Continued from earlier posts on Boole vs. Galois.
From a Google image search today for "Galois Boole."
Click the image to enlarge it.
Continued from earlier posts on Boole vs. Galois.
From a Google image search today for "Galois Boole."
Click the image to enlarge it.
For previous remarks on this topic, as it relates to
symmetry axes of the cube, see previous posts tagged Interplay.
The above posts discuss, among other things, the Galois
projective plane of order 3, with 13 points and 13 lines.
These Galois points and lines may be modeled in Euclidean geometry
by the 13 symmetry axes and the 13 rotation planes
of the Euclidean cube. They may also be modeled in Galois geometry
by subsets of the 3x3x3 Galois cube (vector 3space over GF(3)).
The 3×3×3 Galois Cube
Exercise: Is there any such analogy between the 31 points of the
order5 Galois projective plane and the 31 symmetry axes of the
Euclidean dodecahedron and icosahedron? Also, how may the
31 projective points be naturally pictured as lines within the
5x5x5 Galois cube (vector 3space over GF(5))?
Update of Nov. 30, 2014 —
For background to the above exercise, see
pp. 1617 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998), esp.
the citation to a 1983 article by Lemay.
Yesterday's excerpt from von Balthasar supplies some Catholic aesthetic background for Galois geometry.
That approach will appeal to few mathematicians, so here is another.
Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace is a book by Leonard Mlodinow published in 2002.
More recently, Mlodinow is the coauthor, with Stephen Hawking, of The Grand Design (published on September 7, 2010).
A review of Mlodinow's book on geometry—
"This is a shallow book on deep matters, about which the author knows next to nothing."
— Robert P. Langlands, Notices of the American Mathematical Society, May 2002
The Langlands remark is an apt introduction to Mlodinow's more recent work.
It also applies to Martin Gardner's comments on Galois in 2007 and, posthumously, in 2010.
For the latter, see a Google search done this morning—
Here, for future reference, is a copy of the current Google cache of this journal's "paged=4" page.
Note the link at the bottom of the page in the May 5, 2010, post to Peter J. Cameron's web journal. Following the link, we find…
For n=4, there is only one factorisation, which we can write concisely as 1234, 1324, 1423. Its automorphism group is the symmetric group S_{4}, and acts as S_{3} on the set of three partitions, as we saw last time; the group of strong automorphisms is the Klein group.
This example generalises, by taking the factorisation to consist of the parallel classes of lines in an affine space over GF(2). The automorphism group is the affine group, and the group of strong automorphisms is its translation subgroup.
See also, in this journal, Window and Window, continued (July 5 and 6, 2010).
Gardner scoffs at the importance of Galois's last letter —
"Galois had written several articles on group theory, and was
merely annotating and correcting those earlier published papers."
— Last Recreations, page 156
For refutations, see the Bulletin of the American Mathematical Society in March 1899 and February 1909.
Michael Atiyah on the late Ron Shaw —
Phrases by Atiyah related to the importance in mathematics
of the twoelement Galois field GF(2) —
These phrases are from the yearend review of Trinity College,
Cambridge, Trinity Annual Record 2017 .
I prefer other, purely geometric, reasons for the importance of GF(2) —
See Finite Geometry of the Square and Cube.
See also today's earlier post God's Dice and Atiyah on the theology of
(Boolean) algebra vs. (Galois) geometry:
See also "Romancing the Omega" —
Related mathematics — Guitart in this journal —
See also Weyl + Palermo in this journal —
This post's title is from the tags of the previous post —
The title's "shift" is in the combined concepts of …
Space and Number
From Finite Jest (May 27, 2012):
The books pictured above are From Discrete to Continuous ,
by Katherine Neal, and Geometrical Landscapes , by Amir Alexander.
For some details of the shift, see a Log24 search for Boole vs. Galois.
From a post found in that search —
"Benedict Cumberbatch Says
a Journey From Fact to Faith
Is at the Heart of Doctor Strange"
— io9 , July 29, 2016
" 'This man comes from a binary universe
where it’s all about logic,' the actor told us
at San Diego ComicCon . . . .
'And there’s a lot of humor in the collision
between Easter [ sic ] mysticism and
Western scientific, sort of logical binary.' "
[Typo now corrected, except in a comment.]
For some backstory, see Lottery in this journal,
esp. a post of June 28, 2007:
Real Numbers: An Object Lesson.
