Log24

Friday, November 4, 2022

Annals of Theology: The Coordinatization Being

Filed under: General — m759 @ 2:56 pm

Sunday, October 18, 2015

Coordinatization Problem

Filed under: General,Geometry — Tags: — m759 @ 1:06 am

There are various ways to coordinatize a 3×3 array
(the Chinese "Holy Field'). Here are some —

See  Cullinane,  Coxeter,  and  Knight tour.

Sunday, September 4, 2022

Dice and the Eightfold Cube

Filed under: General — Tags: , , — m759 @ 4:47 pm

At Hiroshima on March 9, 2018, Aitchison discussed another 
"hexagonal array" with two added points… not at the center, but
rather at the ends  of a cube's diagonal axis of symmetry.

See some related illustrations below. 

Fans of the fictional "Transfiguration College" in the play
"Heroes of the Fourth Turning" may recall that August 6,
another Hiroshima date, was the Feast of the Transfiguration.

Iain Aitchison's 'dice-labelled' cuboctahedron at Hiroshima, March 2018

The exceptional role of  0 and  in Aitchison's diagram is echoed
by the occurence of these symbols in the "knight" labeling of a 
Miracle Octad Generator octad —

Transposition of  0 and  in the knight coordinatization 
induces the symplectic polarity of PG(3,2) discussed by 
(for instance) Anne Duncan in 1968.

Monday, February 21, 2022

Variation on an Old Joke

Filed under: General — Tags: — m759 @ 11:02 am

An image linked to* in Mapping Problem Continued (Log24, 16 July 2012) —

* The link is on the phrase "may be deduced."

Wednesday, June 9, 2021

Group Actions on Partitions: A Review

Filed under: General — Tags: , — m759 @ 2:11 pm

From "A Four-Color Theorem:
Function Decomposition Over a Finite Field
" —

Related material —

An image from Monday's post
"Scholastic Observation" —

A set of 7 partitions of the 2x2x2 cube that is invariant under PSL(2, 7) acting on the 'knight' coordinatization

Sunday, July 19, 2020

Ornaments for Valéry*

Filed under: General — Tags: , — m759 @ 12:27 am

* See Valéry Ornament in this journal.

Tuesday, October 8, 2019

Kummer at Noon

Filed under: General — Tags: — m759 @ 12:00 pm

The Hudson array mentioned above is as follows —

See also Whitehead and the
Relativity Problem
(Sept. 22).

For coordinatization  of a 4×4
array, see a note from 1986
in the Feb. 26 post Citation.

Sunday, September 22, 2019

Whitehead and the Relativity Problem

Filed under: General — Tags: , — m759 @ 2:00 pm

"This is the relativity problem: to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them."
— Hermann Weyl, The Classical Groups,
    Princeton University Press, 1946, p. 16

Sunday, June 2, 2019

Coordinatizing the Deathly Hallows

Filed under: General — m759 @ 10:59 pm

See as well, in this journal, Deathly HallowsRelativity Problem, and Space Cross.

A related quote "This is not mathematics; this is theology."

Interpenetration

Filed under: General — Tags: — m759 @ 10:32 pm

A remark on coordinatization linked to by John Baez today —

This suggests a more historical perspective:

See as well a search for Interpenetration in this  journal.

Friday, May 17, 2019

Themenkreis

Filed under: General — m759 @ 2:02 pm

Mathematische Appetithäppchen:
Faszinierende Bilder. Packende Formeln. Reizvolle Sätze

Autor: Erickson, Martin —

"Weitere Informationen zu diesem Themenkreis finden sich
unter http://​www.​encyclopediaofma​th.​org/​index.​php/​
Cullinane_​diamond_​theorem

und http://​finitegeometry.​org/​sc/​gen/​coord.​html ."

Lines from the 2013 Jim Jarmusch film
"Only Lovers Left Alive" —

Eve:  “… So what is this then? Can’t you tell your wife
what your problem is?”

Adam:  “It’s the zombies and the way they treat the world.
I just feel like all the sand's at the bottom of the hourglass
or something.”

Eve:  “Time to turn it over then.”

Related entertainment  —

and . . .

Groundhog Day

Wednesday, March 6, 2019

The Relativity Problem and Burkard Polster

Filed under: General,Geometry — Tags: — m759 @ 11:28 am
 

From some 1949 remarks of Weyl—

"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."

— Hermann Weyl, "Relativity Theory as a Stimulus in Mathematical Research," Proceedings of the American Philosophical Society , Vol. 93, No. 7, Theory of Relativity in Contemporary Science: Papers Read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949  (Dec. 30, 1949), pp. 535-541

Weyl in 1946—:

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

For some context, see Relativity Problem  in this journal.

In the case of PG(3,2), there is a choice of geometric models 
to be coordinatized: two such models are the traditional
tetrahedral model long promoted by Burkard Polster, and
the square model of Steven H. Cullinane.

The above Wikipedia section tacitly (and unfairly) assumes that
the model being coordinatized is the tetrahedral model. For
coordinatization of the square model, see (for instance) the webpage
Finite Relativity.

For comparison of the two models, see a figure posted here on
May 21, 2014 —

Labeling the Tetrahedral Model  (Click to enlarge) —

"Citation needed" —

The anonymous characters who often update the PG(3,2) Wikipedia article
probably would not consider my post of 2014, titled "The Tetrahedral
Model of PG(3,2)
," a "reliable source."

