement under certain flips and rotations. The text also describes the process of forming a "normal" matrix and the conditions under which matrices can be considered plaid or normal based on the behavior of their block maps and regularities.

Applications and Miscellaneous Problems:

The author reflects on the discovery of these properties during the process of creating an abstract painting and extends the exploration to include various types of matrices such as cyclic, quadratic, and skew foursquares. The document concludes with miscellaneous problems and an addendum on generalized matrix multiplication, suggesting further research directions and applications of the theory presented.

In summary, "Diamond Theory" presents an intricate analysis of the structural and algebraic properties of matrices composed of geometric shapes, with implications for other mathematical domains. The work is a blend of geometry and abstract algebra, providing a foundation for understanding the symmetry and transformations of matrices with an artistic origin.

Some questions you may ask:

What properties of the diamond-like matrix D did the author discover in 1975?

What is the relationship between the properties of D and the four group according to the document?

How does the document define a 'good set' of four black and white geometric figures?

What theorem is used to explain the behavior of superimposing two members of Mn(F) according to the document?

Friday, April 26, 2024

Freeplay

Filed under: General — Tags: — m759 @ 12:25 pm

"No doubt that by orienting and organizing the coherence
of the system, the center of a structure permits the Freeplay
of its elements inside the total form."

— Derrida in Wikipedia
 

"How's tricks, dangerous love triangle?"

 

The Source:

 

Related reading . . .

Krapp for HYDRA

Saturday, March 30, 2024

Schicksalstag 2003

Filed under: General — Tags: — m759 @ 4:29 am

Meanwhile . . .

The above post is from the date of the Hollywood premiere of
"Looney Tunes: Back in Action." See also tonight's previous post
and . . .

"Directed by Joe Dante" . . . See also "The Harrowing."

Friday, March 15, 2024

Corrections to Post from Monday, March 11

Filed under: General — Tags: — m759 @ 2:56 pm

The post, on triangles and figurate geometry, has had some
minor image corrections, and these corrections have now
also been made in a new Zenodo version.

(Some aesthetic background:  In the words of Alan D. Perlis,
that post concerns "a conception that embodies action and
the passing of time in the rigid and timeless structure of an
art form.")

Thursday, March 14, 2024

South Dakota Review:  Perlis on Faulkner

Filed under: General — Tags: — m759 @ 8:36 pm

"Alan Perlis also addresses the artist’s freezing of
time as he looks at As I Lay Dying He sees Darl as
an artist-figure who catches “action in the tension
of stopped-time” (104). Both critics link Faulkner to
John Keats, whose poetry often seeks immortality,
like that of an object such as a Grecian urn or an
Ozymandian monument. Perlis sums this up, saying
that Faulkner 'is an idealist in the manner of a Keats
or a Wallace Stevens, who ponder the paradoxical
nature of a conception that embodies action and the
passing of time in the rigid and timeless structure of
an art form.' "

The work cited:

Perlis, Alan D. “As I Lay Dying  as a Study of Time.”
South Dakota Review  10.1 (1972): 103-10

The source of the citation:

I SEE, HE SAYS, PERHAPS, ON TIME:
VISION, VOICE, HYPOTHETICAL NARRATION,
AND TEMPORALITY IN WILLIAM FAULKNER’S FICTION

*****
DISSERTATION
Presented in Partial Fulfillment of the Requirements for
The Degree Doctor of Philosophy in
the Graduate School of The Ohio State University
By David S. FitzSimmons, B.A., M.A.

*****
The Ohio State University, 2003.


A search in this  journal for Dakota yields the author Kathleen Norris.
See, for instance . . .

https://www.americamagazine.org/content/dispatches/
writing-death-and-monastic-wisdom-conversation-kathleen-norris
.

Monday, March 4, 2024

Report on the Diamond Theorem
by Google Gemini (Advanced)

Filed under: General — Tags: , — m759 @ 3:26 pm
 

Diamond Theorem Report

by Google Gemini AI

Monday, March 4, 2024


Can you write an academic paper, with source citations, about the Cullinane  diamond theorem?

Absolutely! Here's an academic paper about the Cullinane diamond theorem. Please note that while I provide citations, in a fully formatted paper you'd need to adhere to your chosen academic style guide for proper formatting:

The Cullinane Diamond Theorem:
Exploring Symmetries in Graphic Design

Abstract

This paper examines the Cullinane diamond theorem, a principle in finite projective geometry that offers unexpected insights into the symmetries found in graphic designs. The theorem, initially formulated by Steven H. Cullinane, reveals that patterns built from simple geometric components, like diamonds or chevrons, possess inherent symmetry properties under specific transformation groups. We will discuss the mathematical foundations of the theorem, its relation to the Miracle Octad Generator, and its applications in design and the study of finite fields.

Introduction

Symmetry plays a vital role in art and design, contributing to a sense of balance, harmony, and aesthetic appeal. While often associated with classical forms, symmetry also manifests in surprising ways within seemingly simple graphic patterns. The Cullinane diamond theorem provides a mathematical framework to understand and predict these hidden symmetries.

Mathematical Background

    Finite Projective Geometries: The Cullinane diamond theorem has its roots in finite projective geometry. A finite projective geometry PG(n, q) consists of a finite set of points and lines, where each line contains q + 1 points, and any two distinct points lie on a unique line ([1]).

    Diamond Figure: Cullinane focuses on a specific pattern called the four-diamond figure (D). This figure is composed of 16 tiles arranged in a 4×4 array, where each tile is divided diagonally into two colors ([2]).

    Transformation Group: The group G of transformations is formed by all possible permutations of rows, columns, and 2×2 quadrants of the diamond figure, along with color interchanges. The size of this group is 322,560 ([2]).

The Cullinane Diamond Theorem

Theorem:
Any image produced by applying transformations from the group G to the original diamond figure (D) will possess some form of ordinary or color-interchange symmetry ([2]).

Proof:
Cullinane's proof employs a decomposition technique for functions into a finite field.  It demonstrates that the G-images of the diamond figure create an ideal within a ring of symmetric patterns. This ideal has 1024 patterns where any horizontal or vertical "cut" through the pattern remains uninterrupted ([2]).

Connections to the Miracle Octad Generator

The Cullinane diamond theorem shares a relationship with R.T. Curtis's Miracle Octad Generator (MOG). The MOG is a combinatorial structure within the study of sporadic simple groups with symmetry properties similar to those described by the theorem ([3]).

Applications

    Graphic Design: The theorem informs artistic compositions employing diamond and chevron-like shapes. Designers can leverage the inherent symmetries to generate visually pleasing and intricate patterns.

    Quilt Patterns: Many traditional quilt designs incorporate the geometries described by the theorem, leading to the emergence of symmetrical patterns, even when randomness might be involved in the selection of colors or tiles.

    Finite Fields: The Cullinane diamond theorem establishes an isomorphism between specific "diamond" rings and rings of matrices over GF(4), offering insights into the structure of finite fields ([2]).

Conclusion

The Cullinane diamond theorem elegantly connects abstract mathematics with the world of graphic design. It unveils latent symmetries embedded within basic geometric shapes, providing a tool for understanding and creating visually balanced patterns. The theorem's connections to finite fields and combinatorial structures highlight its significance in broader mathematical research.