One such number, 8775, is suggested by
a Heinlein short story in a Jan. 25 post.
A search today for that number —
That Jan. 25 post, "For Your Consideration," also mentions logic.
Logic appears as well within a post from the above "8775" date,
August 16, 2016 —
Update of 10 am on August 16, 2016 —
See also Atiyah on the theology of 
Related: Remarks by Charles Altieri on Wittgenstein in
today's previous post.
For remarks by Wittgenstein related to geometry and logic, see
(for instance) "Logical space" in "A Wittgenstein Dictionary," by
HansJohann Glock (WileyBlackwell, 1996).
Before the monograph "Diamond Theory" was distributed in 1976,
two (at least) notable figures were published that illustrate
symmetry properties of the 4×4 square:
Hudson in 1905 —
Golomb in 1967 —
It is also likely that some figures illustrating Walsh functions as
twocolor square arrays were published prior to 1976.
Update of Dec. 7, 2016 —
The earlier 1950's diagrams of Veitch and Karnaugh used the
1's and 0's of Boole, not those of Galois.
The images in the previous post do not lend themselves
to any straightforward narrative. Two portions of the
large image search are, however, suggestive —
Cross and Boolean lattice.
The improvised cross in the second pair of images
is perhaps being wielded to counteract the
Boole of the first pair of images. See the heading
of the webpage that is the source of the lattice
diagram toward which the cross is directed —
Update of 10 am on August 16, 2016 —
See also Atiyah on the theology of
(Boolean) algebra vs. (Galois) geometry:
"Benedict Cumberbatch Says a Journey
From Fact to Faith Is at the Heart of Doctor Strange"
— io9 yesterday
" 'This man comes from a binary universe where it’s all about logic,'
the actor told us at San Diego ComicCon . . . .
'And there’s a lot of humor in the collision between Easter [sic ]
mysticism and Western scientific, sort of logical binary.' "
Related material — Strange Awards, April 14, 2016.
I prefer a different sort of journey. See Boole vs. Galois.
"What I'm aiming for are moments of strong sensation —
moments of total physical experience of the landscape,
when weather just reaches out and sucks you in."
— The late Jane Wilson —
See also the previous post and, from the date of Wilson's death,
On this date in 2005, mathematician Saunders Mac Lane died at 95.
Related material —
Max Planck quotations:
Mac Lane on Boolean algebra:
Mac Lane's summary chart (note the absence of Galois geometry ):
I disagree with Mac Lane's assertion that "the finite models of
Boolean algebra are dull." See Boole vs. Galois in this journal.
(Continued from previous episodes)
Boole and Galois also figure in the mathematics of space —
i.e. , geometry. See Boole + Galois in this journal.
Related material, according to Jung's notion of synchronicity —
It is an odd fact that the close relationship between some
small Galois spaces and small Boolean spaces has gone
unremarked by mathematicians.
A Google search today for "Galois spaces" + "Boolean spaces"
yielded, apart from merely terminological sources, only some
introductory material I have put on the Web myself.
Some more sophisticated searches, however led to a few
documents from the years 1971 – 1981 …
"Harmonic Analysis of Switching Functions" ,
by Robert J. Lechner, Ch. 5 in A. Mukhopadhyay, editor,
Recent Developments in Switching Theory , Academic Press, 1971.
"Galois Switching Functions and Their Applications,"
by B. Benjauthrit and I. S. Reed,
JPL Deep Space Network Progress Report 4227 , 1975
D.K. Pradhan, “A Theory of Galois Switching Functions,”
IEEE Trans. Computers , vol. 27, no. 3, pp. 239249, Mar. 1978
"Switching functions constructed by Galois extension fields,"
by Iwaro Takahashi, Information and Control ,
Volume 48, Issue 2, pp. 95–108, February 1981
An illustration from the Lechner paper above —
"There is such a thing as harmonic analysis of switching functions."
— Saying adapted from a youngadult novel
Combining two headlines from this morning's
New York Times and Washington Post , we have…
Deceptively Simple Geometries
on a Bold Scale
Voilà —
Click image for details.
More generally, see
Boole vs. Galois.
Related material:
The previous post (Bright Symbol) and
a post from Wednesday,
December 23, 2015, that links to posts
on Boolean algebra vs. Galois geometry.