Tuesday, February 26, 2019

Citation

Filed under: General — Tags: , , , — m759 @ 12:00 pm

Some related material in this journal — See a search for k6.gif.

Some related material from Harvard —

Elkies's  "15 simple transpositions" clearly correspond to the 15 edges of
the complete graph K6 and to the 15  2-subsets of a 6-set.

For the connection to PG(3,2), see Finite Geometry of the Square and Cube.

The following "manifestation" of the 2-subsets of a 6-set might serve as
the desired Wikipedia citation —

See also the above 1986 construction of PG(3,2) from a 6-set
in the work of other authors in 1994 and 2002 . . .

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Monday, December 3, 2018

The Relativity Problem at Hiroshima

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 6:21 pm

“This is the relativity problem:  to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

Iain Aitchison's 'dice-labelled' cuboctahedron at Hiroshima, March 2018

See also Relativity Problem and Diamonds and Whirls.

Sunday, September 9, 2018

Plan 9 Continues.

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 9:00 am

"The role of Desargues's theorem was not understood until
the Desargues configuration was discovered. For example,
the fundamental role of Desargues's theorem in the coordinatization
of synthetic projective geometry can only be understood in the light
of the Desargues configuration.

Thus, even as simple a formal statement as Desargues's theorem
is not quite what it purports to be. The statement of Desargues's theorem
pretends to be definitive, but in reality it is only the tip of an iceberg
of connections with other facts of mathematics."

— From p. 192 of "The Phenomenology of Mathematical Proof,"
by Gian-Carlo Rota, in Synthese , Vol. 111, No. 2, Proof and Progress
in Mathematics
(May, 1997), pp. 183-196. Published by: Springer.

Stable URL: https://www.jstor.org/stable/20117627.

Related figures —

Note the 3×3 subsquare containing the triangles ABC, etc.

"That in which space itself is contained" — Wallace Stevens

Monday, August 27, 2018

Children of the Six Sides

Filed under: General,Geometry — Tags: — m759 @ 11:32 am

http://www.log24.com/log/pix18/180827-Terminator-3-tx-arrival-publ-160917.jpg

http://www.log24.com/log/pix18/180827-Terminator-3-tx-arrival-publ-161018.jpg

From the former date above —

Saturday, September 17, 2016

A Box of Nothing

Filed under: Uncategorized — m759 @ 12:13 AM

(Continued)

"And six sides to bounce it all off of.

From the latter date above —

Tuesday, October 18, 2016

Parametrization

Filed under: Uncategorized — m759 @ 6:00 AM

The term "parametrization," as discussed in Wikipedia, seems useful for describing labelings that are not, at least at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space plus the 15 two-subsets of a six-set (Hudson, 1905) or by a blank plus the 5 elements and the 10 two-subsets of a five-set (derived in 2014 from a 1906 page by Whitehead), or by a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization" is not limited to vector-space  coordinates. He describes it as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space coordinates, admit a group of transformations among themselves that can be used to describe transformations of the point-space being coordinatized.)

From March 2018 —

http://www.log24.com/log/pix18/180827-MIT-Rubik-Robot.jpg

Thursday, August 9, 2018

True Grids

Filed under: General,Geometry — Tags: , — m759 @ 7:59 pm

From a search in this journal for "True Grid,"
a fanciful description of  the 3×3 grid —

"This is the garden of Apollo,
the field of Reason…."
John Outram, architect    

A fanciful instance of the 4×2 grid in
a scene from the film "The Master" —

IMAGE- Joaquin Phoenix, corridor scene in 'The Master'

A fanciful novel referring to the number 8,
and a not -so-fanciful reference:

http://www.log24.com/log/pix18/180809-The_EIght-and-coordinates-for-PSL(2,7)-actions-500w.jpg

Illustrated above are Katherine Neville's novel The Eight  and the
"knight" coordinatization of the 4×2 grid from a page on the exceptional
isomorphism between PSL(3,2) (alias GL(3,2)) and PSL(2,7) — groups
of, respectively, degree 7 and degree 8.

Literature related to the above remarks on grids:

Ross Douthat's New York Times  column yesterday purported, following
a 1946 poem by Auden, to contrast students of the humanities with
technocrats by saying that the former follow Hermes, the latter Apollo.

I doubt that Apollo would agree.

Tuesday, September 5, 2017

Annals of Critical Epistemology

Filed under: General,Geometry — Tags: , — m759 @ 5:36 pm

"But unlike many who left the Communist Party, I turned left
rather than right, and returned—or rather turned for the first time—
to a critical examination of Marx's work. I found—and still find—
that his analysis of capitalism, which for me is the heart of his work,
provides the best starting point, the best critical tools, with which—
suitably developed—to understand contemporary capitalism.
I remind you that this year is also the sesquicentennial of the
Communist Manifesto , a document that still haunts the capitalist world."

— From "Autobiographical Reflections," a talk given on June 5, 1998, by
John Stachel at the Max Planck Institute for the History of Science in Berlin
on the occasion of a workshop honoring his 70th birthday, 
"Space-Time, Quantum Entanglement and Critical Epistemology."

From a passage by Stachel quoted in the previous post

From the source for Stachel's remarks on Weyl and coordinatization —

Note that Stachel distorted Weyl's text by replacing Weyl's word 
"symbols" with the word "quantities." —

This replacement makes no sense if the coordinates in question
are drawn from a Galois field — a field not of quantities , but rather
of algebraic symbols .