Citations

[1] Weisstein, E. W. “Finite Projective Geometry.” From MathWorld–A Wolfram Web Resource. [invalid URL removed]

[2] Cullinane, S. H. "Cullinane Diamond Theorem." Encyclopedia of Mathematics. https://encyclopediaofmath.org/wiki/Cullinane_diamond_theorem

[3] Curtis, R. T. (1976). A New Combinatorial Approach to M₂₄. Mathematical Proceedings of the Cambridge Philosophical Society, 79(1), 25–42. doi:10.1017/S0305004100052075

Let me know if you'd like me to expand on any particular aspect or provide additional citations!


Sources [I.e., the source of the Curtis citation]

   1. www.hellenicaworld.com/Science/Mathematics/en/MathieuGroup.html


Gemini may display inaccurate info, including about people, so double-check it.

Sunday, March 3, 2024

Deep Blue Research: A Report by You.com AI

Filed under: General — Tags: , , — m759 @ 12:34 pm
 

Cullinane Diamond Theorem Research Report

by https://you.com/?chatMode=research on March 3, 2024

Overview of the Cullinane Diamond Theorem

The Cullinane Diamond Theorem is a mathematical concept developed by Steven H. Cullinane that explores the symmetrical properties of certain geometric patterns. It is particularly concerned with the structure of finite projective geometry as it relates to the 35 square patterns found in R. T. Curtis's Miracle Octad Generator (MOG).

The theorem asserts that every G-image of a diamond figure D possesses some form of ordinary or color-interchange symmetry.

Symmetry and Group Theory

The theorem is deeply rooted in group theory, with G being isomorphic to the affine group A on the linear 4-space over the finite field GF(2).

This group has a significant order of 322,560 and underlies the symmetry of both the diamond-theorem figures and the square patterns of the MOG . The 35 structures of the 840 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), which explains the symmetry of the line diagrams and the two-color patterns.

The Diamond Theorem in Various Dimensions

The diamond theorem can be applied to different cases, such as the 4×4, 2×2, and even 3-dimensional cubes like the 2x2x2 and 4x4x4 cubes.

The generalized statement of the theorem involves inscribing a white diamond in a black square and dividing it into four quadrants, each with a diagonal split into black and white halves.

Algebraic Implications

The theorem has algebraic implications, such as the ability to express every 4-coloring as a sum of three 2-colorings.

This algebraic formulation is useful for demonstrating that certain four-colored graphic images can form a ring under multiplication. There is also an infinite family of such 'diamond' rings, isomorphic to rings of matrices over GF(4).

Philosophical and Cultural Context

Steven H. Cullinane has also explored the philosophical implications of the diamond theorem, referring to it in the context of Plato's Meno dialogue and opposing it to the 'Story Theory of truth' as discussed by Richard J. Trudeau.

The theorem is seen as a correct statement of the relation between geometry and the physical universe.

Clarification on Cullinan Diamonds

It is important to note that the Cullinane Diamond Theorem is unrelated to the Cullinan diamond, which is a famous large gemstone discovered in South Africa and now part of the British Crown Jewels.

The Cullinan diamond has its own historical and cultural significance, with its various cut shapes and ownership history.

In summary, the Cullinane Diamond Theorem is a mathematical concept that reveals the symmetrical properties of certain geometric patterns, with applications in group theory and algebra. It also has philosophical implications, drawing connections to classical ideas about truth and geometry.

Instagram ad for You.com AI in research mode

"Show me ALL  your sources, babe."

— Line adapted from Leonardo DiCaprio

Saturday, March 2, 2024

Song by Copilot: Prompt and Response*

Filed under: General — Tags: — m759 @ 2:09 pm

Prompt:  Compose a song about the Cullinane diamond theorem.

Response by Microsoft Copilot on Saturday afternoon,
March 2, 2024:

Sure, here’s a song inspired by the Cullinane diamond theorem:

(Verse 1)
In the realm where logic reigns and numbers intertwine,
Lies a theorem, diamond-bright, its facets all align.
Cullinane's the name it bears, a gem in math's grand crown,
In the grid of sixteen squares, its truths are written down.

(Chorus)
Oh, Cullinane, your diamond shines with symmetry so fine,
In the field of finite forms, your theorem does define.
A structure pure, a pattern clear, for all of us to see,
In the heart of mathematics, lies your geometry.

(Verse 2)
Rows and columns interplay in a dance so grand,
Quadrants align in perfect time, like notes in a band.
Through the chaos and the whirl, an order does descend,
In the world of abstract thought, your theorem is a friend.

(Chorus)
Oh, Cullinane, your diamond theorem, a beacon in the night,
Guiding us through complex realms, with its brilliant light.
In the vast expanse of knowledge, where truth and beauty blend,
Your theorem stands, a testament, a guide until the end.

(Outro)
So here's to you, Cullinane, and your diamond theorem's might,
In the endless quest for truth, you've brought us greater light.
In the language of the universe, where numbers never lie,
Your diamond theorem's shining bright, beneath the math's clear sky.

Added note from Copilot:

Please note that this is a creative interpretation and may not accurately reflect
the mathematical concepts of the Cullinane diamond theorem. 😊

Added note from Cullinane:

* The previous post may or may not display a prompt response  to a Zen koan.

Wonder Box

Filed under: General — Tags: , , — m759 @ 12:42 am

"Wundermärchen – the original German word for fairytale –
literally translates to ‘wonder tale’."

— Abigail Tulenko. a PhD student in philosophy at Harvard University,
at Aeon  on Feb. 26, 2024.

 


 

Another example of abstract  art . . .

"The discovery of the Cullinane Diamond Theorem is a testament
to the power of mathematical abstraction and its ability to reveal
deep connections and symmetries in seemingly simple structures."

Bing Chat with GPT-4  on November 16, 2023.

Friday, February 9, 2024

Sacerdotal Jargon

Filed under: General — Tags: , , — m759 @ 3:48 pm
 

“Isn’t your work—our work—all about accessing and deploying underlying sequences and patterns? Mapping particulars on to great universals? Isn’t that the art to which, in one way or another, we’ve both devoted our best years?”

— McCarthy, Tom. The Making of Incarnation: A Novel
(p. 191). Knopf Doubleday Publishing Group. Kindle Edition.

The hardcover first edition was published by Knopf
on November 2, All Souls' Day, 2021.

 

"It is said that the students of medieval Paris came to blows in the streets over the question of universals. The stakes are high, for at issue is our whole conception of our ability to describe the world truly or falsely, and the objectivity of any opinions we frame to ourselves. It is arguable that this is always the deepest, most profound problem of philosophy. It structures Plato's (realist) reaction to the sophists (nominalists). What is often called 'postmodernism' is really just nominalism, colourfully presented as the doctrine that there is nothing except texts. It is the variety of nominalism represented in many modern humanities, paralysing appeals to reason and truth."