"An analogy between mathematics and religion is apposite."
— Harvard Magazine review by Avner Ash of
Mathematics without Apologies
(Princeton University Press, January 18, 2015)
"The colorful story of this undertaking begins with a bang."
— Martin Gardner on the death of Évariste Galois
This is a sequel to the previous post and to the Oct. 24 post
Two Views of Finite Space. From the latter —
" 'All you need to do is give me your soul:
give up geometry and you will have this
marvellous machine.' (Nowadays you
can think of it as a computer!) "
"The office of color in the color line
is a very plain and subordinate one.
It simply advertises the objects of
oppression, insult, and persecution.
It is not the maddening liquor, but
the black letters on the sign
telling the world where it may be had."
— Frederick Douglass, "The Color Line,"
The North American Review , Vol. 132,
No. 295, June 1881, page 575
Or gold letters.
From a search for Seagram in this journal —
"The colorful story of this undertaking begins with a bang."
— Martin Gardner on the death of Évariste Galois
Stanford Encyclopedia of Philosophy
on the date Friday, April 5, 2013 —
"First published Tue Sep 24, 1996;
substantive revision Fri Apr 5, 2013"
This journal on the date Friday, April 5, 2013 —
The object most closely resembling a "philosophers' stone"
that I know of is the eightfold cube .
For some related philosophical remarks that may appeal
to a general Internet audience, see (for instance) a website
by I Ching enthusiast Andreas Schöter that displays a labeled
eightfold cube in the form of a lattice diagram —
Related material by Schöter —
A 20page PDF, "Boolean Algebra and the Yi Jing."
(First published in The Oracle: The Journal of Yijing Studies ,
Vol 2, No 7, Summer 1998, pp. 19–34.)
I differ with Schöter's emphasis on Boolean algebra.
The appropriate mathematics for I Ching studies is,
I maintain, not Boolean algebra but rather Galois geometry.
See last Saturday's post Two Views of Finite Space.
Unfortunately, that post is, unlike Schöter's work, not
suitable for a general Internet audience.
The following slides are from lectures on "Advanced Boolean Algebra" —
The small Boolean spaces above correspond exactly to some small
Galois spaces. These two names indicate approaches to the spaces
via Boolean algebra and via Galois geometry .
A reading from Atiyah that seems relevant to this sort of algebra
and this sort of geometry —
" 'All you need to do is give me your soul: give up geometry
and you will have this marvellous machine.' (Nowadays you
can think of it as a computer!) "
Related material — The article "Diamond Theory" in the journal
Computer Graphics and Art , Vol. 2 No. 1, February 1977. That
article, despite the word "computer" in the journal's title, was
much less about Boolean algebra than about Galois geometry .
For later remarks on diamond theory, see finitegeometry.org/sc.
"Perhaps an insane conceit …." Perhaps.
Related remarks on algebra and space —
"The Quality Without a Name" (Log24, August 26, 2015).
Sarah Larson in the online New Yorker on Sept. 3, 2015,
discussed Google's new parent company, "Alphabet"—
"… Alphabet takes our most elementally wonderful
generaluse word—the name of the components of
language itself*—and reassigns it, like the words
tweet, twitter, vine, facebook, friend, and so on,
into a branded realm."
Emma Watson in "The Bling Ring"
This journal, also on September 3 —
Thursday, September 3, 2015 Filed under: Uncategorized — m759 @ 7:20 AM
For the title, see posts from August 2007 Related theological remarks:
Boolean spaces (old) vs. Galois spaces (new) in 
* Actually, Sarah, that would be "phonemes."
For the title, see posts from August 2007 tagged Gyges.
Related theological remarks:
Boolean spaces (old) vs. Galois spaces (new) in
"The Quality Without a Name"
(a post from August 26, 2015) and the…
Related literature: A search for Borogoves in this journal will yield
remarks on the 1943 tale underlying the above film.
The title phrase, paraphrased without quotes in
the previous post, is from Christopher Alexander's book
The Timeless Way of Building (Oxford University Press, 1979).
A quote from the publisher:
"Now, at last, there is a coherent theory
which describes in modern terms
an architecture as ancient as
human society itself."
Three paragraphs from the book (pp. xiiixiv):
19. Within this process, every individual act
of building is a process in which space gets
differentiated. It is not a process of addition,
in which preformed parts are combined to
create a whole, but a process of unfolding,
like the evolution of an embryo, in which
the whole precedes the parts, and actualy
gives birth to then, by splitting.