"You've got to pick up every stitch… Must be the season of the witch."
— Donovan song at the end of Nicole Kidman's "To Die For"

Florence 2001

Filed under: General,Geometry — Tags: — m759 @ 4:44 am

Or:  Coordinatization for Physicists

This post was suggested by the link on the word "coordinatized"
in the previous post.

I regret that Weyl's term "coordinatization" perhaps has
too many syllables for the readers of recreational mathematics —
for example, of an article on 4×4 magic squares by Conway, Norton,
and Ryba to be published today by Princeton University Press.

Insight into the deeper properties of such squares unfortunately
requires both the ability to learn what a "Galois field" is and the
ability to comprehend seven-syllable words.

Friday, April 14, 2017

Hudson and Finite Geometry

Filed under: General,Geometry — Tags: , — m759 @ 3:00 am

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

The above four-element sets of black subsquares of a 4×4 square array 
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .

Hudson did not  view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective
3-space).

In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.

This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements.  This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.

The space was later described in the following —

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Tuesday, October 18, 2016

Parametrization

Filed under: General,Geometry — Tags: — m759 @ 6:00 am

The term "parametrization," as discussed in Wikipedia,
seems useful for describing labelings that are not, at least
at first glance, of a vector-space  nature.

Examples: The labelings of a 4×4 array by a blank space
plus the 15 two-subsets of a six-set (Hudson, 1905) or by a
blank plus the 5 elements and the 10 two-subsets of a five-set
(derived in 2014 from a 1906 page by Whitehead), or by 
a blank plus the 15 line diagrams of the diamond theorem.

Thus "parametrization" is apparently more general than
the word "coodinatization" used by Hermann Weyl —

“This is the relativity problem:  to fix objectively
a class of equivalent coordinatizations and to
ascertain the group of transformations S
mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

Note, however, that Weyl's definition of "coordinatization"
is not limited to vector-space  coordinates. He describes it
as simply a mapping to a set of reproducible symbols

(But Weyl does imply that these symbols should, like vector-space 
coordinates, admit a group of transformations among themselves
that can be used to describe transformations of the point-space
being coordinatized.)

Friday, September 16, 2016

A Counting-Pattern

Filed under: General,Geometry — Tags: , — m759 @ 10:48 am

Wittgenstein, 1939

Dolgachev and Keum, 2002

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

For some related material, see posts tagged Priority.

Tuesday, June 14, 2016

Model Kit

Filed under: General,Geometry — Tags: — m759 @ 12:14 pm

The title refers to the previous post, which quotes a 
remark by a poetry critic in the current New Yorker .

Scholia —

From the post Structure and Sense of June 6, 2016 —

Structure

Sense

A set of 7 partitions of the 2x2x2 cube that is invariant under PSL(2, 7) acting on the 'knight' coordinatization

From the post Design Cube of July 23, 2015 —

Broken Symmetries  in  Diamond Space 

Monday, June 6, 2016

Structure and Sense

Filed under: General,Geometry — Tags: , — m759 @ 2:01 pm

"… the war of 70-some years ago
has already become something like the Trojan War
had been for the Homeric bards:
a major event in the mythic past
that gives structure and sense to our present reality."

— Justin E. H. Smith, a professor of philosophy at
     the University of Paris 7–Denis Diderot,
     in the New York Times  column "The Stone"
     (print edition published Sunday, June 5, 2016)

In memory of a British playwright who reportedly
died at 90 this morning —

Structure

Sense

A set of 7 partitions of the 2x2x2 cube that is invariant under PSL(2, 7) acting on the 'knight' coordinatization

Sunday, June 5, 2016

Sunday School: Seven Seals

Filed under: General,Geometry — Tags: , — m759 @ 7:00 am

A set of 7 partitions of the 2x2x2 cube that is invariant under PSL(2, 7) acting on the 'knight' coordinatization

Click image for some background.

See also Standard Disclaimer.

Tuesday, December 15, 2015

Square Triangles

Filed under: General,Geometry — Tags: , — m759 @ 3:57 pm

Click image for some background.

Exercise:  Note that, modulo color-interchange, the set of 15 two-color
patterns above is invariant under the group of six symmetries of the
equilateral triangle. Are there any other such sets of 15 two-color triangular
patterns that are closed as sets , modulo color-interchange, under the six
triangle symmetries and  under the 322,560 permutations of the 16
subtriangles induced by actions of the affine group AGL(4,2)
on the 16 subtriangles' centers , given a suitable coordinatization?

Sunday, October 18, 2015

Ballet Blanc

Filed under: General — m759 @ 8:09 am

For more about the coordinatization problem
of the previous post, see Ballet Blanc .

Thursday, July 9, 2015

Man and His Symbols

Filed under: General,Geometry — m759 @ 2:24 pm

(Continued)

A post of July 7, Haiku for DeLillo, had a link to posts tagged "Holy Field GF(3)."

As the smallest Galois field based on an odd prime, this structure 
clearly is of fundamental importance.  

The Galois field GF(3)

It is, however, perhaps too  small  to be visually impressive.

A larger, closely related, field, GF(9), may be pictured as a 3×3 array

hence as the traditional Chinese  Holy Field.

Marketing the Holy Field

IMAGE- The Ninefold Square, in China 'The Holy Field'

The above illustration of China's  Holy Field occurred in the context of
Log24 posts on Child Buyers.   For more on child buyers, see an excellent
condemnation today by Diane Ravitch of the U. S. Secretary of Education.