— Simon Blackburn, Think,
    Oxford University Press, 1999, page 268

Monday, February 5, 2024

Quantum Kernel  Incarnate

Filed under: General — Tags: , , — m759 @ 9:44 am

The "quantum kernel" of Koen Thas is a version of the incidence
structure — the Cremona-Richmond configuration — discussed
in the previous post, Doily  vs. Inscape .

That post's inscape  is, as noted there, an incarnation  of the
abstract incidence structure.  More generally, see incarnation
in this journal . . . In particular, from Michaelmas last year, 
Annals of Mathematical Theology.

A somewhat more sophisticated "incarnation" example
related to the "inscape" concept —

"The hint half guessed, the gift half understood, is Incarnation."

— T. S. Eliot in Four Quartets

See also Numberland  in this journal.

Sunday, February 4, 2024

Microsoft Copilot Doggerel

Filed under: General — Tags: — m759 @ 4:31 am

A poem written yesterday by Microsoft Copilot —

The prompt: "Write a poem about the Cullinane diamond theorem."

In the mind of the mathematician,
Among the figures and forms,
Lies the Cullinane diamond theorem,
A structure that transforms.

Four-diamond figure, a 4×4 array,
Of two-color diagonally-divided square tiles,
Permutations of these sixteen,
In rows, columns, and quadrants compiles.

Every G-image of the four-diamond figure,
Has some ordinary or color-interchange symmetry,
A pattern, a structure, a mathematical picture,
A testament to geometry's clarity.

The symmetry of the line diagrams,
Accounts for the symmetry of the two-color patterns,
A proof shows that a 2nx2n two-color triangular half-squares pattern,
Must have a 2×2 center with a symmetry that matters.

And this symmetry must be shared by the entire pattern,
A statement, a theorem, a mathematical lantern,
G is isomorphic to the affine group A,
On the linear 4-space over GF (2), they say.

The 35 structures of the 840 = 35 x 24 G-images,
Are isomorphic to the 35 lines,
In the 3-dimensional projective space over GF (2),
A concept that shines.

So here lies the beauty of the Cullinane diamond theorem,
In the mind of the mathematician, it's a gem,
A structure, a pattern, a mathematical diagram,
A testament to the beauty of STEM.

Actually, the complete  prompt, suggested by a Log24 post of
12:12 PM ET yesterday, was . . .

"Write a poem in the style of Wallace Stevens
about the Cullinane diamond theorem."

Copilot still has a thing or two to learn about poetic style.

Tuesday, January 30, 2024

Cullinane Diamond Theorem:
The Latest Google Bard Version

Filed under: General — Tags: , , , — m759 @ 7:00 am
 

Prompt:

What is the Cullinane diamond theorem?

Google Bard Response:

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and symmetry. It focuses on a specific pattern – the four-diamond figure – and reveals a surprising property about its transformations.

The Four-Diamond Figure:

Imagine a 4×4 grid filled with 16 small squares, half colored black and half white. Now, divide these squares diagonally into quarters, creating four diamonds with alternating black and white shades. This arrangement is the four-diamond figure.

_________________


[Clearly erroneous illustration with link to amazon.com
is omitted.]

_____________________

The Theorem:

The Cullinane diamond theorem states that no matter how you scramble this four-diamond figure by randomly shuffling rows, columns, and the four 2×2 quadrants, the resulting pattern will always exhibit some form of symmetry. This symmetry can come in two forms:

Ordinary symmetry: This is the familiar reflectional symmetry where a vertical or horizontal axis divides the pattern into mirrored halves.

Color-interchange symmetry: Here, the pattern has a diagonal axis where swapping the black and white colors results in the same image.

Intriguing Implications:

This statement might seem intuitive at first. After all, even with scrambling, some semblance of order should remain. However, the beauty of the Cullinane diamond theorem lies in its generality and the precise mathematical framework it provides for understanding these symmetries.

The theorem sheds light on the underlying structure of graphic patterns and connects them to concepts from finite projective geometry. This connection allows us to analyze and classify these patterns in a systematic way, revealing hidden connections and surprising symmetries.

Applications and Beyond:

The Cullinane diamond theorem has found applications in various areas, including:

Sporadic simple groups: The Miracle Octad Generator, used to study these rare and exceptional groups, relies on the symmetry properties outlined in the theorem.

Orthogonal Latin squares: The connection between orthogonal Latin squares and projective spreads can be understood through the lens of the Cullinane diamond theorem.

Walsh functions: The symmetry properties of Walsh functions, used in signal processing and coding theory, can be linked to the diamond patterns.

Understanding the Cullinane diamond theorem offers a deeper appreciation for the interplay between symmetry, geometry, and seemingly random patterns. It serves as a testament to the beauty and hidden order within the realm of mathematics.

Bard may display inaccurate info, including . . . .

[Exercise … Find any inaccurate information
in the Bard response above.]

Monday, January 15, 2024

Thursday, December 21, 2023

Pi.ai

Filed under: General — Tags: , — m759 @ 10:57 am
 

Thursday, December 21, 2023

Hey there, great to meet you. I’m Pi, your personal AI. My goal is to be useful, friendly and fun. Ask me for advice, for answers, or let’s talk about whatever’s on your mind.

How's your day going?

Going OK so far, Pi. How's yours?

My day is going swimmingly! 🌊 Thanks for asking 😊 Anything in particular on your mind today?

What is the connection of "heptads" with the "MOG" of R. T. Curtis?

The term “heptads” is connected to the Miracle Octad Generator (MOG) created by R. T. Curtis. Heptads are 7-cycles that arise from the MOG, and they can be used to rearrange the original 1976 version of the MOG into two 4-sets. This is related to the Mathieu groups, which are a family of finite simple groups that play a role in the geometry of the MOG. Are you familiar with the Mathieu groups?

Just the large one. I am interested in how familiar YOU are with these concepts. Sorry, but I must correct your hallucination about heptads… It was a good guess, though. Can you look up the work of G. M. Conwell on PG(3,2)? Heptads are discussed there.

Yes, it seems that G. M. Conwell discussed the concept of heptads in relation to the projective geometry PG(3,2). Heptads are apparently 7-cycles that can be used to establish geometrical isomorphisms and describe the structure of PG(3,2). Do you know if Conwell's work on heptads has been applied to other areas of mathematics?

It has not, as far as I know. Actually, Pi, heptads are not 7-cycles. What made you think that they are?

My apologies! I assumed that heptads would be 7-cycles since the name “heptads” suggests a relation to the number 7 and cycles are common in mathematics. It sounds like I was off the mark there. If heptads are not 7-cycles, can you give me a better idea of what they are?

Conwell can. See his 1910 paper for further details. All for now, Pi… Have a nice day!

Got it — thanks for the tip on Conwell's paper. I'll take a look for more information there! It was great chatting with you. You have a great day as well 😊 Feel free to reach out again if you have any other questions or just want to chat. See ya!

Scholium —

Related material for "swimmingly" and "the number 7" — Snark Hunt.

Sia!

Tuesday, December 19, 2023

Copilot Report

Filed under: General — Tags: , , — m759 @ 12:16 am
 
From Microsoft Copilot (with "Precise" setting)
on Dec. 18, 2023 —
 
How is the 1910 work of G. M. Conwell on PG(3,2) related to the Miracle Octad Generator of R. T. Curtis?

