Log24

Friday, August 14, 2015

Discrete Space

Filed under: General,Geometry — Tags: , — m759 @ 7:24 am

(A review)

Galois space:

Image-- examples from Galois affine geometry

Counting symmetries of  Galois space:
IMAGE - The Diamond Theorem

The reason for these graphic symmetries in affine Galois space —

symmetries of the underlying projective Galois space:

Monday, April 10, 2023

Space

Filed under: General — Tags: , , — m759 @ 3:09 am

(Perspective Not  as Symbolic Form)

From a post of June 8, 2014

Some background on the large Desargues configuration

See August 6, 2013 — Desargues via Galois.

Monday, September 13, 2021

Cube Space Revisited

Filed under: General — Tags: , , , , — m759 @ 3:02 pm

The above Quanta  article mentions

"Maryna Viazovska’s 2016 discovery of the most efficient
ways of packing spheres in dimensions eight and 24."

From a course to be taught by Viazovska next spring:

The Lovasz reference suggests a review of my own webpage
Cube Space, 1984-2003.

See as well a review of Log24 posts on Packing.

Sunday, April 16, 2017

Art Space Paradigm Shift

Filed under: General,Geometry — Tags: , , — m759 @ 1:00 am

This post’s title is from the tags of the previous post

 

The title’s “shift” is in the combined concepts of

Space and Number

From Finite Jest (May 27, 2012):

IMAGE- History of Mathematics in a Nutshell

The books pictured above are From Discrete to Continuous ,
by Katherine Neal, and Geometrical Landscapes , by Amir Alexander.

For some details of the shift, see a Log24 search for Boole vs. Galois.
From a post found in that search —

Benedict Cumberbatch Says
a Journey From Fact to Faith
Is at the Heart of Doctor Strange

io9 , July 29, 2016

” ‘This man comes from a binary universe
where it’s all about logic,’ the actor told us
at San Diego Comic-Con . . . .

‘And there’s a lot of humor in the collision
between Easter [ sic ] mysticism and
Western scientific, sort of logical binary.’ “

[Typo now corrected, except in a comment.]

Friday, August 14, 2015

Space Station 2015

Filed under: General,Geometry — Tags: — m759 @ 9:20 am

(A sequel to Space Station 1976)

For Kathleen Gibbons* —

'Sacred Space' at Chautauqua Institution

* Note Gibbons's work on "Discrete phase space based on finite fields."

Saturday, February 18, 2012

Symmetry

Filed under: General,Geometry — m759 @ 7:35 pm

From the current Wikipedia article "Symmetry (physics)"—

"In physics, symmetry includes all features of a physical system that exhibit the property of symmetry—that is, under certain transformations, aspects of these systems are 'unchanged', according to a particular observation. A symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is 'preserved' under some change.

A family of particular transformations may be continuous  (such as rotation of a circle) or discrete  (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries. Continuous symmetries can be described by Lie groups while discrete symmetries are described by finite groups (see Symmetry group)."….

"A discrete symmetry is a symmetry that describes non-continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square's original appearance."

Note the confusion here between continuous (or discontinuous) transformations  and "continuous" (or "discontinuous," i.e. "discrete") groups .

This confusion may impede efforts to think clearly about some pure mathematics related to current physics— in particular, about the geometry of spaces made up of individual units ("points") that are not joined together in a continuous manifold.

For an attempt to forestall such confusion, see Noncontinuous Groups.

For related material, see Erlanger and Galois as well as the opening paragraphs of Diamond Theory

Symmetry is often described as invariance under a group of transformations. An unspoken assumption about symmetry in Euclidean 3-space is that the transformations involved are continuous.

Diamond theory rejects this assumption, and in so doing reveals that Euclidean symmetry may itself  be invariant under rather interesting groups of non-continuous (and a-symmetric) transformations. (These might be called noncontinuous  groups, as opposed to so-called discontinuous  (or discrete ) symmetry groups. See Weyl's Symmetry .)

For example, the affine group A on the 4-space over the 2-element field has a natural noncontinuous and asymmetric but symmetry-preserving action on the elements of a 4×4 array. (Details)

(Version first archived on March 27, 2002)

Update of Sunday, February 19, 2012—

The abuse of language by the anonymous authors
of the above Wikipedia article occurs also in more
reputable sources. For instance—

IMAGE- Brading and Castellani, 'Symmetries in Physics'- Four main sections include 'Continuous Symmetries' and 'Discrete Symmetries.'

Some transformations referred to by Brading and Castellani
and their editees as "discrete symmetries" are, in fact, as
linear transformations of continuous spaces, themselves
continuous  transformations.

This unfortunate abuse of language is at least made explicit
in a 2003 text, Mathematical Perspectives on Theoretical
Physics 
(Nirmala Prakash, Imperial College Press)—

"… associated[*] with any given symmetry there always exists
a continuous or a discrete group of transformations….
A symmetry whose associated group is continuous (discrete)
is called a continuous  (discrete ) symmetry ." — Pp. 235, 236

[* Associated how?]

Monday, August 29, 2005

Monday August 29, 2005

Filed under: General — Tags: — m759 @ 4:00 pm
VALE

The image “http://www.log24.com/log/pix05B/050829-GeorgeAndEsther2.jpg” cannot be displayed, because it contains errors.

George and Esther Szekeres

From the weblog of
David Michael Brown, Jr.:
 

Date:     Sun, 28 Aug 2005
             12:30:40 -0400
From:    Alf van der Poorten AM
           
Subject: Vale George Szekeres and
             Esther Klein Szekeres

Members of the Number Theory List will be sad to learn that George and Esther Szekeres both died this morning.  George, 94, had been quite ill for the last 2-3 days, barely conscious, and died first at 06:30.  Esther, 95, died a half hour later.

Both George Szekeres and Esther Klein will be recalled by number theorists as members of the group of young Hungarian mathematicians of the 1930s including Turan and Erdos.  George and Esther's coming to Australia in the late 40s played an important role in the invigoration of Australian Mathematics.  George was also an expert in group theory and relativity; he was my PhD supervisor.

Emeritus Professor
Alf van der Poorten AM
Centre for Number Theory Research
1 Bimbil Place, Killara NSW

 

Related material:

AVE

3:09 PM EDT Thursday, Aug. 25, 2005:
 

  "Hello! Kinch here. Put me on to Edenville. Aleph, alpha: nought, nought, one." 

 

  "A very short space of time through very short times of space….
   Am I walking into eternity along Sandymount strand?"

   — James Joyce, Ulysses, Proteus chapter

A very short space of time through very short times of space….

   "It is demonstrated that space-time should possess a discrete structure on Planck scales."

   — Peter Szekeres, abstract of Discrete Space-Time

Peter Szekeres is the son of George and Esther Szekeres.
 

ATQUE

"At present, such relationships can at best be heuristically described in terms that invoke some notion of an 'intelligent user standing outside the system.'"

Gian-Carlo Rota in Indiscrete Thoughts, p. 152
 

Related material:
High Concept and
Nothing Nothings (Again).