Saturday, June 13, 2015

The Holy Field

Filed under: General,Geometry — m759 @ 7:45 pm

( A Chinese designation for the 3×3 square )

Saturday, October 25, 2014

Foundation Square

Filed under: General,Geometry — Tags: , , , — m759 @ 2:56 pm

In the above illustration of the 3-4-5 Pythagorean triangle,
the grids on each side may be regarded as figures of
Euclidean  geometry or of Galois  geometry.

In Euclidean geometry, these grids illustrate a property of
the inner triangle.

In elementary Galois geometry, ignoring the connection with
the inner triangle, the grids may be regarded instead as
illustrating vector spaces over finite (i.e., Galois) fields.
Previous posts in this journal have dealt with properties of
the 3×3 and 4×4 grids.  This suggests a look at properties of
the next larger grid, the 5×5 array, viewed as a picture of the
two-dimensional vector space (or affine plane) over the finite
Galois field GF(5) (also known as ℤ5).

The 5×5 array may be coordinatized in a natural way, as illustrated
in (for instance) Matters Mathematical , by I.N. Herstein and
Irving Kaplansky, 2nd ed., Chelsea Publishing, 1978, p. 171:

See Herstein and Kaplansky for the elementary Galois geometry of
the 5×5 array.

For 5×5 geometry that is not so elementary, see…

Hafner's abstract:

We describe the Hoffman-Singleton graph geometrically, showing that
it is closely related to the incidence graph of the affine plane over ℤ5.
This allows us to construct all automorphisms of the graph.

The remarks of Brouwer on graphs connect the 5×5-related geometry discussed
by Hafner with the 4×4 geometry related to the Steiner system S(5,8,24).
(See the Miracle Octad Generator of R. T. Curtis and the related coordinatization
by Cullinane of the 4×4 array as a four-dimensional vector space over GF(2).)

Tuesday, June 17, 2014

Finite Relativity

Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 am

Continued.

Anyone tackling the Raumproblem  described here
on Feb. 21, 2014 should know the history of coordinatizations
of the 4×6 Miracle Octad Generator (MOG) array by R. T. Curtis
and J. H. Conway. Some documentation:

The above two images seem to contradict a statement by R. T. Curtis
in a 1989 paper.  Curtis seemed in that paper to be saying, falsely, that
his original 1973 and 1976 MOG coordinates were those in array M below—

This seemingly false statement involved John H. Conway's supposedly
definitive and natural canonical coordinatization of the 4×6 MOG
array by the symbols for the 24 points of the projective line over GF(23)—
{∞, 0, 1, 2, 3… , 21, 22}:

An explanation of the apparent falsity in Curtis's 1989 paper:

By "two versions of the MOG" Curtis seems to have meant merely that the
octads , and not the projective-line coordinates , in his earlier papers were
mirror images of the octads  that resulted later from the Conway coordinates,
as in the images below.

Friday, February 21, 2014

Raumproblem*

Despite the blocking of Doodles on my Google Search
screen, some messages get through.

Today, for instance —

"Your idea just might change the world.
Enter Google Science Fair 2014"

Clicking the link yields a page with the following image—

IMAGE- The 24-triangle hexagon

Clearly there is a problem here analogous to
the square-triangle coordinatization problem,
but with the 4×6 rectangle of the R. T. Curtis
Miracle Octad Generator playing the role of
the square.

I once studied this 24-triangle-hexagon
coordinatization problem, but was unable to
obtain any results of interest. Perhaps
someone else will have better luck.

* For a rather different use of this word,
see Hermann Weyl in the Stanford
Encyclopedia of Philosophy.

Thursday, February 6, 2014

The Representation of Minus One

Filed under: General,Geometry — Tags: , , — m759 @ 6:24 am

For the late mathematics educator Zoltan Dienes.

“There comes a time when the learner has identified
the abstract content of a number of different games
and is practically crying out for some sort of picture
by means of which to represent that which has been
gleaned as the common core of the various activities.”

— Article by “Melanie” at Zoltan Dienes’s website

Dienes reportedly died at 97 on Jan. 11, 2014.

From this journal on that date —

http://www.log24.com/log/pix11/110219-SquareRootQuaternion.jpg

A star figure and the Galois quaternion.

The square root of the former is the latter.

Update of 5:01 PM ET Feb. 6, 2014 —

An illustration by Dienes related to the diamond theorem —

See also the above 15 images in

http://www.log24.com/log/pix11/110220-relativprob.jpg

and versions of the 4×4 coordinatization in  The 4×4 Relativity Problem
(Jan. 17, 2014).

Sunday, January 19, 2014

Deep Beauty

Filed under: General — Tags: , — m759 @ 11:00 am

(Continued)

Old punchline:  “Spell chrysanthemum.”
Variation:  “Spell coordinatization.”

Related test:  Chrysanthemum Coordinatization —

The image �http://www.log24.com/log/pix06A/060604-Primitive.gif� cannot be displayed, because it contains errors.

Context Root circle.

Saturday, January 18, 2014

The Triangle Relativity Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 5:01 pm

A sequel to last night's post The 4×4 Relativity Problem —

IMAGE- Triangle Coordinatization

In other words, how should the triangle corresponding to
the above square be coordinatized ?

See also a post of July 8, 2012 — "Not Quite Obvious."

Context — "Triangles Are Square," a webpage stemming
from an American Mathematical Monthly  item published
in 1984.

Friday, January 17, 2014

The 4×4 Relativity Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 11:00 pm

The sixteen-dot square array in yesterday’s noon post suggests
the following remarks.

