Log24

Tuesday, June 6, 2017

The Table

Filed under: Uncategorized — m759 @ 12:00 PM

John Horgan and James (Jim) McClellan, according to Horgan
in Scientific American  on June 1, 2017

Me: "Jim, you're a scholar! Professor! Esteemed historian of science! And yet you don’t really believe science is capable of producing truth."

Jim: "Science is stories we tell about nature. And some stories are better than other stories. And you can compare stories to each other on all kinds of grounds, but you have no access to"— he pauses for dramatic effect— "The Truth. Or any mode of knowing outside of your own story-telling capabilities, which include rationality, experiment, explanatory scope and the whole thing. I would love to have some means of making knowledge about the world that would allow us to say, 'This is really it. There really are goddamn electrons.'" He whacks the table.

See also posts tagged Dirac and Geometry and Glitch.

Friday, April 14, 2017

Hudson and Finite Geometry

Filed under: Uncategorized — Tags: — m759 @ 3:00 AM

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

The above four-element sets of black subsquares of a 4×4 square array 
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .

Hudson did not  view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective
3-space).

In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.

This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements.  This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.

The space was later described in the following —

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Wednesday, March 8, 2017

Inscapes

Filed under: Uncategorized — Tags: — m759 @ 6:42 PM

"The particulars of attention,
whether subjective or objective,
are unshackled through form,
and offered as a relational matrix …."

— Kent Johnson in a 1993 essay

Illustration

Commentary

The 16 Dirac matrices form six anticommuting sets of five matrices each (Arfken 1985, p. 214):

1. alpha_1alpha_2alpha_3alpha_4alpha_5,

2. y_1y_2y_3y_4y_5,

3. delta_1delta_2delta_3rho_1rho_2,

4. alpha_1y_1delta_1sigma_2sigma_3,

5. alpha_2y_2delta_2sigma_1sigma_3,

6. alpha_3y_3delta_3sigma_1sigma_2.

SEE ALSO:  Pauli Matrices

REFERENCES:

Arfken, G. Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 211-217, 1985.

Berestetskii, V. B.; Lifshitz, E. M.; and Pitaevskii, L. P. "Algebra of Dirac Matrices." §22 in Quantum Electrodynamics, 2nd ed.  Oxford, England: Pergamon Press, pp. 80-84, 1982.

Bethe, H. A. and Salpeter, E. Quantum Mechanics of One- and Two-Electron Atoms.  New York: Plenum, pp. 47-48, 1977.

Bjorken, J. D. and Drell, S. D. Relativistic Quantum Mechanics.  New York: McGraw-Hill, 1964.

Dirac, P. A. M. Principles of Quantum Mechanics, 4th ed.  Oxford, England: Oxford University Press, 1982.

Goldstein, H. Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, p. 580, 1980.

Good, R. H. Jr. "Properties of Dirac Matrices." Rev. Mod. Phys. 27, 187-211, 1955.

Referenced on Wolfram|Alpha:  Dirac Matrices

CITE THIS AS:

Weisstein, Eric W.  "Dirac Matrices."

From MathWorld— A Wolfram Web Resource. 
http://mathworld.wolfram.com/DiracMatrices.html

Friday, March 3, 2017

Adventure

Filed under: Uncategorized — Tags: — m759 @ 1:40 PM

The New York Times  on Wednesday, Sept. 19, 2012 —

This  journal on the previous afternoon —

For greater artistic depth, see Tetrads in this journal.

Wednesday, February 15, 2017

Warp and Woof

Filed under: Uncategorized — m759 @ 3:00 PM

Space —

Space structure —

From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens  54, 59-79 (1992):

“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  figure appears in remarks on
the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).

Space shuttle —

Related ethnic remarks —

As opposed to Michael  Larsen —

Funny, you don't look  Danish.