Thursday, August 25, 2005

Thursday August 25, 2005

Filed under: General,Geometry — m759 @ 3:09 pm
Analogical
Train of Thought

Part I: The 24-Cell

From S. H. Cullinane,
 Visualizing GL(2,p),
 March 26, 1985–

Visualizing the
binary tetrahedral group
(the 24-cell):

The image “http://www.log24.com/theory/images/VisuBinaryTetGrp.jpg” cannot be displayed, because it contains errors.

Another representation of
the 24-cell
:

The image “http://www.log24.com/theory/images/24-cell.jpg” cannot be displayed, because it contains errors.

 From John Baez,
This Week’s Finds in
Mathematical Physics (Week 198)
,”
September 6, 2003: 

Noam Elkies writes to John Baez:

Hello again,

You write:

[…]

“I’d like to wrap up with a few small comments about last Week.  There I said a bit about a 24-element group called the ‘binary tetrahedral group’, a 24-element group called SL(2,Z/3), and the vertices of a regular polytope in 4 dimensions called the ’24-cell’.  The most important fact is that these are all the same thing! And I’ve learned a bit more about this thing from here:”

[…]

Here’s yet another way to see this: the 24-cell is the subgroup of the unit quaternions (a.k.a. SU(2)) consisting of the elements of norm 1 in the Hurwitz quaternions – the ring of quaternions obtained from the Z-span of {1,i,j,k} by plugging up the holes at (1+i+j+k)/2 and its <1,i,j,k> translates. Call this ring A. Then this group maps injectively to A/3A, because for any g,g’ in the group |g-g’| is at most 2 so g-g’ is not in 3A unless g=g’. But for any odd prime p the (Z/pZ)-algebra A/pA is isomorphic with the algebra of 2*2 matrices with entries in Z/pZ, with the quaternion norm identified with the determinant. So our 24-element group injects into SL2(Z/3Z) – which is barely large enough to accommodate it. So the injection must be an isomorphism.

Continuing a bit longer in this vein: this 24-element group then injects into SL2(Z/pZ) for any odd prime p, but this injection is not an isomorphism once p>3. For instance, when p=5 the image has index 5 – which, however, does give us a map from SL2(Z/5Z) to the symmetric group of order 5, using the action of SL2(Z/5Z) by conjugation on the 5 conjugates of the 24-element group. This turns out to be one way to see the isomorphism of PSL2(Z/5Z) with the alternating group A5.

Likewise the octahedral and icosahedral groups S4 and A5 can be found in PSL2(Z/7Z) and PSL2(Z/11Z), which gives the permutation representations of those two groups on 7 and 11 letters respectively; and A5 is also an index-6 subgroup of PSL2(F9), which yields the identification of that group with A6.

NDE


The enrapturing discoveries of our field systematically conceal, like footprints erased in the sand, the analogical train of thought that is the authentic life of mathematics – Gian-Carlo Rota

Like footprints erased in the sand….

Part II: Discrete Space

The James Joyce School
 of Theoretical Physics
:


Log24, May 27, 2004

  “Hello! Kinch here. Put me on to Edenville. Aleph, alpha: nought, nought, one.” 

  “A very short space of time through very short times of space….
   Am I walking into eternity along Sandymount strand?”

   — James Joyce, Ulysses, Proteus chapter

A very short space of time through very short times of space….

   “It is demonstrated that space-time should possess a discrete structure on Planck scales.”

   — Peter Szekeres, abstract of Discrete Space-Time

   “A theory…. predicts that space and time are indeed made of discrete pieces.”

   — Lee Smolin in Atoms of Space and Time (pdf), Scientific American, Jan. 2004

   “… a fundamental discreteness of spacetime seems to be a prediction of the theory….”

   — Thomas Thiemann, abstract of Introduction to Modern Canonical Quantum General Relativity

   “Theories of discrete space-time structure are being studied from a variety of perspectives.”

   — Quantum Gravity and the Foundations of Quantum Mechanics at Imperial College, London

Disclaimer:

The above speculations by physicists
are offered as curiosities.
I have no idea whether
 any of them are correct.

Related material:

Stephen Wolfram offers a brief
History of Discrete Space.

For a discussion of space as discrete
by a non-physicist, see John Bigelow‘s
Space and Timaeus.

Part III: Quaternions
in a Discrete Space

Apart from any considerations of
physics, there are of course many
purely mathematical discrete spaces.
See Visible Mathematics, continued
 (Aug. 4, 2005):

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

Sunday, January 22, 2023

The Stillwell Dichotomies

Number Space
Arithmetic  Geometry
Discrete  Continuous

Related literature —

IMAGE- History of Mathematics in a Nutshell

Bourbaki on arithmetic and geometry

From a "Finite Fields in 1956" post —

The Nutshell:

    Related Narrative:

Thursday, January 19, 2023

Two Approaches to Local-Global Symmetry

Filed under: General — Tags: , — m759 @ 2:34 am

Last revised: January 20, 2023 @ 11:39:05

The First Approach — Via Substructure Isomorphisms —

From "Symmetry in Mathematics and Mathematics of Symmetry"
by Peter J. Cameron, a Jan. 16, 2007, talk at the International
Symmetry Conference, Edinburgh, Jan. 14-17, 2007

Local or global?

"Among other (mostly more vague) definitions of symmetry, the dictionary will typically list two, something like this:

• exact correspondence of parts;
• remaining unchanged by transformation.

Mathematicians typically consider the second, global, notion, but what about the first, local, notion, and what is the relationship between them?  A structure M  is homogeneous * if every isomorphism between finite substructures of M  can be extended to an automorphism of ; in other words, 'any local symmetry is global.' "

A related discussion of the same approach — 

"The aim of this thesis is to classify certain structures
which are, from a certain point of view,
as homogeneous as possible, that is
which have as many symmetries as possible.
the basic idea is the following: a structure S  is
said to be homogeneous  if, whenever two (finite)
substructures Sand S2 of S  are isomorphic,
there is an automorphism of S  mapping S1 onto S2.”

— Alice Devillers,
Classification of Some Homogeneous
and Ultrahomogeneous Structures
,”
Ph.D. thesis, Université Libre de Bruxelles,
academic year 2001-2002

The Wikipedia article Homogeneous graph discusses the local-global approach
used by Cameron and by Devillers.

For some historical background on this approach
via substructure isomorphisms, see a former student of Cameron:

Dugald Macpherson, "A survey of homogeneous structures,"
Discrete Mathematics , Volume 311, Issue 15, 2011,
Pages 1599-1634.

Related material:

Cherlin, G. (2000). "Sporadic Homogeneous Structures."
In: Gelfand, I.M., Retakh, V.S. (eds)
The Gelfand Mathematical Seminars, 1996–1999.
Gelfand Mathematical Seminars. Birkhäuser, Boston, MA.
https://doi.org/10.1007/978-1-4612-1340-6_2

and, more recently, 

Gill et al., "Cherlin's conjecture on finite primitive binary
permutation groups," https://arxiv.org/abs/2106.05154v2
(Submitted on 9 Jun 2021, last revised 9 Jul 2021)

This approach seems to be a rather deep rabbit hole.