“This is the relativity problem:  to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The 1977 matrix Q is echoed in the following from 2002—

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

A different representation of Cullinane’s 1977 square model of the
16-point affine geometry over the two-element Galois field GF(2)
is supplied by Conway and Sloane in Sphere Packings, Lattices and Groups   
(first published in 1988) :

IMAGE- The Galois tesseract as a four-dimensional vector space, from a diagram by Conway and Sloane in 'Sphere Packings, Lattices, and Groups'

Here a, b, c, d   are basis vectors in the vector 4-space over GF(2).
(For a 1979 version of this vector space, see AMS Abstract 79T-A37.)

See also a 2011 publication of the Mathematical Association of America —

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

Monday, June 10, 2013

Galois Coordinates

Filed under: General,Geometry — Tags: , , — m759 @ 10:30 pm

Today's previous post on coordinate systems
suggests a look at the phrase "Galois coordinates."

A search shows that the phrase, though natural,
has apparently not been used before 2011* for solutions
to what Hermann Weyl called "the relativity problem."

A thorough historical essay on Galois coordinatization
in this sense would require more academic resources
than I have available. It would likely describe a number
of applications of Galois-field coordinates to square
(and perhaps to cubical) arrays that were studied before
1976, the date of my Diamond Theory  monograph.

But such a survey might not  find any such pre-1976
coordinatization of a 4×4 array  by the 16 elements
of the vector 4-space  over the Galois field with two
elements, GF(2).

Such coordinatizations are important because of their
close relationship to the Mathieu group 24 .

See a preprint by Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group 24 ," with its remark
denying knowledge of any such coordinatization
prior to a 1989 paper by R. T. Curtis.

Related material: 

Some images related to Galois coordinates, excerpted
from a Google search today (click to enlarge)—

*  A rather abstract  2011 paper that uses the phrase
   "Galois coordinates" may have some implications 
   for the naive form of the relativity problem
   related to square and cubical arrays.

Thursday, November 22, 2012

Finite Relativity

Filed under: General,Geometry — Tags: , — m759 @ 10:48 pm

(Continued from 1986)

S. H. Cullinane
The relativity problem in finite geometry.
Feb. 20, 1986.

This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.

— H. Weyl, The Classical Groups ,
Princeton Univ. Pr., 1946, p. 16

In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S.

This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame.

The frame: A 4×4 array.

The invariant structure:

The following set of 15 partitions of the frame into two 8-sets.

Fifteen partitions of a 4x4 array into two 8-sets
 

A representative coordinatization:

 

0000  0001  0010  0011
0100  0101  0110  0111
1000  1001  1010  1011
1100  1101  1110  1111

 

The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2).

S. H. Cullinane
The relativity problem in finite geometry.
Nov. 22, 2012.

This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.

— H. Weyl, The Classical Groups ,
Princeton Univ. Pr., 1946, p. 16

In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S.

This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame.

The frame: An array of 16 congruent equilateral subtriangles that make up a larger equilateral triangle.

The invariant structure:

The following set of 15 partitions of the frame into two 8-sets.


Fifteen partitions of an array of 16 triangles into two 8-sets


A representative coordinatization:

 

Coordinates for a triangular finite geometry

The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2).

For some background on the triangular version,
see the Square-Triangle Theorem,
noting particularly the linked-to coordinatization picture.

Monday, July 16, 2012

Mapping Problem continued

Filed under: General,Geometry — Tags: , — m759 @ 2:56 am

Another approach to the square-to-triangle
mapping problem (see also previous post)—

IMAGE- Triangular analogs of the hyperplanes in the square model of PG(3,2)

For the square model referred to in the above picture, see (for instance)

Coordinates for the 16 points in the triangular arrays 
of the corresponding affine space may be deduced
from the patterns in the projective-hyperplanes array above.

This should solve the inverse problem of mapping,
in a natural way, the triangular array of 16 points 
to the square array of 16 points.

Update of 9:35 AM ET July 16, 2012:

Note that the square model's 15 hyperplanes S 
and the triangular model's 15 hyperplanes T —

— share the following vector-space structure —

   0     c     d   c + d
   a   a + c   a + d a + c + d
   b   b + c   b + d b + c + d
a + b a + b + c a + b + d   a + b + 
  c + d

   (This vector-space a b c d  diagram is from
   Chapter 11 of   Sphere Packings, Lattices
   and Groups
, by   John Horton Conway and
   N. J. A. Sloane, first published by Springer
   in 1988.)

Saturday, June 16, 2012

Chiral Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 1:06 am

In memory of William S. Knowles, chiral chemist, who died last Wednesday (June 13, 2012)—

Detail from the Harvard Divinity School 1910 bookplate in yesterday morning's post

"ANDOVERHARVARD THEOLOGICAL LIBRARY"

Detail from Knowles's obituary in this  morning's New York Times

William Standish Knowles was born in Taunton, Mass., on June 1, 1917. He graduated a year early from the Berkshire School, a boarding school in western Massachusetts, and was admitted to Harvard. But after being strongly advised that he was not socially mature enough for college, he did a second senior year of high school at another boarding school, Phillips Academy in Andover, N.H.

Dr. Knowles graduated from Harvard with a bachelor’s degree in chemistry in 1939….

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

From Pilate Goes to Kindergarten

The six congruent quaternion actions illustrated above are based on the following coordinatization of the eightfold cube

Problem: Is there a different coordinatization
 that yields greater symmetry in the pictures of
quaternion group actions?