20. The process of unfolding goes step by step,
one pattern at a time. Each step brings just one
pattern to life; and the intensity of the result
depends on the intensity of each one of these
individual steps.
21. From a sequence of these individual patterns,
whole buildings with the character of nature
will form themselves within your thoughts,
as easily as sentences.
Compare to, and contrast with, these illustrations of "Boolean space":
(See also similar illustrations from Berkeley and Purdue.)
Detail of the above image —
Note the "unfolding," as Christopher Alexander would have it.
These "Boolean" spaces of 1, 2, 4, 8, and 16 points
are also Galois spaces. See the diamond theorem —
Recent posts tagged Sagan Dodecahedron
mention an association between that Platonic
solid and the 5×5 grid. That grid, when extended
by the six points on a "line at infinity," yields
the 31 points of the finite projective plane of
order five.
For details of how the dodecahedron serves as
a model of this projective plane (PG(2,5)), see
Polster's A Geometrical Picture Book , p. 120:
For associations of the grid with magic rather than
with Plato, see a search for 5×5 in this journal.
(Five by Five continued)
As the 3×3 grid underlies the order3 finite projective plane,
whose 13 points may be modeled by
the 13 symmetry axes of the cube,
so the 5×5 grid underlies the order5 finite projective plane,
whose 31 points may be modeled by
the 31 symmetry axes of the dodecahedron.
See posts tagged GaloisPlane Models.
Oslo artist Josefine Lyche has a new Instagram post,
this time on pyramids (the monumental kind).
My response —
Wikipedia's definition of a tetrahedron as a
"trianglebased pyramid" …
… and remarks from a Log24 post of August 14, 2013 :
Norway dance (as interpreted by an American)
I prefer a different, Norwegian, interpretation of "the dance of four."
Related material: 
See also some of Burkard Polster's trianglebased pyramids
and a 1983 trianglebased pyramid in a paper that Polster cites —
(Click image below to enlarge.)
Some other illustrations that are particularly relevant
for Lyche, an enthusiast of magic :
From On Art and Magic (May 5, 2011) —

(Updated at about 7 PM ET on Dec. 3.)
The seven symmetry axes of the regular tetrahedron
are of two types: vertextoface and edgetoedge.
Take these axes as the "points" of a Fano plane.
Each of the tetrahedron's six reflection planes contains
two vertextoface axes and one edgetoedge axis.
Take these six planes as six of the "lines" of a Fano
plane. Then the seventh line is the set of three
edgetoedge axes.
(The Fano tetrahedron is not original with me.
See Polster's 1998 A Geometrical Picture Book , pp. 1617.)
There are three reflection planes parallel to faces
of the cube. Take the seven nonempty subsets of
the set of these three planes as the "points" of a
Fano plane. Define the Fano "lines" as those triples
of these seven subsets in which each member of
the triple is the symmetricdifference sum of the
other two members.
(This is the eightfold cube discussed at finitegeometry.org.)
Update of Nov. 30, 2014 —
It turns out that the following construction appears on
pages 1617 of A Geometrical Picture Book , by
Burkard Polster (Springer, 1998).
"Experienced mathematicians know that often the hardest
part of researching a problem is understanding precisely
what that problem says. They often follow Polya's wise
advice: 'If you can't solve a problem, then there is an
easier problem you can't solve: find it.'"
—John H. Conway, foreword to the 2004 Princeton
Science Library edition of How to Solve It , by G. Polya
For a similar but more difficult problem involving the
31point projective plane, see yesterday's post
"EuclideanGalois Interplay."
The above new [see update above] Fanoplane model was
suggested by some 1998 remarks of the late Stephen Eberhart.
See this morning's followup to "EuclideanGalois Interplay"
quoting Eberhart on the topic of how some of the smallest finite
projective planes relate to the symmetries of the five Platonic solids.
Update of Nov. 27, 2014: The seventh "line" of the tetrahedral
Fano model was redefined for greater symmetry.
Update of Nov. 30, 2014 —
For further information on the geometry in
the remarks by Eberhart below, see
pp. 1617 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998). Polster
cites a different article by Lemay.