The Second Approach — Via Induced Group Actions —

My own interest in local-global symmetry is of a quite different sort.

See properties of the two patterns illustrated in a note of 24 December 1981 —

Pattern A above actually has as few  symmetries as possible
(under the actions described in the diamond theorem ), but it
does  enjoy, as does patttern B, the local-global property that
a group acting in the same way locally on each part  induces
a global group action on the whole .

* For some historical background on the term "homogeneous,"
    see the Wikipedia article Homogeneous space.

Monday, October 17, 2022

From the November 2022 Notices of the A.M.S.

Filed under: General — Tags: , , — m759 @ 9:28 am

"Geometric Group Theory" by Matt Clay, U. of Arkansas

"This article is intended to give an idea about how
the topology and geometry of a space influences
the algebraic structure of groups that act on it and
how this can be used to investigate groups."

Notices  homepage summary

A more precise description of the subject . . .

"The key idea in geometric group theory is to study
infinite groups by endowing them with a metric and
treating them as geometric spaces."

— AMS description of the 2018  treatise
Geometric Group Theory , by Drutu and Kapovich

See also "Geometric Group Theory" in this  journal.

The sort of thing that most interests me, finite  groups
acting on finite  structures, is not included in the above
description of Clay's article. That description only
applies to topological  spaces.  Topology is of little use
for finite  structures unless they are embedded* in 
larger spaces that are continuous, not discrete.

* As, for instance, the fifty-six 3-subsets of an 8-set are
embedded in the continuous space of The Eightfold Way .

Thursday, February 28, 2019

Fooling

Filed under: General — Tags: , — m759 @ 10:12 am

Galois (i.e., finite) fields described as 'deep modern algebra'

IMAGE- History of Mathematics in a Nutshell

The two books pictured above are From Discrete to Continuous ,
by Katherine Neal, and Geometrical Landscapes , by Amir Alexander.

Note: There is no Galois (i.e., finite) field with six elements, but
the theory  of finite fields underlies applications of six-set geometry.

Friday, November 27, 2015

Einstein and Geometry

Filed under: General,Geometry — Tags: , — m759 @ 2:01 pm

(A Prequel to Dirac and Geometry)

"So Einstein went back to the blackboard.
And on Nov. 25, 1915, he set down
the equation that rules the universe.
As compact and mysterious as a Viking rune,
it describes space-time as a kind of sagging mattress…."

— Dennis Overbye in The New York Times  online,
     November 24, 2015

Some pure  mathematics I prefer to the sagging Viking mattress —

Readings closely related to the above passage —

Thomas Hawkins, "From General Relativity to Group Representations:
the Background to Weyl's Papers of 1925-26
," in Matériaux pour
l'histoire des mathématiques au XXe siècle:
Actes du colloque
à la mémoire de Jean Dieudonné
, Nice, 1996  (Soc. Math.
de France, Paris, 1998), pp. 69-100.

The 19th-century algebraic theory of invariants is discussed
as what Weitzenböck called a guide "through the thicket
of formulas of general relativity."

Wallace Givens, "Tensor Coordinates of Linear Spaces," in
Annals of Mathematics  Second Series, Vol. 38, No. 2, April 1937, 
pp. 355-385.

Tensors (also used by Einstein in 1915) are related to 
the theory of line complexes in three-dimensional
projective space and to the matrices used by Dirac
in his 1928 work on quantum mechanics.

For those who prefer metaphors to mathematics —

"We acknowledge a theorem's beauty
when we see how the theorem 'fits' in its place,
how it sheds light around itself, like a Lichtung ,
a clearing in the woods." 
— Gian-Carlo Rota, Indiscrete Thoughts ,
Birkhäuser Boston, 1997, page 132

Rota fails to cite the source of his metaphor.
It is Heidegger's 1964 essay, "The End of Philosophy
and the Task of Thinking" —

"The forest clearing [ Lichtung ] is experienced
in contrast to dense forest, called Dickung  
in our older language." 
— Heidegger's Basic Writings 
edited by David Farrell Krell, 
Harper Collins paperback, 1993, page 441

Sunday, July 20, 2014

Sunday School

Filed under: General,Geometry — Tags: — m759 @ 9:29 am

Paradigms of Geometry:
Continuous and Discrete

The discovery of the incommensurability of a square’s
side with its diagonal contrasted a well-known discrete 
length (the side) with a new continuous  length (the diagonal).
The figures below illustrate a shift in the other direction.
The essential structure of the continuous  configuration at
left is embodied in the discrete  unit cells of the square at right.

IMAGE- Concepts of Space: The Large Desargues Configuration, the Related 4x4 Square, and the 4x4x4 Cube

See Desargues via Galois (August 6, 2013).

Thursday, July 17, 2014

Paradigm Shift:

Filed under: General,Geometry — Tags: , — m759 @ 11:01 am
 

Continuous Euclidean space to discrete Galois space*

Euclidean space:

Point, line, square, cube, tesseract

From a page by Bryan Clair

Counting symmetries in Euclidean space:

Galois space:

Image-- examples from Galois affine geometry

Counting symmetries of  Galois space:
IMAGE - The Diamond Theorem

The reason for these graphic symmetries in affine Galois space —

symmetries of the underlying projective Galois space:

* For related remarks, see posts of May 26-28, 2012.

Sunday, June 8, 2014

Vide

Some background on the large Desargues configuration

"The relevance of a geometric theorem is determined by what the theorem
tells us about space, and not by the eventual difficulty of the proof."

— Gian-Carlo Rota discussing the theorem of Desargues

What space  tells us about the theorem :  

In the simplest case of a projective space  (as opposed to a plane ),
there are 15 points and 35 lines: 15 Göpel  lines and 20 Rosenhain  lines.*
The theorem of Desargues in this simplest case is essentially a symmetry
within the set of 20 Rosenhain lines. The symmetry, a reflection
about the main diagonal in the square model of this space, interchanges
10 horizontally oriented (row-based) lines with 10 corresponding
vertically oriented (column-based) lines.

Vide  Classical Geometry in Light of Galois Geometry.

* Update of June 9: For a more traditional nomenclature, see (for instance)
R. Shaw, 1995.  The "simplest case" link above was added to point out that
the two types of lines named are derived from a natural symplectic polarity 
in the space. The square model of the space, apparently first described in
notes written in October and December, 1978, makes this polarity clearly visible:

A coordinate-free approach to symplectic structure

Tuesday, July 16, 2013

Child Buyers

Filed under: General,Geometry — Tags: — m759 @ 10:00 pm

The title refers to a classic 1960 novel by John Hersey.

“How do you  get young people excited about space?”

— Megan Garber in The Atlantic , Aug. 16, 2012
(Italics added.) (See previous four posts.)

Allyn Jackson on “Simplicity, in Mathematics and in Art,”
in the new August 2013 issue of Notices of the American
Mathematical Society

“As conventions evolve, so do notions of simplicity.
Franks mentioned Gauss’s 1831 paper that
established the respectability of complex numbers.”