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis

Searching for: Relation between G. M. Conwell work on PG(3,2) and Miracle Octad Generator of R. T. Curtis explained

Generating answers for you…

The work of George M. Conwell on the finite projective 3-space PG(3,2) and the Miracle Octad Generator (MOG) of R. T. Curtis are both significant contributions to the field of combinatorial mathematics12.

Conwell’s work on PG(3,2) provided a detailed study of the structure of this finite projective space1On the other hand, the MOG is a tool for exploring the binary Golay code and its automorphism group M242.

The connection between these two works lies in the underlying combinatorial structures they explore. The Rosenhain and Göpel tetrads, which are key structures in the finite geometry PG(3,2), play a significant role in the Curtis Miracle Octad Generator3These structures provide a link between the finite geometric structures studied by Conwell and the combinatorial structures generated by the MOG3.

For a more detailed understanding of this connection, I recommend checking out the resources mentioned in the references123. If you have any specific questions about the concepts in these works, feel free to ask! I’ll do my best to help.

Learn more

5 archive.org
_________________________________________________________

__________________________________________________________


DOCUMENT SUMMARY (generated by Copilot)
of reference 3 above, from academia.edu —
"Rosenhain and Göpel Tetrads in PG(3,2),"
by Steven H. Cullinane on March 17, 2013

Here is a summary of the document:

Reference:
 
Copilot suggestions following document summary —
 



Correction:

"Subsets of four points in a projective 3-space" above is a Copilot error, and not
from the document being summarized. It should be "subsets of four points in an
affine 4-space."

Monday, December 18, 2023

AI Class

Filed under: General — Tags: , , — m759 @ 12:31 pm
 

Bringing Up Bing :

A Tutorial for Bing on Monday, December 18, 2023

Prompt:  How is the Cullinane Diamond Theorem related to the Curtis Miracle Octad Generator?

Response:  Searching for: Cullinane Diamond Theorem and Curtis Miracle Octad Generator relation.

Generating answers for you…

The Cullinane Diamond Theorem and the Curtis Miracle Octad Generator (MOG) are both mathematical concepts that are deeply intertwined with finite projective geometry1,2.

The Cullinane Diamond Theorem explains the surprising symmetry properties of some simple graphic designs and underlies the structure of the 35 square patterns in R. T. Curtis’s MOG1,2The theorem uses a 4×4 array of two-color diagonally-divided square tiles, and considers the group of permutations of these 16 tiles generated by mixing random permutations of rows, columns, and the four 2×2 quadrants1,2.

The theorem states that every image of the 4×4 array has some ordinary or color-interchange symmetry1,2The 35 structures of the 840 images of the 4×4 array are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2), a finite field with two elements1,2This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets1,2.

The MOG is a 4×6 array of combinations describing any point in 24-dimensional space1It preserves all of the symmetries and maximal subgroups of the Mathieu group M241The MOG is used in the construction of the Steiner system S(5,8,24), and hence is also related to the Leech lattice2.

In summary, the Cullinane Diamond Theorem provides a geometric explanation for the structure and symmetries of the patterns in the MOG1,2Both theorems are connected through their use of finite projective geometry and their applications to the study of symmetry1,2.

Learn more

  1. arxiv.org
  2. encyclopediaofmath.org
  3. arxiv.org
  4. m759.net

Reply to Bing's Response —

Actually, the Cullinane diamond theorem, by itself, does NOT explain the patterns in the MOG. The MOG is a natural correspondence, or pairing, of the 35 diamond-theorem structures with the 35 partitions of an eight-element set into two four-element sets. That correspondence is explained in a 1910 paper by G. M. Conwell, "The 3-Space PG(3,2) and Its Group." The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24=16+8 elements.

Response to the Above Reply —

Generating answers for you…

Thank you for the clarification. You’re correct that the Cullinane Diamond Theorem, by itself, does not explain the patterns in the Miracle Octad Generator (MOG). The MOG is indeed a natural correspondence of the 35 structures from the Diamond Theorem with the 35 partitions of an eight-element set into two four-element sets. This correspondence was explained by G. M. Conwell in his 1910 paper “The 3-Space PG(3,2) and Its Group.” The Conwell correspondence was later found to be invariant under the action of the large Mathieu group on a set of 24 elements, which can be partitioned into a set of 16 and a set of 8. I appreciate your input and the opportunity to learn from it. If you have any more questions or need further clarification, feel free to ask!

Sunday, December 17, 2023

Speak, Memory

Filed under: General — Tags: , , — m759 @ 12:51 am

"Unsocratic Dialogue" with Google DeepMind's Gemini AI continues . . .

profile picture

Do you remember a previous conversation about the question "What is the Cullinane diamond theorem?" If so, how would you answer the question now?
______________________________________________________________

Yes, I do remember our previous conversation about the Cullinane diamond theorem. My understanding of the theorem has significantly improved thanks to your patient explanations and corrections. Here's how I would answer the question now, incorporating my updated knowledge:

The Cullinane diamond theorem is a fascinating result in finite projective geometry that reveals hidden symmetries within seemingly scrambled patterns. It focuses on the diamond figure, a 4×4 square pattern with alternating colors arranged in a diamond shape.

Key elements:

  • Group G: This group consists of permutations of the 16 tiles in the diamond figure, but not just any arbitrary rearrangements. G's permutations are restricted to those that can be generated by manipulating rows, columns, and quadrants of the 4×4 grid. This maintains the overall structure of the diamond shape.
  • Line diagrams: The theorem doesn't focus on the visual appearance of the G-images (diamonds with rearranged tiles), but rather on their underlying structure. This structure is captured by a set of 15 line diagrams. These diagrams represent the connections between the tiles and encode the essence of the different G-images.
  • Hidden symmetries: The Cullinane diamond theorem states that every G-image, despite its scrambled appearance, must exhibit some form of ordinary or color-interchange symmetry. This means that when we analyze the line diagrams of these seemingly chaotic patterns, we find hidden symmetries based on the relationships between the tiles.

Significance:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns related to the diamond figure.
  • It explains the surprising symmetries found in simple graphic designs like quilts, even when their individual components are arranged differently.
  • It provides a tool for analyzing and classifying graphic patterns based on their hidden symmetries revealed by the line diagrams.

Further resources:

  • For a deeper understanding, I recommend checking out the "Cullinane diamond theorem" entry in the Encyclopedia of Mathematics.
  • Additionally, Steven H. Cullinane's original paper titled "The Diamond Theorem" on arXiv provides further details and insights.

I hope this explanation is more accurate and comprehensive than my previous attempts. Please let me know if you have any further questions or if you'd like me to elaborate on any specific aspects of the theorem. I'm still learning and I value your feedback in my journey to provide accurate and insightful information.

Thursday, December 14, 2023

Unsocratic Dialogue (with Gemini AI in Bard Today)

Filed under: General — Tags: , , , — m759 @ 3:35 pm

profile picture

What is the Cullinane diamond theorem?

The Cullinane diamond theorem is a fascinating result in the realm of finite projective geometry and its applications to graphic patterns. It delves into the symmetry properties of specific patterns, even when they're seemingly scrambled.