A paper written in a somewhat similar spirit—

"Chiral Tetrahedrons as Unitary Quaternions"—

ABSTRACT: Chiral tetrahedral molecules can be dealt [with] under the standard of quaternionic algebra. Specifically, non-commutativity of quaternions is a feature directly related to the chirality of molecules….

Monday, February 20, 2012

Coxeter and the Relativity Problem

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

In the Beginning…

"As is well known, the Aleph is the first letter of the Hebrew alphabet."
– Borges, "The Aleph" (1945)

From some 1949 remarks of Weyl—

"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."

Hermann Weyl, "Relativity Theory as a Stimulus in Mathematical Research," Proceedings of the American Philosophical Society , Vol. 93, No. 7, Theory of Relativity in Contemporary Science: Papers Read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949  (Dec. 30, 1949), pp. 535-541

Weyl in 1946—:

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

Coxeter in 1950 described the elements of the Galois field GF(9) as powers of a primitive root and as ordered pairs of the field of residue-classes modulo 3—

"… the successive powers of  the primitive root λ or 10 are

λ = 10,  λ2 = 21,  λ3 = 22,  λ4 = 02,
λ5 = 20,  λ6 = 12,  λ7 = 11,  λ8 = 01.

These are the proper coordinate symbols….

(See Fig. 10, where the points are represented in the Euclidean plane as if the coordinate residue 2 were the ordinary number -1. This representation naturally obscures the collinearity of such points as λ4, λ5, λ7.)"

http://www.log24.com/log/pix12/120220-CoxeterFig10.jpg

Coxeter's Figure 10 yields...

http://www.log24.com/log/pix11/110107-The1950Aleph-Sm.jpg

The Aleph

The details:

(Click to enlarge)

http://www.log24.com/log/pix11/110107-Aleph-Sm.jpg

Coxeter's phrase "in the Euclidean plane" obscures the noncontinuous nature of the transformations that are automorphisms of the above linear 2-space over GF(3).

Tuesday, September 20, 2011

Relativity Problem Revisited

Filed under: General,Geometry — Tags: , , , , — m759 @ 4:00 am

A footnote was added to Finite Relativity

Background:

Weyl on what he calls the relativity problem

IMAGE- Weyl in 1949 on the relativity problem

“The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time.”

– Hermann Weyl, 1949, “Relativity Theory as a Stimulus in Mathematical Research

“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

– Hermann Weyl, 1946, The Classical Groups , Princeton University Press, p. 16

…. A note of Feb. 20, 1986, supplied an example of such coordinatizations in finite geometry. In that note, the group of mediating transformations acted directly on  coordinates within a 4×4 array. When the 4×4 array is embedded in a 4×6 array, a larger and more interesting group, M 24 (containing the original group), acts on the larger array.  There is no obvious solution to Weyl’s relativity problem for M 24.  That is, there is no obvious way* to apply exactly 24 distinct transformable coordinate-sets (or symbol-strings ) to the 24 array elements in such a way that the natural group of mediating transformations of the 24 symbol-strings is M 24. ….

Footnote of Sept. 20, 2011:

* R.T. Curtis has, it seems, a non-obvious way that involves strings of seven symbols.  His abstract for a 1990 paper says that in his construction “The generators of M 24 are defined… as permutations of twenty-four 7-cycles in the action of PSL2(7) on seven letters….”

See “Geometric Interpretations of the ‘Natural’ Generators of the Mathieu groups,” by R.T. Curtis,  Mathematical Proceedings of the Cambridge Philosophical Society  (1990), Vol. 107, Issue 01, pp. 19-26. (Rec. Jan. 3, 1989, revised Feb. 3, 1989.) This paper was published online on Oct. 24, 2008.

Some related articles by Curtis:

R.T. Curtis, “Natural Constructions of the Mathieu groups,” Math. Proc. Cambridge Philos. Soc.  (1989), Vol. 106, pp. 423-429

R.T. Curtis. “Symmetric Presentations I: Introduction, with Particular Reference to the Mathieu groups M 12  and M 24” In Proceedings of 1990 LMS Durham Conference ‘Groups, Combinatorics and Geometry’  (eds. M. W. Liebeck and J. Saxl),  London Math. Soc. Lecture Note Series 165, Cambridge University Press, 1992, pp. 380–396

R.T. Curtis, “A Survey of Symmetric Generation of Sporadic Simple Groups,” in The Atlas of Finite Groups: Ten Years On , (eds. R.T. Curtis and R.A. Wilson), London Math. Soc. Lecture Note Series 249, Cambridge University Press, 1998, pp. 39–57

Saturday, February 20, 2010

The Mathieu Relativity Problem

Filed under: General,Geometry — m759 @ 10:10 am

Weyl on what he calls the relativity problem

"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."

— Hermann Weyl, 1949, "Relativity Theory as a Stimulus in Mathematical Research"

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, 1946, The Classical Groups, Princeton University Press, p. 16

Twenty-four years ago a note of Feb. 20, 1986, supplied an example of such coordinatizations in finite geometry. In that note, the group of mediating transformations acted directly on coordinates within a 4×4 array. When the 4×4 array is embedded in a 4×6 array, a larger and more interesting group, M24 (containing the original group), acts on the larger array.  There is no obvious solution to Weyl's relativity problem for M24.  That is, there is no obvious way to apply exactly 24 distinct transformable coordinates (or symbol-strings) to the 24 array elements in such a way that the natural group of mediating transformations of the 24 symbol-strings is M24.