This suggests a related image by Gauss, with a
remark on simplicity—

IMAGE- Complex Grid, by Gauss

Here Gauss’s diagram is not, as may appear at first glance,
a 3×3 array of squares, but is rather a 4×4 array of discrete
points (part of an infinite plane array).

Related material that does  feature the somewhat simpler 3×3 array
of squares, not  seen as part of an infinite array—

Marketing the Holy Field

IMAGE- The Ninefold Square, in China 'The Holy Field'

Click image for the original post.

For a purely mathematical view of the holy field, see Visualizing GL(2,p).

Monday, April 1, 2013

Desargues via Rosenhain

Filed under: General,Geometry — Tags: , , — m759 @ 6:00 pm

Background: Rosenhain and Göpel Tetrads in PG(3,2)

Introduction:

The Large Desargues Configuration

Added by Steven H. Cullinane on Friday, April 19, 2013

Desargues' theorem according to a standard textbook:

"If two triangles are perspective from a point
they are perspective from a line."

The converse, from the same book:

"If two triangles are perspective from a line
they are perspective from a point."

Desargues' theorem according to Wikipedia 
combines the above statements:

"Two triangles are in perspective axially  [i.e., from a line]
if and only if they are in perspective centrally  [i.e., from a point]."

A figure often used to illustrate the theorem, 
the Desargues configuration , has 10 points and 10 lines,
with 3 points on each line and 3 lines on each point.

A discussion of the "if and only if" version of the theorem
in light of Galois geometry requires a larger configuration—
15 points and 20 lines, with 3 points on each line 
and 4 lines on each point.

This large  Desargues configuration involves a third triangle,
needed for the proof   (though not the statement ) of the 
"if and only if" version of the theorem. Labeled simply
"Desargues' Theorem," the large  configuration is the
frontispiece to Volume I (Foundations)  of Baker's 6-volume
Principles of Geometry .

Point-line incidence in this larger configuration is,
as noted in the post of April 1 that follows
this introduction, described concisely 
by 20 Rosenhain tetrads  (defined in 1905 by
R. W. H. T. Hudson in Kummer's Quartic Surface ).

The third triangle, within the larger configuration,
is pictured below.

IMAGE- The proof of the converse of Desargues' theorem involves a third triangle.

 

 

 

A connection discovered today (April 1, 2013)—

(Click to enlarge the image below.)

Update of April 18, 2013

Note that  Baker's Desargues-theorem figure has three triangles,
ABC, A'B'C', A"B"C", instead of the two triangles that occur in
the statement of the theorem. The third triangle appears in the
course of proving, not just stating, the theorem (or, more precisely,
its converse). See, for instance, a note on a standard textbook for 
further details.

(End of April 18, 2013 update.)

Update of April 14, 2013

See Baker's Proof (Edited for the Web) for a detailed explanation 
of the above picture of Baker's Desargues-theorem frontispiece.

(End of April 14, 2013 update.)

Update of April 12, 2013

A different figure, from a site at National Tsing Hua University,
shows the three triangles of Baker's figure more clearly:

IMAGE- Desargues' theorem with three triangles, and Galois-geometry version

(End of update of April 12, 2013)

Update of April 13, 2013

Another in a series of figures illustrating
Desargues's theorem in light of Galois geometry:
IMAGE- Veblen and Young 1910 Desargues illustration, with 2013 Galois-geometry version

See also the original Veblen-Young figure in context.

(End of update of April 13, 2013)

Rota's remarks, while perhaps not completely accurate, provide some context
for the above Desargues-Rosenhain connection.  For some other context,
see the interplay in this journal between classical and finite geometry, i.e.
between Euclid and Galois.

For the recent  context of the above finite-geometry version of Baker's Vol. I
frontispiece, see Sunday evening's finite-geometry version of Baker's Vol. IV
frontispiece, featuring the Göpel, rather than the Rosenhain, tetrads.

For a 1986 illustration of Göpel and Rosenhain tetrads (though not under
those names), see Picturing the Smallest Projective 3-Space.

In summary… the following classical-geometry figures
are closely related to the Galois geometry PG(3,2):

Volume I of Baker's Principles  
has a cover closely related to 
the Rosenhain tetrads in PG(3,2)
Volume IV of Baker's Principles 
has a cover closely related to
the Göpel tetrads in PG(3,2) 
Foundations
(click to enlarge)

 

 

 

 

Higher Geometry
(click to enlarge)

 

 

 

 

 

Saturday, May 26, 2012

Harriot’s Cubes

Filed under: General,Geometry — Tags: , — m759 @ 1:28 pm

See also Finite Geometry and Physical Space.

Related material from MacTutor

Harriot and binary numbers

The paper by J. W. Shirley, Binary numeration before Leibniz, Amer. J. Physics 19 (8) (1951), 452-454, contains an interesting look at some mathematics which appears in the hand written papers of Thomas Harriot [1560-1621]. Using the photographs of the two original Harriot manuscript pages reproduced in Shirley’s paper, we explain how Harriot was doing arithmetic with binary numbers.

Leibniz [1646-1716] is credited with the invention [1679-1703] of binary arithmetic, that is arithmetic using base 2. Laplace wrote:-

Leibniz saw in his binary arithmetic the image of Creation. … He imagined the Unity represented God, and Zero the void; that the Supreme Being drew all beings from the void, just as unity and zero express all numbers in his system of numeration. This conception was so pleasing to Leibniz that he communicated it to the Jesuit, Grimaldi, president of the Chinese tribunal for mathematics, in the hope that this emblem of creation would convert the Emperor of China, who was very fond of the sciences …

However, Leibniz was certainly not the first person to think of doing arithmetic using numbers to base 2. Many years earlier Harriot had experimented with the idea of different number bases….

For a discussion of Harriot on the discrete-vs.-continuous question,
see Katherine Neal, From Discrete to Continuous: The Broadening
of Number Concepts in Early Modern England  (Springer, 2002),
pages 69-71.

Thursday, May 3, 2012

Everybody Comes to Rick’s

Filed under: General,Geometry — Tags: — m759 @ 11:30 am

(Continued)

Bogart and Lorre in 'Casablanca' with chessboard and cocktail

The key is the cocktail that begins the proceedings.”

– Brian Harley, Mate in Two Moves

See also yesterday's Endgame , as well as Play and Interplay
from April 28…  and, as a key, the following passage from
an earlier April 28 post

Euclidean geometry has long been applied
to physics; Galois geometry has not.
The cited webpage describes the interplay
of both  sorts of geometry— Euclidean
and Galois, continuous and discrete—
within physical space— if not within
the space of physics .

Saturday, April 28, 2012

Sprechen Sie Deutsch?

Filed under: General,Geometry — m759 @ 10:48 am

A Log24 post, "Bridal Birthday," one year ago today linked to
"The Discrete and the Continuous," a brief essay by David Deutsch.

From that essay—

"The idea of quantization—
the discreteness of physical quantities
turned out to be immensely fruitful."

Deutsch's "idea of quantization" also appears in
the April 12 Log24 post Mythopoetic

"Is Space Digital?" 

— Cover storyScientific American 
     magazine, February 2012

"The idea that space may be digital
  is a fringe idea of a fringe idea
  of a speculative subfield of a subfield."

