Log24

Tuesday, December 15, 2015

Square Triangles

Filed under: General,Geometry — Tags: , — m759 @ 3:57 pm

Click image for some background.

Exercise:  Note that, modulo color-interchange, the set of 15 two-color
patterns above is invariant under the group of six symmetries of the
equilateral triangle. Are there any other such sets of 15 two-color triangular
patterns that are closed as sets , modulo color-interchange, under the six
triangle symmetries and  under the 322,560 permutations of the 16
subtriangles induced by actions of the affine group AGL(4,2)
on the 16 subtriangles' centers , given a suitable coordinatization?

Saturday, January 18, 2014

The Triangle Relativity Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 5:01 pm

A sequel to last night's post The 4×4 Relativity Problem —

IMAGE- Triangle Coordinatization

In other words, how should the triangle corresponding to
the above square be coordinatized ?

See also a post of July 8, 2012 — "Not Quite Obvious."

Context — "Triangles Are Square," a webpage stemming
from an American Mathematical Monthly  item published
in 1984.

Thursday, November 22, 2012

Finite Relativity

Filed under: General,Geometry — Tags: , — m759 @ 10:48 pm

(Continued from 1986)

S. H. Cullinane
The relativity problem in finite geometry.
Feb. 20, 1986.

This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.

— H. Weyl, The Classical Groups ,
Princeton Univ. Pr., 1946, p. 16

In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S.

This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame.

The frame: A 4×4 array.

The invariant structure:

The following set of 15 partitions of the frame into two 8-sets.

Fifteen partitions of a 4x4 array into two 8-sets
 

A representative coordinatization:

 

0000  0001  0010  0011
0100  0101  0110  0111
1000  1001  1010  1011
1100  1101  1110  1111

 

The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2).

S. H. Cullinane
The relativity problem in finite geometry.
Nov. 22, 2012.

This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.

— H. Weyl, The Classical Groups ,
Princeton Univ. Pr., 1946, p. 16

In finite geometry "points" are often defined as ordered n-tuples of a finite (i.e., Galois) field GF(q). What geometric structures ("frames of reference," in Weyl's terms) are coordinatized by such n-tuples? Weyl's use of "objectively" seems to mean that such structures should have certain objective— i.e., purely geometric— properties invariant under each S.

This note suggests such a frame of reference for the affine 4-space over GF(2), and a class of 322,560 equivalent coordinatizations of the frame.

The frame: An array of 16 congruent equilateral subtriangles that make up a larger equilateral triangle.

The invariant structure:

The following set of 15 partitions of the frame into two 8-sets.


Fifteen partitions of an array of 16 triangles into two 8-sets


A representative coordinatization:

 

Coordinates for a triangular finite geometry

The group: The group AGL(4,2) of 322,560 regular affine transformations of the ordered 4-tuples over GF(2).

For some background on the triangular version,
see the Square-Triangle Theorem,
noting particularly the linked-to coordinatization picture.

Wednesday, April 23, 2008

Wednesday April 23, 2008

Filed under: General — Tags: , — m759 @ 9:00 am

Upscale Realism

or, "Have some more
wine and cheese, Barack."

(See April 15, 5:01 AM)

  Allyn Jackson on Rebecca Goldstein
in the April 2006 AMS Notices (pdf)

"Rebecca Goldstein’s 1983 novel The Mind-Body Problem has been widely admired among mathematicians for its authentic depiction of academic life, as well as for its exploration of how philosophical issues impinge on everyday life. Her new book, Incompleteness: The Proof and Paradox of Kurt Gödel, is a volume in the 'Great Discoveries' series published by W. W. Norton….

In March 2005 the Mathematical Sciences Research Institute (MSRI) in Berkeley held a public event in which its special projects director, Robert Osserman, talked with Goldstein about her work. The conversation, which took place before an audience of about fifty people at the Commonwealth Club in San Francisco, was taped….

A member of the audience posed a question that has been on the minds of many of Goldstein’s readers: Is The Mind-Body Problem based on her own life? She did indeed study philosophy at Princeton, finishing her Ph.D. in 1976 with a thesis titled 'Reduction, Realism, and the Mind.' She said that while there are correlations between her life and the novel, the book is not autobiographical….

She… talked about the relationship between Gödel and his colleague at the Institute for Advanced Study, Albert Einstein. The two were very different: As Goldstein put it, 'Einstein was a real mensch, and Gödel was very neurotic.' Nevertheless, a friendship sprang up between the two. It was based in part, Goldstein speculated, on their both being exiles– exiles from Europe and intellectual exiles. Gödel's work was sometimes taken to mean that even mathematical truth is uncertain, she noted, while Einstein's theories of relativity were seen as implying the sweeping view that 'everything is relative.' These misinterpretations irked both men, said Goldstein. 'Einstein and Gödel were realists and did not like it when their work was put to the opposite purpose.'"


Related material:

From Log24 on
March 22 (Tuesday of
Passion Week), 2005:

 
"'What is this Stone?' Chloe asked…. 'It is told that, when the Merciful One made the worlds, first of all He created that Stone and gave it to the Divine One whom the Jews call Shekinah, and as she gazed upon it the universes arose and had being.'"

Many Dimensions,
by Charles Williams, 1931

For more on this theme
appropriate to Passion Week
Jews playing God — see

The image “http://www.log24.com/log/pix05/050322-Trio.jpg” cannot be displayed, because it contains errors.

Rebecca Goldstein
in conversation with
Bob Osserman
of the
Mathematical Sciences
Research Institute
at the
Commonwealth Club,
San Francisco,
Tuesday, March 22.

Wine and cheese
reception at 5:15 PM
(San Francisco time).

From
UPSCALE,
a website of the
physics department at
the University of Toronto:

Mirror Symmetry

 

Robert Fludd: Universe as mirror image of God

"The image [above]
is a depiction of
the universe as a
mirror image of God,
drawn by Robert Fludd
in the early 17th century.

The caption of the
upper triangle reads:

'That most divine and beautiful
counterpart visible below in the
flowing image of the universe.'

The caption of the
lower triangle is:

'A shadow, likeness, or
reflection of the insubstantial*
triangle visible in the image
of the universe.'"

* Sic. The original is incomprehensibilis, a technical theological term. See Dorothy Sayers on the Athanasian Creed and John 1:5.

For further iconology of the
above equilateral triangles,
see Star Wars (May 25, 2003),
Mani Padme (March 10, 2008),
Rite of Sping (March 14, 2008),
and
Art History: The Pope of Hope
(In honor of John Paul II
three days after his death
in April 2005).

Happy Shakespeare's Birthday.

Powered by WordPress