There is, however, an assignment of symbol-strings that yields a family of sets with automorphism group M24.

R.D. Carmichael in 1931 on his construction of the Steiner system S(5,8,24)–

"The linear fractional group modulo 23 of order 24•23•11 is often represented as a doubly transitive group of degree 24 on the symbols ∞, 0, 1, 2,…, 22. This transitive group contains a subgroup of order 8 each element of which transforms into itself the set ∞, 0, 1, 3, 12, 15, 21, 22 of eight elements, while the whole group transforms this set into 3•23•11 sets of eight each. This configuration of octuples has the remarkable property that any given set of five of the 24 symbols occurs in one and just one of these octuples. The largest permutation group Γ on the 24 symbols, each element of which leaves this configuration invariant, is a five-fold transitive group of degree 24 and order 24•23•22•21•20•48. This is the Mathieu group of degree 24."

— R. D. Carmichael, 1931, "Tactical Configurations of Rank Two," in American Journal of Mathematics, Vol. 53, No. 1 (Jan., 1931), pp. 217-240

Wednesday, March 21, 2007

Wednesday March 21, 2007

Filed under: General,Geometry — Tags: — m759 @ 3:18 pm
Finite Relativity
continued

This afternoon I added a paragraph to The Geometry of Logic that makes it, in a way, a sequel to the webpage Finite Relativity:

"As noted previously, in Figure 2 viewed as a lattice the 16 digital labels 0000, 0001, etc., may be interpreted as naming the 16 subsets of a 4-set; in this case the partial ordering in the lattice is the structure preserved by the lattice's group of 24 automorphisms– the same automorphism group as that of the 16 Boolean connectives.  If, however, these 16 digital labels are interpreted as naming the 16 functions from a 4-set to a 2-set  (of two truth values, of two colors, of two finite-field elements, and so forth), it is not obvious that the notion of partial order is relevant.  For such a set of 16 functions, the relevant group of automorphisms may be the affine group of A mentioned above.  One might argue that each Venn diagram in Fig. 3 constitutes such a function– specifically, a mapping of four nonoverlapping regions within a rectangle to a set of two colors– and that the diagrams, considered simply as a set of two-color mappings, have an automorphism group of order larger than 24… in fact, of order 322,560.  Whether such a group can be regarded as forming part of a 'geometry of logic' is open to debate."

The epigraph to "Finite Relativity" is:

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

The added paragraph seems to fit this description.

Tuesday, February 20, 2007

Tuesday February 20, 2007

Filed under: General,Geometry — m759 @ 7:09 am
Symmetry

Today is the 21st birthday of my note “The Relativity Problem in Finite Geometry.”

Some relevant quotations:

“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

Describing the branch of mathematics known as Galois theory, Weyl says that it

“… is nothing else but the relativity theory for the set Sigma, a set which, by its discrete and finite character, is conceptually so much simpler than the infinite set of points in space or space-time dealt with by ordinary relativity theory.”

— Weyl, Symmetry, Princeton University Press, 1952, p. 138

Weyl’s set Sigma is a finite set of complex numbers.   Some other sets with “discrete and finite character” are those of 4, 8, 16, or 64 points, arranged in squares and cubes.  For illustrations, see Finite Geometry of the Square and Cube.  What Weyl calls “the relativity problem” for these sets involves fixing “objectively” a class of equivalent coordinatizations.  For what Weyl’s “objectively” means, see the article “Symmetry and Symmetry  Breaking,” by Katherine Brading and Elena Castellani, in the Stanford Encyclopedia of Philosophy:

“The old and natural idea that what is objective should not depend upon the particular perspective under which it is taken into consideration is thus reformulated in the following group-theoretical terms: what is objective is what is invariant with respect to the transformation group of reference frames, or, quoting Hermann Weyl (1952, p. 132), ‘objectivity means invariance with respect to the group of automorphisms [of space-time].‘[22]

22. The significance of the notion of invariance and its group-theoretic treatment for the issue of objectivity is explored in Born (1953), for example. For more recent discussions see Kosso (2003) and Earman (2002, Sections 6 and 7).

References:

Born, M., 1953, “Physical Reality,” Philosophical Quarterly, 3, 139-149. Reprinted in E. Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics, Princeton, NJ: Princeton University Press, 1998, pp. 155-167.

Earman, J., 2002, “Laws, Symmetry, and Symmetry Breaking; Invariance, Conservation Principles, and Objectivity,’ PSA 2002, Proceedings of the Biennial Meeting of the Philosophy of Science Association 2002, forthcoming [Abstract/Preprint available online]

Kosso, P., 2003, “Symmetry, objectivity, and design,” in K. Brading and E. Castellani (eds.), Symmetries in Physics: Philosophical Reflections, Cambridge: Cambridge University Press, pp. 410-421.

Weyl, H., 1952, Symmetry, Princeton, NJ: Princeton University Press.

See also

Archives Henri Poincaré (research unit UMR 7117, at Université Nancy 2, of the CNRS)–

Minkowski, Mathematicians, and the Mathematical Theory of Relativity,” by Scott Walter, in The Expanding Worlds of General Relativity (Einstein Studies, volume 7), H. Goenner, J. Renn, J. Ritter and T. Sauer, editors, Boston/Basel: Birkhäuser, 1999, pp. 45-86–

“Developing his ideas before Göttingen mathematicians in April 1909, Klein pointed out that the new theory based on the Lorentz group (which he preferred to call ‘Invariantentheorie’) could have come from pure mathematics (1910: 19). He felt that the new theory was anticipated by the ideas on geometry and groups that he had introduced in 1872, otherwise known as the Erlangen program (see Gray 1989: 229).”