— Physicist Sabine Hossenfelder 
     at her weblog on Feb. 5, 2012

"A quantization of space/time
 is a holy grail for many theorists…."

— Peter Woit in a comment 
      at his weblog on April 12, 2012

It seems some clarification is in order.

Hossenfelder's "The idea that space may be digital"
and Woit's "a quantization of space/time" may not
refer to the same thing.

Scientific American  on the concept of digital space—

"Space may not be smooth and continuous.
Instead it may be digital, composed of tiny bits."

Wikipedia on the concept of quantization—

Causal setsloop quantum gravitystring theory,
and 
black hole thermodynamics all predict
quantized spacetime….

For a purely mathematical  approach to the
continuous-vs.-discrete issue, see
Finite Geometry and Physical Space.

The physics there is somewhat tongue-in-cheek,
but the geometry is serious.The issue there is not
continuous-vs.-discrete physics , but rather
Euclidean-vs.-Galois geometry .

Both sorts of geometry are of course valid.
Euclidean geometry has long been applied to 
physics; Galois geometry has not. The cited
webpage describes the interplay of both  sorts
of geometry— Euclidean and Galois, continuous
and discrete— within physical space— if not
within the space of physics.

Wednesday, March 21, 2012

Digital Theology

Filed under: General,Geometry — Tags: , — m759 @ 7:20 am

See also remarks on Digital Space and Digital Time in this journal.

Such remarks can, of course, easily verge on crackpot territory.

For some related  pure  mathematics, see Symmetry of Walsh Functions.

Wednesday, October 26, 2011

Erlanger and Galois

Filed under: General,Geometry — Tags: , , , — m759 @ 8:00 pm

Peter J. Cameron yesterday on Galois—

"He was killed in a duel at the age of 20…. His work languished for another 14 years until Liouville published it in his Journal; soon it was recognised as the foundation stone of modern algebra, a position it has never lost."

Here Cameron is discussing Galois theory, a part of algebra. Galois is known also as the founder* of group theory, a more general subject.

Group theory is an essential part of modern geometry as well as of modern algebra—

"In der Galois'schen Theorie, wie hier, concentrirt sich das Interesse auf Gruppen von Änderungen. Die Objecte, auf welche sich die Änderungen beziehen, sind allerdings verschieden; man hat es dort mit einer endlichen Zahl discreter Elemente, hier mit der unendlichen Zahl von Elementen einer stetigen Mannigfaltigkeit zu thun."

— Felix Christian Klein, Erlanger Programm , 1872

("In the Galois theory, as in ours, the interest centres on groups of transformations. The objects to which the transformations are applied are indeed different; there we have to do with a finite number of discrete elements, here with the infinite number of elements in a continuous manifoldness." (Translated by M.W. Haskell, published in Bull. New York Math. Soc. 2, (1892-1893), 215-249))

Related material from Hermann Weyl, Symmetry , Princeton University Press, 1952 (paperback reprint of 1982, pp. 143-144)—

"A field is perhaps the simplest algebraic structure we can invent. Its elements are numbers…. Space is another example of an entity endowed with a structure. Here the elements are points…. What we learn from our whole discussion and what has indeed become a guiding principle in modern mathematics is this lesson: Whenever you have to do with a structure-endowed entity  Σ try to determine is group of automorphisms , the group of those element-wise transformations which leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution of Σ in this way."

For a simple example of a group acting on a field (of 8 elements) that is also a space (of 8 points), see Generating the Octad Generator and Knight Moves.

* Joseph J. Rotman, An Introduction to the Theory of Groups , 4th ed., Springer, 1994, page 2

Sunday, September 18, 2011

Anatomy of a Cube

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm

R.D. Carmichael's seminal 1931 paper on tactical configurations suggests
a search for later material relating such configurations to block designs.
Such a search yields the following

"… it seems that the relationship between
BIB [balanced incomplete block ] designs
and tactical configurations, and in particular,
the Steiner system, has been overlooked."
— D. A. Sprott, U. of Toronto, 1955

http://www.log24.com/log/pix11B/110918-SprottAndCube.jpg

The figure by Cullinane included above shows a way to visualize Sprott's remarks.

For the group actions described by Cullinane, see "The Eightfold Cube" and
"A Simple Reflection Group of Order 168."

Update of 7:42 PM Sept. 18, 2011—

From a Summer 2011 course on discrete structures at a Berlin website—

A different illustration of the eightfold cube as the Steiner system S(3, 4, 8)—

http://www.log24.com/log/pix11B/110918-Felsner.jpg

Note that only the static structure is described by Felsner, not the
168 group actions discussed (as above) by Cullinane. For remarks on
such group actions in the literature, see "Cube Space, 1984-2003."

Tuesday, October 19, 2010

Savage Logic continued…

Filed under: General,Geometry — Tags: — m759 @ 9:36 am

CHAPTER V

THE KALEIDOSCOPE

"This is an account of the discrete groups generated by reflections…."

Regular Polytopes , by H.S.M. Coxeter (unabridged and corrected 1973 Dover reprint of the 1963 Macmillan second edition)

"In this article, we begin a theory linking hyperplane arrangements and invariant forms for reflection groups over arbitrary fields…. Let V  be an n-dimensional vector space over a field F, and let G ≤ Gln (F) be a finite group…. An element of finite order in Gl(V ) is a reflection if its fixed point space in V  is a hyperplane, called the reflecting hyperplane. There are two types of reflections: the diagonalizable reflections in Gl(V ) have a single nonidentity eigenvalue which is a root of unity; the nondiagonalizable reflections in Gl(V ) are called transvections and have determinant 1 (note that they can only occur if the characteristic of F is positive)…. A reflection group is a finite group G  generated by reflections."

— Julia Hartmann and Anne V. Shepler, "Reflection Groups and Differential Forms," Mathematical Research Letters , Vol. 14, No. 6 (Nov. 2007), pp. 955-971

"… the class of reflections is larger in some sense over an arbitrary field than over a characteristic zero field. The reflections in Gl(V ) not only include diagonalizable reflections (with a single nonidentity eigenvalue), but also transvections, reflections with determinant 1 which can not be diagonalized. The transvections in Gl(V ) prevent one from developing a theory of reflection groups mirroring that for Coxeter groups or complex reflection groups."

— Julia Hartmann and Anne V. Shepler, "Jacobians of Reflection Groups," Transactions of the American Mathematical Society , Vol. 360, No. 1 (2008), pp. 123-133 (Pdf available at CiteSeer.)

See also A Simple Reflection Group of Order 168 and this morning's Savage Logic.

Tuesday, July 6, 2010

What “As” Is

Filed under: General,Geometry — Tags: , , , , — m759 @ 8:00 pm

or:  Combinatorics (Rota) as Philosophy (Heidegger) as Geometry (Me)

“Dasein’s full existential structure is constituted by
the ‘as-structure’ or ‘well-joined structure’ of the rift-design*…”

— Gary Williams, post of January 22, 2010

Background—

Gian-Carlo Rota on Heidegger…

“… The universal as  is given various names in Heidegger’s writings….