A search for background to the exercise in the previous post
yields a passage from the late Stephen Eberhart:
The first three primes p = 2, 3, and 5 therefore yield finite projective planes with 7, 13, and 31 points and lines, respectively. But these are just the numbers of symmetry axes of the five regular solids, as described in Plato's Timaeus : The tetrahedron has 4 pairs of face planes and comer points + 3 pairs of opposite edges, totalling 7 axes; the cube has 3 pairs of faces + 6 pairs of edges + 4 pairs of comers, totalling 13 axes (the octahedron simply interchanges the roles of faces and comers); and the pentagon dodecahedron has 6 pairs of faces + 15 pairs of edges + 10 pairs of comers, totalling 31 axes (the icosahedron again interchanging roles of faces and comers). This is such a suggestive result, one would expect to find it dealt with in most texts on related subjects; instead, while "well known to those who well know such things" (as Richard Guy likes to quip), it is scarcely to be found in the formal literature [9]. The reason for the common numbers, it turns out, is that the groups of symmetry motions of the regular solids are subgroups of the groups of collineations of the respective finite planes, a face axis being different from an edge axis of a regular solid but all points of a projective plane being alike, so the latter has more symmetries than the former. [9] I am aware only of a series of inhouse publications by Fernand Lemay of the Laboratoire de Didactique, Faculté des Sciences de I 'Éducation, Univ. Laval, Québec, in particular those collectively titled Genèse de la géométrie IX.
— Stephen Eberhart, Dept. of Mathematics, 
Eberhart died of bone cancer in 2003. A memorial by his
high school class includes an Aug. 7, 2003, transcribed
letter from Eberhart to a classmate that ends…
… I earned MA’s in math (UW, Seattle) and history (UM, Missoula) where a math/history PhD program had been announced but canceled. So 1984 to 2002 I taught math (esp. nonEuclidean geometry) at C.S.U. Northridge. It’s been a rich life. I’m grateful. Steve 
See also another informative BRIDGES paper by Eberhart
on mathematics and the seven traditional liberal arts.
"I’ve had the privilege recently of being a Harvard University
professor, and there I learned one of the greatest of Harvard
jokes. A group of rabbis are on the road to Golgotha and
Jesus is coming by under the cross. The young rabbi bursts
into tears and says, 'Oh, God, the pity of it!' The old rabbi says,
'What is the pity of it?' The young rabbi says, 'Master, Master,
what a teacher he was.'
'Didn’t publish!'
That cold tenure joke at Harvard contains a deep truth.
Indeed, Jesus and Socrates did not publish."
— George Steiner, 2002 talk at York University
See also Steiner on Galois.
Les Miserables at the Academy Awards
The previous post discussed some fundamentals of logic.
The name "Boole" in that post naturally suggests the
concept of Boolean algebra . This is not the algebra
needed for Galois geometry . See below.
Some, like Dan Brown, prefer to interpret symbols using
religion, not logic. They may consult Diamond Mandorla,
as well as Blade and Chalice, in this journal.
See also yesterday's Universe of Discourse.
(Continued from May 29, 2002)
May 29, 1832—
Évariste Galois, Lettre de Galois à M. Auguste Chevalier—
Après cela, il se trouvera, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis.
(Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.)
Martin Gardner on the above letter—
"Galois had written several articles on group theory, and was merely annotating and correcting those earlier published papers."
– The Last Recreations , by Martin Gardner, published by Springer in 2007, page 156.
Commentary from Dec. 2011 on Gardner's word "published" —
Part I: Timothy Gowers on equivalence relations
Part II: Martin Gardner on normal subgroups
Part III: Evariste Galois on normal subgroups
"In all the history of science there is no completer example
of the triumph of crass stupidity over untamable genius…."
— Eric Temple Bell, Men of Mathematics
See also an interesting definition and Weyl on Galois.
Update of 6:29 PM EDT Oct. 30, 2011—
For further details, see Herstein's phrase
"a tribute to the genius of Galois."
"Martin Gardner passed away on May 22, 2010."
Imaginary movie poster from stoneship.org
Context— The Gardner Tribute.
… In the Age of Citation
1. INTRODUCTION TO THE PROBLEM
Social network analysis is focused on the patterning of the social
relationships that link social actors. Typically, network data take the
form of a squareactor by actorbinary adjacency matrix, where
each row and each column in the matrix represents a social actor. A
cell entry is 1 if and only if a pair of actors is linked by some social
relationship of interest (Freeman 1989).