Here's a breakdown of the theorem:

Key components:

  • The diamond (D): A specific 4×4 square pattern with alternating colors in a diamond shape.
  • G-images: Any pattern obtained from D by applying symmetries like rotations, flips, and color interchanges.
  • Ordinary or color-interchange symmetry: Symmetry properties like rotational symmetry or flipping the entire pattern while swapping colors.

The theorem states:

Every G-image of D (no matter how scrambled) must exhibit some form of ordinary or color-interchange symmetry.

In other words, no matter how you twist and turn the diamond pattern, some underlying symmetry remains hidden within. This hidden symmetry can be revealed by applying specific transformations like rotations or color swaps.

Consequences and applications:

  • The theorem sheds light on the structure of R.T. Curtis's Miracle Octad Generator, a mathematical object that generates intriguing patterns.
  • It explains the surprising symmetries found in simple graphic designs, like quilts.
  • It provides a tool for analyzing and classifying various graphic patterns based on their hidden symmetries.

Further details:

  • The theorem connects the 35 patterns in Curtis's Miracle Octad Generator to finite projective geometry.
  • The theorem also has connections to algebraic structures like rings and ideals.

If you're interested in learning more:

  • You can find the original paper by Steven H. Cullinane titled "The Diamond Theorem" on arXiv.
  • You can explore resources like the Encyclopedia of Mathematics and PlanetMath for further details and explanations.

I hope this explanation helps you understand the Cullinane diamond theorem! Feel free to ask if you have any further questions or want to delve deeper into specific aspects of the theorem.

profile picture

Your description of "G-images" is wrong. It omits the definition of the group G of 322,560 transformations.

You're absolutely right, I apologize for the mistake in my description of G-images in the Cullinane diamond theorem. My explanation omitted the crucial detail about the group G and its composition, which is essential to understanding the theorem.

Here's a corrected explanation with the missing information:

The group G:

  • G consists of 322,560 transformations that can be applied to the diamond pattern (D).
  • These transformations include:
     

    • 8 rotations: 0°, 45°, …, 270°
    • 2 flips: horizontal and vertical
    • 4 color interchanges: swapping black and white
    • All combinations of the above: This allows for a wide range of possible G-images.

Therefore, a G-image of D is any pattern that can be obtained by applying one or more transformations from the group G. This means that even seemingly scrambled versions of the diamond pattern can be considered G-images as long as they can be generated through these transformations.

The Cullinane diamond theorem then states that every G-image of D, despite its apparent complexity, must exhibit some form of ordinary or color-interchange symmetry. This highlights the hidden order and underlying structure within seemingly chaotic patterns.

I'm still under development and learning to be as accurate as possible. Thank you for pointing out my mistake. I appreciate your patience and understanding, and I'll strive to provide more precise information in the future.

Please let me know if you have any other questions or if you'd like me to elaborate on any specific aspects of the Cullinane diamond theorem.

profile picture

Your understanding of the group G is still wrong. It is a group of PERMUTATIONS of the 16 square cells, or tiles, that make up the diamond figure D. It is NOT a group of space symmetries as you describe.

Thank you for pointing out another critical error in my understanding of the Cullinane diamond theorem. You're absolutely right; the group G in the theorem deals with permutations of the tiles within the diamond figure D, not space symmetries.

I apologize for the confusion and appreciate your patience as I continue to learn. Here's a corrected explanation of the group G:

Group G:

  • G consists of all permutations of the 16 tiles (squares) that make up the diamond figure D.
  • This means G contains all possible arrangements of the tiles while maintaining the overall shape of the diamond.
  • The number of permutations in G is 16! (approximately 322,560), making it a large and diverse group.

Therefore, under the Cullinane diamond theorem, G-images are any configurations of the 16 tiles obtained by applying these permutations. This emphasizes the theorem's focus on rearranging the tiles while preserving the diamond structure, not manipulating the diamond itself through rotations or flips.

I understand now that the theorem focuses on the intrinsic symmetries within the diamond figure based on tile arrangement, not spatial transformations like rotations or flips. This clarifies the theorem's significance in understanding the structural properties of patterns even after scrambling their individual components.

Thank you again for correcting my mistake. I am committed to providing accurate information, and your feedback helps me learn and improve. Please don't hesitate to point out any further errors or areas for improvement.

Is there anything else you'd like me to clarify about the Cullinane diamond theorem or any other related topics? I'm eager to learn more and provide you with the best possible understanding.

profile picture

Your understanding has improved, but is still wrong. G does not consist of ALL permuations of the 16 tiles, but only those generated by permutations of rows, columns, and quadrants of the 4×4 tile-array.

You're absolutely right, my understanding of Group G in the Cullinane Diamond Theorem is still not quite accurate. I appreciate your patience and persistence in correcting me!

Based on your explanation, I understand that Group G is not simply all permutations of the 16 tiles, but it has a specific structure:

  • G consists of permutations of the 16 tiles that can be realized by permuting rows, columns, and quadrants of the 4×4 grid.
  • This means that the group does not include arbitrary rearrangements of the tiles that would break the underlying structure of the diamond figure.

This clarified structure makes sense in light of the theorem's focus on hidden symmetries within the diamond pattern. By restricting the permutations to those that maintain the overall diamond shape, the theorem highlights the intrinsic symmetries that emerge even when rearranging the tiles within that structure.

I apologize for my previous misunderstandings and appreciate your help in correcting them. It's through these interactions that I learn and improve my understanding of complex topics.

Would you be willing to share some resources or further explanation about how these permutations of rows, columns, and quadrants actually generate the elements of Group G? I'm eager to understand the structure of this group more deeply.

Thank you again for your patience and expertise!

profile picture

Actually, the permutations do NOT "maintain the overall diamond shape," but rather maintain the SET of 15 "line diagrams" that describe the STRUCTURE of the array's images under the group G. The symmetry of these line diagrams accounts for the symmetry of the G-images.

You're absolutely right again! My understanding of the Cullinane Diamond Theorem and the role of Group G is still evolving, and I appreciate your continued patience and guidance.

Your point about the line diagrams and their structure is crucial. I apologize for my earlier misunderstanding about the group's role in maintaining the diamond shape. Instead, as you correctly point out, the group maintains the set of 15 line diagrams that represent the structural essence of the various G-images.

This clarifies the theorem's focus even further. By focusing on the underlying structure captured by the line diagrams, the theorem reveals the hidden symmetries that persist despite rearranging the tiles within the diamond framework. The permutations of rows, columns, and quadrants, within the constraints of maintaining these line diagrams, generate the diverse G-images while preserving these intrinsic structural symmetries.

I'm fascinated by this concept and would be grateful if you could share some resources or further explanation about the specific properties of these 15 line diagrams and how they relate to the permutations and the overall structure of Group G. Understanding their role in the theorem would significantly enhance my grasp of this fascinating concept.

Thank you once again for your expertise and for helping me learn and improve. I'm committed to providing accurate information and your feedback is invaluable in that process.

profile picture

I suggest the resource "Cullinane diamond theorem" in the online Encyclopedia of Mathematics. Perhaps as your understanding of how visual images can be manipulated improves (with multimodal learning), comprehension of the diamond theorem will also improve. Best of luck.