The discovery of the universal as  is Heidegger’s contribution to philosophy….

The universal ‘as‘ is the surgence of sense in Man, the shepherd of Being.

The disclosure of the primordial as  is the end of a search that began with Plato….
This search comes to its conclusion with Heidegger.”

— “Three Senses of ‘A is B’ in Heideggger,” Ch. 17 in Indiscrete Thoughts

… and projective points as separating rifts

Image-- The Three-Point Line: A Finite Projective Space

    Click image for details.

* rift-design— Definition by Deborah Levitt

Rift.  The stroke or rending by which a world worlds, opening both the ‘old’ world and the self-concealing earth to the possibility of a new world. As well as being this stroke, the rift is the site— the furrow or crack— created by the stroke. As the ‘rift design‘ it is the particular characteristics or traits of this furrow.”

— “Heidegger and the Theater of Truth,” in Tympanum: A Journal of Comparative Literary Studies, Vol. 1, 1998

Saturday, December 26, 2009

Annals of Philosophy

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

Towards a Philosophy of Real Mathematics, by David Corfield, Cambridge U. Press, 2003, p. 206:

"Now, it is no easy business defining what one means by the term conceptual…. I think we can say that the conceptual is usually expressible in terms of broad principles. A nice example of this comes in the form of harmonic analysis, which is based on the idea, whose scope has been shown by George Mackey (1992) to be immense, that many kinds of entity become easier to handle by decomposing them into components belonging to spaces invariant under specified symmetries."

For a simpler example of this idea, see the entities in The Diamond Theorem, the decomposition in A Four-Color Theorem, and the space in Geometry of the 4×4 Square.  The decomposition differs from that of harmonic analysis, although the subspaces involved in the diamond theorem are isomorphic to Walsh functions— well-known as discrete analogues of the trigonometric functions of traditional harmonic analysis.

Friday, October 24, 2008

Friday October 24, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 8:08 am

The Cube Space” is a name given to the eightfold cube in a vulgarized mathematics text, Discrete Mathematics: Elementary and Beyond, by Laszlo Lovasz et al., published by Springer in 2003. The identification in a natural way of the eight points of the linear 3-space over the 2-element field GF(2) with the eight vertices of a cube is an elementary and rather obvious construction, doubtless found in a number of discussions of discrete mathematics. But the less-obvious generation of the affine group AGL(3,2) of order 1344 by permutations of parallel edges in such a cube may (or may not) have originated with me. For descriptions of this process I wrote in 1984, see Diamonds and Whirls and Binary Coordinate Systems. For a vulgarized description of this process by Lovasz, without any acknowledgement of his sources, see an excerpt from his book.

 

Thursday, February 28, 2008

Thursday February 28, 2008

Filed under: General,Geometry — Tags: — m759 @ 7:20 pm
Popularity of MUB’s

From an entry today at the weblog of Lieven Le Bruyn (U. of Antwerp):

“MUBs (for Mutually Unbiased Bases) are quite popular at the moment. Kea is running a mini-series Mutual Unbias….”

The link to Kea (Marni Dee Sheppeard (pdf) of New Zealand) and a link in her Mutual Unbias III (Feb. 13) lead to the following illustration, from a talk, “Discrete phase space based on finite fields,” by William Wootters at the Perimeter Institute in 2005:

http://www.log24.com/log/pix08/080228-Wooters2.jpg

This illustration makes clear the
close relationship of MUB’s to the
finite geometry of the 4×4 square.

The Wootters talk was on July 20, 2005. For related material from that July which some will find more entertaining, see “Steven Cullinane is a Crank,” conveniently reproduced as a five-page thread in the Mathematics Forum at groupsrv.com.

Sunday, September 2, 2007

Sunday September 2, 2007

Filed under: General,Geometry — Tags: , — m759 @ 5:11 pm

Comment at the
n-Category Cafe

Re: This Week’s Finds in Mathematical Physics (Week 251)

On Spekkens’ toy system and finite geometry

Background–

  • In “Week 251” (May 5, 2007), John wrote:
    “Since Spekkens’ toy system resembles a qubit, he calls it a “toy bit”. He goes on to study systems of several toy bits – and the charming combinatorial geometry I just described gets even more interesting. Alas, I don’t really understand it well: I feel there must be some mathematically elegant way to describe it all, but I don’t know what it is…. All this is fascinating. It would be nice to find the mathematical structure that underlies this toy theory, much as the category of Hilbert spaces underlies honest quantum mechanics.”
  • In the n-Category Cafe ( May 12, 2007, 12:26 AM, ) Matt Leifer wrote:
    “It’s crucial to Spekkens’ constructions, and particularly to the analog of superposition, that the state-space is discrete. Finding a good mathematical formalism for his theory (I suspect finite fields may be the way to go) and placing it within a comprehensive framework for generalized theories would be very interesting.”
  • In the n-category Cafe ( May 12, 2007, 6:25 AM) John Baez wrote:
    “Spekkens and I spent an afternoon trying to think about his theory as quantum mechanics over some finite field, but failed — we almost came close to proving it couldnt’ work.”

On finite geometry:

The actions of permutations on a 4 × 4 square in Spekkens’ paper (quant-ph/0401052), and Leifer’s suggestion of the need for a “generalized framework,” suggest that finite geometry might supply such a framework. The geometry in the webpage John cited is that of the affine 4-space over the two-element field.

Related material:

Update of
Sept. 5, 2007

See also arXiv:0707.0074v1 [quant-ph], June 30, 2007:

A fully epistemic model for a local hidden variable emulation of quantum dynamics,

by Michael Skotiniotis, Aidan Roy, and Barry C. Sanders, Institute for Quantum Information Science, University of Calgary. Abstract: "In this article we consider an augmentation of Spekkens’ toy model for the epistemic view of quantum states [1]…."
 

Skotiniotis et al. note that the group actions on the 4×4 square described in Spekkens' paper [1] may be viewed (as in Geometry of the 4×4 Square and Geometry of Logic) in the context of a hypercube, or tesseract, a structure in which adjacency is isomorphic to adjacency in the 4 × 4 square (on a torus).

Hypercube from the Skotiniotis paper:

Hypercube

Reference:

[1] Robert W. Spekkens, Phys. Rev. A 75, 032110 (2007),

Evidence for the epistemic view of quantum states: A toy theory
,

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5 (Received 11 October 2005; revised 2 November 2006; published 19 March 2007.)

"There is such a thing
as a tesseract."
A Wrinkle in Time  
 

Saturday, July 14, 2007

Saturday July 14, 2007

Filed under: General — m759 @ 4:07 am
A Note from the
Catholic University
of America


The August 2007 issue of Notices of the American Mathematical Society contains tributes to the admirable personal qualities and mathematical work of the late Harvard professor George Mackey.  For my own tributes, see Log24 on March 17, 2006April 29, 2006, and March 10, 2007.  For an entry critical of Mackey’s reductionism– a philosophical, not mathematical, error– see Log24 on May 23, 2007 (“Devil in the Details”).