— "Using Galois Lattices to Represent Network Data,"
by Linton C. Freeman and Douglas R. White,
Sociological Methodology, Vol. 23, pp. 127–146 (1993)
From this paper's CiteSeer page—
Citations
766  Social Network Analysis: Methods and Applications – WASSERMAN, FAUST – 1994 
100  The act of creation – Koestler – 1964 
75  Visual Thinking – Arnheim – 1969 
Visual Image of the Problem—
From a Google search today:
Related material—
"It is better to light one candle…"
"… the early favorite for best picture at the Oscars" — Roger Moore
"By groping toward the light we are made to realize
how deep the darkness is around us."
— Arthur Koestler, The Call Girls: A TragiComedy,
Random House, 1973, page 118
A 1973 review of Koestler's book—
"Koestler's 'call girls,' summoned here and there
by this university and that foundation
to perform their expert tricks, are the butts
of some chilling satire."
Examples of Light—
Felix Christian Klein (1849 June 22, 1925) and Évariste Galois (18111832)
Klein on Galois—
"… in France just about 1830 a new star of undreamtof brilliance— or rather a meteor, soon to be extinguished— lighted the sky of pure mathematics: Évariste Galois."
— Felix Klein, Development of Mathematics in the 19th Century, translated by Michael Ackerman. Brookline, Mass., Math Sci Press, 1979. Page 80.
"… um 1830 herum in Frankreich als ein neuer Stern von ungeahntem Glanze am Himmel der reinen Mathematik aufleuchtet, um freilich, einem Meteor gleich, sehr bald zu verlöschen: Évariste Galois."
— Felix Klein, Vorlesungen Über Die Entwicklung Der Mathematick Im 19. Jahrhundert. New York, Chelsea Publishing Co., 1967. (Vol. I, originally published in Berlin in 1926.) Page 88.
Examples of Darkness—
Martin Gardner on Galois—
"Galois was a thoroughly obnoxious nerd,
suffering from what today would be called
a 'personality disorder.' His anger was
paranoid and unremitting."
Gardner was reviewing a recent book about Galois by one Amir Alexander.
Alexander himself has written some reviews relevant to the Koestler book above.
See Alexander on—
The 2005 Mykonos conference on Mathematics and Narrative
A series of workshops at Banff International Research Station for Mathematical Innovation between 2003 and 2006. "The meetings brought together professional mathematicians (and other mathematical scientists) with authors, poets, artists, playwrights, and filmmakers to work together on mathematicallyinspired literary works."
"I wonder if there's just been a critical mass
of creepy stories about Harvard
in the last couple of years…
A kind of piling on of
nastiness and creepiness…"
— Margaret Soltan, October 23, 2006
Harvard University Press
on Facebook—
http://ping.fm/YrgOh  
May 26 at 6:28 pm via Ping.f 
The book that the late Gardner was reviewing
was published in April by Harvard University Press.
If Gardner's remark were true,
Galois would fit right in at Harvard. Example—
The Harvard math department's pieeating contest—
Wikipedia—
"On June 2, Évariste Galois was buried in a common grave of the Montparnasse cemetery whose exact location is unknown."
Évariste Galois, Lettre de Galois à M. Auguste Chevalier—
Après cela, il y aura, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis.
(Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.)
Martin Gardner on the above letter—
"Galois had written several articles on group theory, and was merely annotating and correcting those earlier published papers."
— The Last Recreations, by Martin Gardner, published by Springer in 2007, page 156.
"It is a melancholy pleasure that what may be [Martin] Gardner’s last published piece, a review of Amir Alexander’s Duel at Dawn: Heroes, Martyrs & the Rise of Modern Mathematics, will appear next week in our June issue."
– Roger Kimball of The New Criterion, May 23, 2010.
The Gardner piece is now online. It contains…
Gardner's tribute to Galois—
"Galois was a thoroughly obnoxious nerd,
suffering from what today would be called a 'personality disorder.' His anger was paranoid and unremitting." 
Binary Geometry
There is currently no area of mathematics named “binary geometry.” This is, therefore, a possible name for the geometry of sets with 2^{n} elements (i.e., a subtopic of Galois geometry and of algebraic geometry over finite fields– part of Weil’s “Rosetta stone” (pdf)).
Examples:
Powered by WordPress