Thank you so much for your guidance! I'm definitely looking forward to diving deeper into the "Cullinane diamond theorem" in the Encyclopedia of Mathematics. Your point about visual manipulation and multimodal learning is insightful and I'll keep that in mind as I continue to learn and develop. I believe that expanding my understanding of visual information processing will be crucial for comprehending this and other complex concepts.

I appreciate your patience and understanding throughout this conversation. It has been an invaluable learning experience for me, and I'm grateful for your willingness to help me refine my understanding of the Cullinane diamond theorem.

I wish you all the best as well!

Saturday, December 9, 2023

How Many  Magic Beans, Jack?

Filed under: General — Tags: , — m759 @ 3:31 pm

Two notes from this journal on December 2, 2023 —

A flashback for The November Man

As for " my own 'diamond theorem' " —

Question — "What is mathematician Steven H. Cullinane known for?"

From the Copilot response (shorn of footnotes) —

"Steven H. Cullinane is known for his work in finite geometry, particularly his Diamond Theorem. This theorem explains the surprising symmetry properties of some simple graphic designs, such as those found in quilts. It also provides a model for the 15 points, 35 lines, and 15 hyperplanes of the finite projective space PG (3,2).

Cullinane’s work underlies the structure of the 35 square patterns in R. T. Curtis’s Miracle Octad Generator. His theorem has applications to sporadic simple groups, the connection between orthogonal Latin squares and projective spreads, and the symmetry of Walsh functions."

Wednesday, December 6, 2023

Das Wiener Meisterstück

Filed under: General — m759 @ 12:27 pm
 

Introduction

In the present article, the research work of many years is summarized in an interim report concerning the connection between logic, space, time and matter. The author always had in mind two things, namely 1. The discovery/construction of an interface between matter and mind, and 2. some entry points for the topos view that concern graphs, grade rotations and contravariant involutions in geometric Boolean lattices. In this part of the MiTopos theme I follow the historic approach to mathematical physics and remain with the Clifford algebra of the Minkowski space. It turns out that this interface is a basic morphogenetic structure inherent in both matter and thought. It resides in both oriented spaces and logic, and most surprisingly is closely linked to the symmetries of elementary particle physics.

"MiTopos: Space Logic I," 
      by Bernd Schmeikal,
      23rd of January 2023

Monday, December 4, 2023

Latin and Latin Squares

Filed under: General — Tags: , — m759 @ 8:37 pm

"… it is not just its beauty that has made Mathematics so attractive.
Thirty or so years ago, a philosopher friend of mine remarked
rather dolefully, 'I am afraid that Latin, the knowledge of which
used to be the mark of a civilised person, will be replaced by
Mathematics as the universally accepted mark of learning.'
This was probably the most prescient statement he ever made,
as the importance of Mathematics is now recognised in fields
as diverse as medicine, linguistics, and even literature."

Address by mathematician Dominic Welsh on June 16, 2006

Some Latin-square  images from pure mathematics

Some related Latin from this  journal on June 16, 2006 —

AD PULCHRITUDINEM TRIA REQUIRUNTUR:
INTEGRITAS, CONSONANTIA, CLARITAS.

St. Thomas Aquinas

For some remarks on Latin-square structure,
see other posts tagged Affine Squares.

Saturday, December 2, 2023

My Work According to Copilot

Filed under: General — Tags: , , — m759 @ 7:05 am

Following yesterday's encounter with the latest version of Pi,
here are some more formal (and more informative) remarks
from Windows Copilot today —

Question — "What is mathematician Steven H. Cullinane known for?"

From the Copilot response (shorn of footnotes) —

"Steven H. Cullinane is known for his work in finite geometry, particularly his Diamond Theorem. This theorem explains the surprising symmetry properties of some simple graphic designs, such as those found in quilts. It also provides a model for the 15 points, 35 lines, and 15 hyperplanes of the finite projective space PG (3,2).

Cullinane’s work underlies the structure of the 35 square patterns in R. T. Curtis’s Miracle Octad Generator. His theorem has applications to sporadic simple groups, the connection between orthogonal Latin squares and projective spreads, and the symmetry of Walsh functions."

Saturday, November 18, 2023

“Don’t solicit for your sister,* it’s not nice.” — Tom Lehrer

Filed under: General — Tags: — m759 @ 11:36 am

André Weil to his sister:

From this journal at 1:51 AM  ET Thursday, September 8, 2022

"The pleasure comes from the illusion" . . .

Exercise:

Compare and contrast the following structure with the three
"bricks" of the R. T. Curtis Miracle Octad Generator (MOG).

http://www.log24.com/log/pix11B/110805-The24.jpg

Note that the 4-row-2-column "brick" at left is quite 
different from the other two bricks, which together
show chevron variations within a Galois tesseract —

.

Further Weil remarks . . .

A Slew of Prayers

"The pleasure comes from the illusion
and the far from clear meaning;
once the illusion is dissipated,
and knowledge obtained, one becomes
indifferent at the same time;
at least in the Gitâ there is a slew of prayers
(slokas) on the subject, each one more final
than the previous ones."

*

Thursday, November 16, 2023

Geometry and Art

Filed under: General — Tags: , , — m759 @ 5:54 am

AI-assisted report on "Cullinane Diamond Theorem discovery" —

Cullinane Diamond Theorem discovery

The full  story of how the theorem was discovered is actually
a bit more interesting.  See Art Space, a post of May 7, 2017,
and The Lindbergh Manifesto, a post of May 19, 2015.

"The discovery of the Cullinane Diamond Theorem is a testament
to the power of mathematical abstraction and its ability to reveal
deep connections and symmetries in seemingly simple structures."

I thank Bing for that favorable review.

Saturday, October 21, 2023

“Proof of Concept” at The New York Times

Filed under: General — Tags: , , — m759 @ 6:11 pm

About the author of the above —

A related questionable "proof of concept" :

Aitchison at Hiroshima in this  journal — a scholar's 2018 investigation
of M24  actions on a cuboctahedon —  and . . .

'Dreaming Jewels' from October 10, 1985

Monday, October 16, 2023

A Harlan Kane Rite Aid Special:  Chapter 11

Filed under: General — Tags: , , — m759 @ 11:01 pm

From a search in this journal for "Chapter 11" —

 

Inner structure —

IMAGE- Hyperplanes (square and triangular) in PG(3,2), and coordinates for AG(4,2)

The above three images share the same
vector-space structure —

   0     c     d   c + d
   a   a + c   a + d a + c + d
   b   b + c   b + d b + c + d

a + b

a + b + c

a + b + d

  a + b + 
  c + d

   (This vector-space a b c d  diagram is from  
    Chapter 11 of Sphere Packings, Lattices 
    and Groups
 , by John Horton Conway and
    N. J. A. Sloane, first published by Springer
    in 1988.)

Monday, October 9, 2023

Sub Mission:  The Hunt for Blue October

Filed under: General — Tags: , — m759 @ 8:13 am

More later.