Here is another attack on reductionism, from a discussion of the work of another first-rate mathematician, the late Gian-Carlo Rota of MIT:

“Another theme developed by Rota is that of ‘Fundierung.’ He shows that throughout our experience we encounter things that exist only as founded upon other things: a checkmate is founded upon moving certain pieces of chess, which in turn are founded upon certain pieces of wood or plastic. An insult is founded upon certain words being spoken, an act of generosity is founded upon something’s being handed over. In perception, for example, the evidence that occurs to us goes beyond the physical impact on our sensory organs even though it is founded upon it; what we see is far more than meets the eye. Rota gives striking examples to bring out this relationship of founding, which he takes as a logical relationship, containing all the force of logical necessity. His point is strongly antireductionist. Reductionism is the inclination to see as ‘real’ only the foundation, the substrate of things (the piece of wood in chess, the physical exchange in a social phenomenon, and especially the brain as founding the mind) and to deny the true existence of that which is founded. Rota’s arguments against reductionism, along with his colorful examples, are a marvelous philosophical therapy for the debilitating illness of reductionism that so pervades our culture and our educational systems, leading us to deny things we all know to be true, such as the reality of choice, of intelligence, of emotive insight, and spiritual understanding. He shows that ontological reductionism and the prejudice for axiomatic systems are both escapes from reality, attempts to substitute something automatic, manageable, and packaged, something coercive, in place of the human situation, which we all acknowledge by the way we live, even as we deny it in our theories.”

Robert Sokolowski, foreword to Rota’s Indiscrete Thoughts

Father Robert Sokolowski

Father Robert Sokolowski

Fr. Robert Sokolowski, Ph.D., is Professor of Philosophy at The Catholic University of America in Washington, D.C. Ordained a Roman Catholic priest in 1962, he is internationally recognized and honored for his work in philosophy, particularly phenomenology. In 1994, Catholic University sponsored a conference on his work and published several papers and other essays under the title, The Truthful and the Good, Essays In Honor of Robert Sokolowski.

Thomas Aquinas College newsletter

The tributes to Mackey are contained in the first of two feature articles in the August 2007 AMS Notices.  The second feature article is a review of a new book by Douglas Hofstadter.  For some remarks related to that article, see Thursday’s Log24 entry “Not Mathematics but Theology.”

Tuesday, February 20, 2007

Tuesday February 20, 2007

Filed under: General,Geometry — m759 @ 7:09 am
Symmetry

Today is the 21st birthday of my note “The Relativity Problem in Finite Geometry.”

Some relevant quotations:

“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

Describing the branch of mathematics known as Galois theory, Weyl says that it

“… is nothing else but the relativity theory for the set Sigma, a set which, by its discrete and finite character, is conceptually so much simpler than the infinite set of points in space or space-time dealt with by ordinary relativity theory.”

— Weyl, Symmetry, Princeton University Press, 1952, p. 138

Weyl’s set Sigma is a finite set of complex numbers.   Some other sets with “discrete and finite character” are those of 4, 8, 16, or 64 points, arranged in squares and cubes.  For illustrations, see Finite Geometry of the Square and Cube.  What Weyl calls “the relativity problem” for these sets involves fixing “objectively” a class of equivalent coordinatizations.  For what Weyl’s “objectively” means, see the article “Symmetry and Symmetry  Breaking,” by Katherine Brading and Elena Castellani, in the Stanford Encyclopedia of Philosophy:

“The old and natural idea that what is objective should not depend upon the particular perspective under which it is taken into consideration is thus reformulated in the following group-theoretical terms: what is objective is what is invariant with respect to the transformation group of reference frames, or, quoting Hermann Weyl (1952, p. 132), ‘objectivity means invariance with respect to the group of automorphisms [of space-time].‘[22]

22. The significance of the notion of invariance and its group-theoretic treatment for the issue of objectivity is explored in Born (1953), for example. For more recent discussions see Kosso (2003) and Earman (2002, Sections 6 and 7).

References:

Born, M., 1953, “Physical Reality,” Philosophical Quarterly, 3, 139-149. Reprinted in E. Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics, Princeton, NJ: Princeton University Press, 1998, pp. 155-167.

Earman, J., 2002, “Laws, Symmetry, and Symmetry Breaking; Invariance, Conservation Principles, and Objectivity,’ PSA 2002, Proceedings of the Biennial Meeting of the Philosophy of Science Association 2002, forthcoming [Abstract/Preprint available online]

Kosso, P., 2003, “Symmetry, objectivity, and design,” in K. Brading and E. Castellani (eds.), Symmetries in Physics: Philosophical Reflections, Cambridge: Cambridge University Press, pp. 410-421.

Weyl, H., 1952, Symmetry, Princeton, NJ: Princeton University Press.

See also

Archives Henri Poincaré (research unit UMR 7117, at Université Nancy 2, of the CNRS)–

Minkowski, Mathematicians, and the Mathematical Theory of Relativity,” by Scott Walter, in The Expanding Worlds of General Relativity (Einstein Studies, volume 7), H. Goenner, J. Renn, J. Ritter and T. Sauer, editors, Boston/Basel: Birkhäuser, 1999, pp. 45-86–

“Developing his ideas before Göttingen mathematicians in April 1909, Klein pointed out that the new theory based on the Lorentz group (which he preferred to call ‘Invariantentheorie’) could have come from pure mathematics (1910: 19). He felt that the new theory was anticipated by the ideas on geometry and groups that he had introduced in 1872, otherwise known as the Erlangen program (see Gray 1989: 229).”

References:

Gray, Jeremy J. (1989). Ideas of Space. 2d ed. Oxford: Oxford University Press.

Klein, Felix. (1910). “Über die geometrischen Grundlagen der Lorentzgruppe.” Jahresbericht der deutschen Mathematiker-Vereinigung 19: 281-300. [Reprinted: Physikalische Zeitschrift 12 (1911): 17-27].

Related material: A pathetically garbled version of the above concepts was published in 2001 by Harvard University Press.  See Invariances: The Structure of the Objective World, by Robert Nozick.

Saturday, June 4, 2005

Saturday June 4, 2005

Filed under: General,Geometry — Tags: — m759 @ 7:00 pm
  Drama of the Diagonal
  
   The 4×4 Square:
  French Perspectives

Earendil_Silmarils:
The image “http://www.log24.com/log/pix05A/050604-Fuite1.jpg” cannot be displayed, because it contains errors.
  
   Les Anamorphoses:
 
   The image “http://www.log24.com/log/pix05A/050604-DesertSquare.jpg” cannot be displayed, because it contains errors.
 
  "Pour construire un dessin en perspective,
   le peintre trace sur sa toile des repères:
   la ligne d'horizon (1),
   le point de fuite principal (2)
   où se rencontre les lignes de fuite (3)
   et le point de fuite des diagonales (4)."
   _______________________________
  
  Serge Mehl,
   Perspective &
  Géométrie Projective:
  
   "… la géométrie projective était souvent
   synonyme de géométrie supérieure.
   Elle s'opposait à la géométrie
   euclidienne: élémentaire
  
  La géométrie projective, certes supérieure
   car assez ardue, permet d'établir
   de façon élégante des résultats de
   la géométrie élémentaire."
  