References:

Gray, Jeremy J. (1989). Ideas of Space. 2d ed. Oxford: Oxford University Press.

Klein, Felix. (1910). “Über die geometrischen Grundlagen der Lorentzgruppe.” Jahresbericht der deutschen Mathematiker-Vereinigung 19: 281-300. [Reprinted: Physikalische Zeitschrift 12 (1911): 17-27].

Related material: A pathetically garbled version of the above concepts was published in 2001 by Harvard University Press.  See Invariances: The Structure of the Objective World, by Robert Nozick.

Saturday, June 4, 2005

Saturday June 4, 2005

Filed under: General,Geometry — m759 @ 7:00 pm
  Drama of the Diagonal
  
   The 4×4 Square:
  French Perspectives

Earendil_Silmarils:
The image “http://www.log24.com/log/pix05A/050604-Fuite1.jpg” cannot be displayed, because it contains errors.
  
   Les Anamorphoses:
 
   The image “http://www.log24.com/log/pix05A/050604-DesertSquare.jpg” cannot be displayed, because it contains errors.
 
  “Pour construire un dessin en perspective,
   le peintre trace sur sa toile des repères:
   la ligne d’horizon (1),
   le point de fuite principal (2)
   où se rencontre les lignes de fuite (3)
   et le point de fuite des diagonales (4).”
   _______________________________
  
  Serge Mehl,
   Perspective &
  Géométrie Projective:
  
   “… la géométrie projective était souvent
   synonyme de géométrie supérieure.
   Elle s’opposait à la géométrie
   euclidienne: élémentaire
  
  La géométrie projective, certes supérieure
   car assez ardue, permet d’établir
   de façon élégante des résultats de
   la géométrie élémentaire.”
  
  Similarly…
  
  Finite projective geometry
  (in particular, Galois geometry)
   is certainly superior to
   the elementary geometry of
  quilt-pattern symmetry
  and allows us to establish
   de façon élégante
   some results of that
   elementary geometry.
  
  Other Related Material…
  
   from algebra rather than
   geometry, and from a German
   rather than from the French:  

This is the relativity problem:
to fix objectively a class of
equivalent coordinatizations
and to ascertain
the group of transformations S
mediating between them.”
— Hermann Weyl,
The Classical Groups,
Princeton U. Press, 1946

The image “http://www.log24.com/log/pix05/050124-galois12s.jpg” cannot be displayed, because it contains errors.

Evariste Galois

 Weyl also says that the profound branch
of mathematics known as Galois theory

   “… is nothing else but the
   relativity theory for the set Sigma,
   a set which, by its discrete and
    finite character, is conceptually
   so much simpler than the
   infinite set of points in space
   or space-time dealt with
   by ordinary relativity theory.”
  — Weyl, Symmetry,
   Princeton U. Press, 1952
  
   Metaphor and Algebra…  

“Perhaps every science must
start with metaphor
and end with algebra;
and perhaps without metaphor
there would never have been
any algebra.” 

   — attributed, in varying forms, to
   Max Black, Models and Metaphors, 1962

For metaphor and
algebra combined, see  

  “Symmetry invariance
  in a diamond ring,”

  A.M.S. abstract 79T-A37,
Notices of the
American Mathematical Society,
February 1979, pages A-193, 194 —
the original version of the 4×4 case
of the diamond theorem.

  
More on Max Black…

“When approaching unfamiliar territory, we often, as observed earlier, try to describe or frame the novel situation using metaphors based on relations perceived in a familiar domain, and by using our powers of association, and our ability to exploit the structural similarity, we go on to conjecture new features for consideration, often not noticed at the outset. The metaphor works, according to Max Black, by transferring the associated ideas and implications of the secondary to the primary system, and by selecting, emphasising and suppressing features of the primary in such a way that new slants on it are illuminated.”

— Paul Thompson, University College, Oxford,
    The Nature and Role of Intuition
     in Mathematical Epistemology

  A New Slant…  

That intuition, metaphor (i.e., analogy), and association may lead us astray is well known.  The examples of French perspective above show what might happen if someone ignorant of finite geometry were to associate the phrase “4×4 square” with the phrase “projective geometry.”  The results are ridiculously inappropriate, but at least the second example does, literally, illuminate “new slants”– i.e., diagonals– within the perspective drawing of the 4×4 square.

Similarly, analogy led the ancient Greeks to believe that the diagonal of a square is commensurate with the side… until someone gave them a new slant on the subject.

Friday, February 20, 2004

Friday February 20, 2004

Filed under: General,Geometry — Tags: — m759 @ 3:24 pm

Finite Relativity

Today is the 18th birthday of my note

The Relativity Problem in Finite Geometry.”

That note begins with a quotation from Weyl:

“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

Here is another quotation from Weyl, on the profound branch of mathematics known as Galois theory, which he says

“… is nothing else but the relativity theory for the set Sigma, a set which, by its discrete and finite character, is conceptually so much simpler than the infinite set of points in space or space-time dealt with by ordinary relativity theory.”

— Weyl, Symmetry, Princeton University Press, 1952, p. 138

This second quotation applies equally well to the much less profound, but more accessible, part of mathematics described in Diamond Theory and in my note of Feb. 20, 1986.

Powered by WordPress