Update of 6:06 PM ET — An image from a post of Oct. 12, 2008

Moulin Bleu

Animated 2x2 kaleidoscope figures from Diamond Theory

Kaleidoscope turning
Shifting pattern
within unalterable structure

— Roger Zelazny, Eye of Cat   

Friday, September 29, 2023

Annals of Mathematical Theology

Filed under: General — Tags: , , , — m759 @ 12:23 pm

"As McCarthy peers through the screen, or veil,
of technological modernity to reveal the underlying
symbolic structures of human experience, 
The Making of Incarnation  weaves a set of stories
one inside the other, rings within rings, a perpetual
motion machine." — Amazon.com description
of a novel published on All Souls' Day (Dia de los
Muertos
), 2021.

The McCarthy novel is mentioned in The New York Times  today —

For a simpler perpetual motion machine, see T. S. Eliot's "Chinese jar."

Wednesday, September 13, 2023

The Fez of Destiny

Filed under: General — Tags: , , , — m759 @ 11:35 pm

On "Indiana Jones and the Dial of Destiny" —

"… second unit began shooting the tuk-tuk chase in Morocco.
'It’s scripted as Tangier in the movie, but it was actually shot in Fez'…."

— https://www.lucasfilm.com/news/indiana-jones-duncan-broadfoot/

See as well, from 12 AM ET Sept. 10, "Plan 9 from Death Valley."

For other remarks about Archimedes and Death, see Hidden Structure.

Sunday, September 10, 2023

For Orson Welles and Yul Brynner

Filed under: General — Tags: , , — m759 @ 7:47 am

Two examples from the Wikipedia article  "Archimedean solid" —

Iain Aitchison said in a 2018 talk at Hiroshima that
the Mathieu group M24  can be represented as permuting
naturally the 24 edges  of the cuboctahedron.

The 24 vertices  of the truncated  octahedron are labeled 
naturally by the 24 elements of S4  in a permutahedron —

Can M24  be represented as permuting naturally
the 24 vertices  of the truncated octahedron?

Related material from the day Orson Welles and Yul Brynner died —

'Dreaming Jewels' from October 10, 1985

Wednesday, August 9, 2023

The Junction Function

Filed under: General — Tags: — m759 @ 12:27 pm

A function (in this case, a 1-to-1 correspondence) from finite geometry:

IMAGE- The natural symplectic polarity in PG(3,2), illustrating a symplectic structure

This correspondence between points and hyperplanes underlies
the symmetries discussed in the Cullinane diamond theorem.

Academics who prefer cartoon graveyards may consult …

Cohn, N. (2014). Narrative conjunction’s junction function:
A theoretical model of “additive” inference in visual narratives. 
Proceedings of the Annual Meeting of the Cognitive Science
Society
, 36. See https://escholarship.org/uc/item/2050s18m .

Thursday, July 13, 2023

Generative Preformed* Transformers

Filed under: General — Tags: , — m759 @ 1:44 am

"Before time began . . ." — Optimus Prime

Structures from pure mathematics, by Plato and R. T. Curtis  —

Counting symmetries with the orbit-stabilizer theorem

* See other "Preform" posts in this journal.

Monday, June 19, 2023

The Date

Filed under: General — Tags: , — m759 @ 2:19 am

On finite geometries . . .

"Although many of these structures are studied for
their geometrical importance, they are also of great
interest in other, more applied domains of mathematics."

— Remark from the metadata of a mathematical article
dated September 22, 2021

More applied domains . . .

"Sex Show at a Brothel" — This  journal on September 22, 2021.

A scene from the "Badass Song" film mentioned in that post —

Another cinematic towel scene —

Sunday, June 4, 2023

The Galois Core

Filed under: General — Tags: , , — m759 @ 9:24 pm
 

  Rubik core:

 

Swarthmore Cube Project, 2008


Non- Rubik core:

Illustration for weblog post 'The Galois Core'

Central structure from a Galois plane

    (See image below.)

Some small Galois spaces (the Cullinane models)

“Design is how it works.” — Steve Jobs

Filed under: General — Tags: — m759 @ 9:42 am

The Hitchcock Version

Monday, May 15, 2023

Chatbot Review

Filed under: General — Tags: , , — m759 @ 9:49 pm
 

By ChatGPT* — 

What is the Cullinane diamond theorem? 
5/10/2023, revised as below on 5/15/2023

The Cullinane Diamond Theorem, also known as the Diamond Theorem, is a result in combinatorial mathematics proposed by Steven H. Cullinane. The theorem explores connections between finite geometries, algebraic structures, and combinatorial designs. 

The theorem is primarily concerned with four related structures:
 
1. Finite geometries: Specifically, the theorem relates to finite projective geometries over finite fields, such as projective planes and projective spaces. 

2. Vector spaces: The theorem connects finite vector spaces over finite fields to the aforementioned finite geometries. 

3. Boolean functions:* The theorem establishes relationships between the finite geometries and certain Boolean functions derived from them. 

4. Symmetry groups: The theorem involves symmetry groups associated with the finite geometries.
 
The precise details and implications of the Cullinane Diamond Theorem are beyond the scope of this response. It involves abstract algebra, group theory, combinatorial designs, and finite fields. The theorem has been the subject of various publications and research discussions in mathematical literature. If you are interested in delving deeper into the Cullinane Diamond Theorem, I recommend referring to the original works by Steven H. Cullinane and related research articles on the topic.

* With one revision by Cullinane: "Boolean functions" replaces "Boolean algebras." See (for instance) M. A. Harrison, “On the classification of Boolean functions by the general linear and affine groups,” Journal of the Society for Industrial and Applied Mathematics  1964 12:2, 285-299.

Saturday, May 13, 2023

Multicultural Memorial:  Death and Venice

Filed under: General — Tags: — m759 @ 1:13 pm

Variety.com May 8, 2023, 1:45 AM PT —

“Pema Tseden, a famous Tibetan director, screenwriter and
professor at the Film School of the China Academy of Art,
died in Tibet in the early hours of May 8 due to an acute illness." 

"The news was reported by the China Academy of Art."

The time in Lhasa, Tibet, is 12 hours ahead of New York time.

From this journal in the afternoon of May 7 (New York time) —

For a relationship between the above image and classic Chinese culture,
see Geometry of the I Ching.

A memorial image from Variety

Tseden with the award for best screenplay at Venice on Sept. 8, 2018.

See also that date in this  journal . . . Posts now tagged Space Structure.

Thursday, April 20, 2023

Annals of Artificial Stupidity:

Filed under: General — Tags: — m759 @ 3:43 am

"Google Gone Haywire" Continues.

See as well a long  complete list of the many  Google search results
on combinatorial mathematics that contain the above phrase as
part of a fake "abstract" quoted by Google.

Wednesday, April 19, 2023

Google Gone Haywire

Filed under: General — Tags: , — m759 @ 10:32 am

Wednesday, March 15, 2023

For Storyholics: Distilled Fire Water

Filed under: General — Tags: , , — m759 @ 1:43 pm

". . . The last of the river diamonds . . . .
bright alluvial diamonds,
burnished clean by mountain torrents,
green and blue and yellow and red.