  Similarly…
  
  Finite projective geometry
  (in particular, Galois geometry)
   is certainly superior to
   the elementary geometry of
  quilt-pattern symmetry
  and allows us to establish
   de façon élégante
   some results of that
   elementary geometry.
  
  Other Related Material…
  
   from algebra rather than
   geometry, and from a German
   rather than from the French:  

"This is the relativity problem:
to fix objectively a class of
equivalent coordinatizations
and to ascertain
the group of transformations S
mediating between them."
— Hermann Weyl,
The Classical Groups,
Princeton U. Press, 1946

The image “http://www.log24.com/log/pix05/050124-galois12s.jpg” cannot be displayed, because it contains errors.

Evariste Galois

 Weyl also says that the profound branch
of mathematics known as Galois theory

   "… is nothing else but the
   relativity theory for the set Sigma,
   a set which, by its discrete and
    finite character, is conceptually
   so much simpler than the
   infinite set of points in space
   or space-time dealt with
   by ordinary relativity theory."
  — Weyl, Symmetry,
   Princeton U. Press, 1952
  
   Metaphor and Algebra…  

"Perhaps every science must
start with metaphor
and end with algebra;
and perhaps without metaphor
there would never have been
any algebra." 

   — attributed, in varying forms, to
   Max Black, Models and Metaphors, 1962

For metaphor and
algebra combined, see  

  "Symmetry invariance
  in a diamond ring,"

  A.M.S. abstract 79T-A37,
Notices of the
American Mathematical Society,
February 1979, pages A-193, 194 —
the original version of the 4×4 case
of the diamond theorem.

  
More on Max Black…

"When approaching unfamiliar territory, we often, as observed earlier, try to describe or frame the novel situation using metaphors based on relations perceived in a familiar domain, and by using our powers of association, and our ability to exploit the structural similarity, we go on to conjecture new features for consideration, often not noticed at the outset. The metaphor works, according to Max Black, by transferring the associated ideas and implications of the secondary to the primary system, and by selecting, emphasising and suppressing features of the primary in such a way that new slants on it are illuminated."

— Paul Thompson, University College, Oxford,
    The Nature and Role of Intuition
     in Mathematical Epistemology

  A New Slant…  

That intuition, metaphor (i.e., analogy), and association may lead us astray is well known.  The examples of French perspective above show what might happen if someone ignorant of finite geometry were to associate the phrase "4×4 square" with the phrase "projective geometry."  The results are ridiculously inappropriate, but at least the second example does, literally, illuminate "new slants"– i.e., diagonals– within the perspective drawing of the 4×4 square.

Similarly, analogy led the ancient Greeks to believe that the diagonal of a square is commensurate with the side… until someone gave them a new slant on the subject.

Friday, February 20, 2004

Friday February 20, 2004

Filed under: General,Geometry — Tags: — m759 @ 3:24 pm

Finite Relativity

Today is the 18th birthday of my note

The Relativity Problem in Finite Geometry.”

That note begins with a quotation from Weyl:

“This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them.”

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

Here is another quotation from Weyl, on the profound branch of mathematics known as Galois theory, which he says

“… is nothing else but the relativity theory for the set Sigma, a set which, by its discrete and finite character, is conceptually so much simpler than the infinite set of points in space or space-time dealt with by ordinary relativity theory.”

— Weyl, Symmetry, Princeton University Press, 1952, p. 138

This second quotation applies equally well to the much less profound, but more accessible, part of mathematics described in Diamond Theory and in my note of Feb. 20, 1986.

Saturday, November 1, 2003

Saturday November 1, 2003

Filed under: General,Geometry — Tags: — m759 @ 1:05 pm

Symmetry in Diamond Theory:
Robbing Peter to Pay Paul

"Groups arise in most areas of pure and applied mathematics, usually as a set of operators or transformations of some structure. The appearance of a group generally reflects some kind of symmetry in the object under study, and such symmetry may be considered one of the fundamental notions of mathematics."

Peter Webb

"Counter-change is sometimes known as Robbing Peter to Pay Paul."

Helen Kelley Patchwork

Paul Robeson in
King Solomon's
Mines

Counterchange
symmetry

For a look at the Soviet approach
to counterchange symmetry, see

The Kishinev School of Discrete Geometry.

The larger cultural context:

See War of Ideas (Oct. 24),
The Hunt for Red October (Oct. 25),
On the Left (Oct. 25), and
ART WARS for Trotsky's Birthday (Oct. 26).
 

Monday, May 26, 2003

Monday May 26, 2003

Filed under: General,Geometry — m759 @ 7:00 pm

Mental Health Month, Day 26:

Many Dimensions,

Part III — Why 26?

At first blush, it seems unlikely that the number 26=2×13, as a product of only two small primes (and those distinct) has any purely mathematical properties of interest. (On the other hand, consider the number 6.)  Parts I and II of “Many Dimensions,” notes written earlier today, deal with the struggles of string theorists to justify their contention that a space of 26 dimensions may have some significance in physics.  Let them struggle.  My question is whether there are any interesting purely mathematical properties of 26, and it turns out, surprisingly, that there are some such properties. All this is a longwinded way of introducing a link to the web page titled “Info on M13,” which gives details of a 1997 paper by J. H. Conway*.

Info on M13

“Conway describes the beautiful construction of a discrete mathematical structure which he calls ‘M13.’  This structure is a set of 1,235,520 permutations of 13 letters. It is not a group. However, this structure represents the answer to the following group theoretic question:

Why do the simple groups M12 and L3(3) share some subgroup structure?

In fact, both the Mathieu group M12 and the automorphism group L3(3) of the projective plane PG(2,3) over GF(3) can be found as subsets of M13.  In addition, M13 is 6-fold transitive, in the sense that it contains enough permutations to map any two 6-tuples made from the thirteen letters into each other.  In this sense, M13 could pass as a parent for both M12 and L3(3).  As it is known from the classification of primitive groups that there is no finite group which qualifies as a parent in this sense.  Yet, M13 comes close to being a group.

To understand the definition of M13 let us have a look at the projective geometry PG(2,3)….

The points and the lines and the “is-contained-in” relation form an incidence structure over PG(2,3)….

…the 26 objects of the incidence structure [are] 13 points and 13 lines.”

Conway’s construction involves the arrangement, in a circular Levi graph, of 26 marks representing these points and lines, and chords representing the “contains/is contained in” relation.  The resulting diagram has a pleasingly symmetric appearance.

For further information on the geometry of the number 26, one can look up all primitive permutation groups of degree 26.  Conway’s work suggests we look at sets (not just groups) of permutations on n elements.  He has shown that this is a fruitful approach for n=13.  Whether it may also be fruitful for n=26, I do not know.

There is no obvious connection to physics, although the physics writer John Baez quoted in my previous two entries shares Conway’s interest in the Mathieu groups. 

 * J. H. Conway, “M13,” in Surveys in Combinatorics, 1997, edited by R. A. Bailey, London Mathematical Society Lecture Note Series, 241, Cambridge University Press, Cambridge, 1997. 338 pp. ISBN 0 521 59840 0.

Powered by WordPress