See Crucial Kramer and Galois Window.
Wednesday, December 16, 2020
Monday, June 26, 2017
Four Dots
Analogies — “A : B :: C : D” may be read “A is to B as C is to D.”
Gian-Carlo Rota on Heidegger…
“… The universal as is given various names in Heidegger’s writings….
The discovery of the universal as is Heidegger’s contribution to philosophy….
The universal ‘as‘ is the surgence of sense in Man, the shepherd of Being.
The disclosure of the primordial as is the end of a search that began with Plato….
This search comes to its conclusion with Heidegger.”
— “Three Senses of ‘A is B’ in Heideggger,” Ch. 17 in Indiscrete Thoughts
See also Four Dots in this journal.
Some context: McLuhan + Analogy.
Tuesday, July 6, 2010
What “As” Is
or: Combinatorics (Rota) as Philosophy (Heidegger) as Geometry (Me)
“Dasein’s full existential structure is constituted by
the ‘as-structure’ or ‘well-joined structure’ of the rift-design*…”
— Gary Williams, post of January 22, 2010
Background—
Gian-Carlo Rota on Heidegger…
“… The universal as is given various names in Heidegger’s writings….
The discovery of the universal as is Heidegger’s contribution to philosophy….
The universal ‘as‘ is the surgence of sense in Man, the shepherd of Being.
The disclosure of the primordial as is the end of a search that began with Plato….
This search comes to its conclusion with Heidegger.”
— “Three Senses of ‘A is B’ in Heideggger,” Ch. 17 in Indiscrete Thoughts
… and projective points as separating rifts—
* rift-design— Definition by Deborah Levitt—
“Rift. The stroke or rending by which a world worlds, opening both the ‘old’ world and the self-concealing earth to the possibility of a new world. As well as being this stroke, the rift is the site— the furrow or crack— created by the stroke. As the ‘rift design‘ it is the particular characteristics or traits of this furrow.”
— “Heidegger and the Theater of Truth,” in Tympanum: A Journal of Comparative Literary Studies, Vol. 1, 1998
Window, continued
“Simplicity, simplicity, simplicity! I say, let your affairs be as two or three, and not a hundred or a thousand; instead of a million count half a dozen, and keep your accounts on your thumb-nail.” — Henry David Thoreau, WaldenThis quotation is the epigraph to Section 1.1 of Alexandre V. Borovik’s Mathematics Under the Microscope: Notes on Cognitive Aspects of Mathematical Practice (American Mathematical Society, Jan. 15, 2010, 317 pages). |
From Peter J. Cameron’s review notes for
his new course in group theory—
From Log24 on June 24—
Geometry Simplified
(an affine space with subsquares as points
and sets of subsquares as hyperplanes)
(a projective space with, as points, sets
of line segments that separate subsquares)
Exercise—
Show that the above geometry is a model
for the algebra discussed by Cameron.
Monday, July 5, 2010
Window
“Examples are the stained-glass
windows of knowledge.” — Nabokov
Related material:
Thursday, June 24, 2010
Midsummer Noon
Geometry Simplified
(a projective space)
The above finite projective space
is the simplest nontrivial example
of a Galois geometry (i.e., a finite
geometry with coordinates in a
finite (that is, Galois) field.)
The vertical (Euclidean) line represents a
(Galois) point, as does the horizontal line
and also the vertical-and-horizontal
cross that represents the first two points’
binary sum (i.e., symmetric difference,
if the lines are regarded as sets).
Homogeneous coordinates for the
points of this line —
(1,0), (0,1), (1,1).
Here 0 and 1 stand for the elements
of the two-element Galois field GF(2).
The 3-point line is the projective space
corresponding to the affine space
(a plane, not a line) with four points —
(an affine space)
The (Galois) points of this affine plane are
not the single and combined (Euclidean)
line segments that play the role of
points in the 3-point projective line,
but rather the four subsquares
that the line segments separate.
For further details, see Galois Geometry.
There are, of course, also the trivial
two-point affine space and the corresponding
trivial one-point projective space —
Here again, the points of the affine space are
represented by squares, and the point of the
projective space is represented by a line segment
separating the affine-space squares.