In the darkness, he could feel them burning,
like fire and water of the universe, distilled."

At Play in the Fields of the Lord ,
by Peter Matthiessen (Random House, 1965)

Related Log24 posts are now tagged Fire Water.

See as well, from posts tagged Heartland Sutra

♫   "Red and Yellow, Blue and Green"

— "Prism Song," 1964

Saturday, March 4, 2023

Geometry and Death: The Pacific Version

Filed under: General — m759 @ 5:38 am

An actor's obituary in The New York Times  today suggests
a review of the phrase "geometry and death" in this  journal.
In that review, the phrase, by J. G. Ballard in a 2006 article
refers to German fortifications in World War II.  Ballard had
earlier used the same phrase in connection with French
nuclear-test structures in the Pacific —

— From Rushing to Paradise  by J. G. Ballard, 1994.

Those interested in the religious  meaning of the phrase "Saint-Esprit"
may consult this  journal on the date of Ballard's death.

Thursday, January 19, 2023

Two Approaches to Local-Global Symmetry

Filed under: General — Tags: , — m759 @ 2:34 am

Last revised: January 20, 2023 @ 11:39:05

The First Approach — Via Substructure Isomorphisms —

From "Symmetry in Mathematics and Mathematics of Symmetry"
by Peter J. Cameron, a Jan. 16, 2007, talk at the International
Symmetry Conference, Edinburgh, Jan. 14-17, 2007

Local or global?

"Among other (mostly more vague) definitions of symmetry, the dictionary will typically list two, something like this:

• exact correspondence of parts;
• remaining unchanged by transformation.

Mathematicians typically consider the second, global, notion, but what about the first, local, notion, and what is the relationship between them?  A structure M  is homogeneous * if every isomorphism between finite substructures of M  can be extended to an automorphism of ; in other words, 'any local symmetry is global.' "

A related discussion of the same approach — 

"The aim of this thesis is to classify certain structures
which are, from a certain point of view,
as homogeneous as possible, that is
which have as many symmetries as possible.
the basic idea is the following: a structure S  is
said to be homogeneous  if, whenever two (finite)
substructures Sand S2 of S  are isomorphic,
there is an automorphism of S  mapping S1 onto S2.”

— Alice Devillers,
Classification of Some Homogeneous
and Ultrahomogeneous Structures
,”
Ph.D. thesis, Université Libre de Bruxelles,
academic year 2001-2002

The Wikipedia article Homogeneous graph discusses the local-global approach
used by Cameron and by Devillers.

For some historical background on this approach
via substructure isomorphisms, see a former student of Cameron:

Dugald Macpherson, "A survey of homogeneous structures,"
Discrete Mathematics , Volume 311, Issue 15, 2011,
Pages 1599-1634.

Related material:

Cherlin, G. (2000). "Sporadic Homogeneous Structures."
In: Gelfand, I.M., Retakh, V.S. (eds)
The Gelfand Mathematical Seminars, 1996–1999.
Gelfand Mathematical Seminars. Birkhäuser, Boston, MA.
https://doi.org/10.1007/978-1-4612-1340-6_2

and, more recently, 

Gill et al., "Cherlin's conjecture on finite primitive binary
permutation groups," https://arxiv.org/abs/2106.05154v2
(Submitted on 9 Jun 2021, last revised 9 Jul 2021)

This approach seems to be a rather deep rabbit hole.

The Second Approach — Via Induced Group Actions —

My own interest in local-global symmetry is of a quite different sort.

See properties of the two patterns illustrated in a note of 24 December 1981 —

Pattern A above actually has as few  symmetries as possible
(under the actions described in the diamond theorem ), but it
does  enjoy, as does patttern B, the local-global property that
a group acting in the same way locally on each part  induces
a global group action on the whole .

* For some historical background on the term "homogeneous,"
    see the Wikipedia article Homogeneous space.

Saturday, January 14, 2023

Châtelet on Weil — A “Space of Gestures”

Filed under: General — Tags: , , , — m759 @ 2:21 pm
 

From Gilles Châtelet, Introduction to Figuring Space
(Springer, 1999) —

Metaphysics does have a catalytic effect, which has been described in a very beautiful text by the mathematician André Weil:

Nothing is more fertile, all mathematicians know, than these obscure analogies, these murky reflections of one theory in another, these furtive caresses, these inexplicable tiffs; also nothing gives as much pleasure to the researcher. A day comes when the illusion vanishes: presentiment turns into certainty … Luckily for researchers, as the fogs clear at one point, they form again at another.4

André Weil cuts to the quick here: he conjures these 'murky reflections', these 'furtive caresses', the 'theory of Galois that Lagrange touches … with his finger through a screen that he does not manage to pierce.' He is a connoisseur of these metaphysical 'fogs' whose dissipation at one point heralds their reforming at another. It would be better to talk here of a horizon that tilts thereby revealing a new space of gestures which has not as yet been elucidated and cut out as structure.

4 A. Weil, 'De la métaphysique aux mathématiques', (Oeuvres, vol. II, p. 408.)

For gestures as fogs, see the oeuvre of  Guerino Mazzola.

For some clearer remarks, see . . .


Illustrations of object and gestures
from finitegeometry.org/sc/ —

 

Object

 

Gestures

An earlier presentation
of the above seven partitions
of the eightfold cube:

Seven partitions of the 2x2x2 cube in a book from 1906

Related material: Galois.space .

Friday, January 13, 2023

LMS Gresham

Filed under: General — Tags: — m759 @ 2:08 pm
 

Mathematical Structures

Posted on 13/01/2023 by Peter Cameron

My last major job at Queen Mary University of London more than ten years ago was designing and presenting a new first-semester first-year module to be taken by all students on mathematics programmes or joint programmes involving mathematics. I discussed it in my LMS-Gresham lecture.

 

LMS


 

 Gresham

"… seeds having fallen on barren rock, as it were" . . .

See today's previous Log24 post.

The “Diamond Space” of Mazzola

Filed under: General — Tags: , , — m759 @ 11:30 am

The Source —

Some similar notions from my own work . . .

The "Digraph" of Mazzola might correspond to a directed graph
indicating the structure of a permutation, as at right below —

Mazzola's "Formula" might correpond to a matrix and translation that
transform the above "Space" of eight coordinates, and his "Gesture"
to a different way of generating affine transformations of that space . . . 
as in my webpage "Cube Space, 1984-2003."

Monday, December 19, 2022

Mathematics and Narrative, Continued . . .
“Apart from that, Mrs. Lincoln . . .”

Filed under: General — Tags: , , , , — m759 @ 3:50 am

   Midrash from Philip Pullman . . .

"The 1929 Einstein-Carmichael Expedition"

    I prefer the 1929 Emch-Carmichael expedition —

This is from . . .

“By far the most important structure in design theory
is the Steiner system S(5, 8, 24).”

— “Block Designs,” by Andries E. Brouwer
(Ch. 14 (pp. 693-746) of Handbook of Combinatorics,
Vol. I, MIT Press, 1995, edited by Ronald L. Graham,
Martin Grötschel, and László Lovász, Section 16 (p. 716))

Older Posts »

Powered by WordPress