Sunday, December 11, 2016

Complexity to Simplicity via Hudson and Rosenhain*

Filed under: Uncategorized — m759 @ 1:20 AM

'Desargues via Rosenhain'- April 1, 2013- The large Desargues configuration mapped canonically to the 4x4 square

*The Hudson of the title is the author of Kummer's Quartic Surface  (1905).
The Rosenhain of the title is the author for whom Hudson's 4×4 diagrams
of "Rosenhain tetrads" are named. For the "complexity to simplicity" of
the title, see Roger Fry in the previous post.

Wednesday, November 23, 2016

Yogiism

Filed under: Uncategorized — Tags: , — m759 @ 12:31 PM

From the American Mathematical Society (AMS) webpage today —

From the current AMS Notices

Related material from a post of Aug. 6, 2014

http://www.log24.com/log/pix10B/100915-SteinbergOnChevalleyGroups.jpg

(Here "five point sets" should be "five-point sets.")

From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens  54, 59-79 (1992):

“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  structure* now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).

* The phrase as used here is a deliberate 
abuse of language .  For the real definition of 
“symplectic structure,” see (for instance) 
“Symplectic Geometry,” by Ana Cannas da Silva
(article written for Handbook of Differential
Geometry 
, Vol 2.) To establish that the above
figure is indeed symplectic , see the post 
Zero System of July 31, 2014.

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: Uncategorized — Tags: , — m759 @ 10:00 PM

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Monday, September 12, 2016

The Kummer Lattice

Filed under: Uncategorized — Tags: , — m759 @ 2:00 PM

The previous post quoted Tom Wolfe on Chomsky's use of
the word "array." 

An example of particular interest is the 4×4  array
(whether of dots or of unit squares) —

      .

Some context for the 4×4 array —

The following definition indicates that the 4×4 array, when
suitably coordinatized, underlies the Kummer lattice .

Further background on the Kummer lattice:

Alice Garbagnati and Alessandra Sarti, 
"Kummer Surfaces and K3 surfaces
with $(Z/2Z)^4$ symplectic action." 
To appear in Rocky Mountain J. Math.

The above article is written from the viewpoint of traditional
algebraic geometry. For a less traditional view of the underlying
affine 4-space from finite  geometry, see the website
Finite Geometry of the Square and Cube.

Some further context

"To our knowledge, the relation of the Golay code
to the Kummer lattice is a new observation."

— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of
Kummer surfaces in the Mathieu group M24 
"

As noted earlier, Taormina and Wendland seem not to be aware of
R. W. H. T. Hudson's use of the (uncoordinatized*) 4×4 array in his
1905 book Kummer's Quartic Surface.  The array was coordinatized,
i.e. given a "vector space structure," by Cullinane eight years prior to
the cited remarks of Curtis.

* Update of Sept. 14: "Uncoordinatized," but parametrized  by 0 and
the 15 two-subsets of a six-set. See the post of Sept. 13.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

Filed under: Uncategorized — Tags: , — m759 @ 8:23 AM

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface
.

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Wednesday, June 17, 2015

Slow Art, Continued

Filed under: Uncategorized — Tags: — m759 @ 10:01 AM

The title of the previous post, "Slow Art," is a phrase
of the late art critic Robert Hughes.

Example from mathematics:

  • Göpel tetrads as subsets of a 4×4 square in the classic
    1905 book Kummer's Quartic Surface  by R. W. H. T. Hudson.
    These subsets were constructed as helpful schematic diagrams,
    without any reference to the concept of finite  geometry they
    were later to embody.
     
  • Göpel tetrads (not then named as such), again as subsets of
    a 4×4 square, that form the 15 isotropic projective lines of the
    finite projective 3-space PG(3,2) in a note on finite geometry
    from 1986 —

    Göpel tetrads in an inscape, April 1986

  • Göpel tetrads as these figures of finite  geometry in a 1990
    foreword to the reissued 1905 book of Hudson:

IMAGE- Galois geometry in Wolf Barth's 1990 foreword to Hudson's 1905 'Kummer's Quartic Surface'

Click the Barth passage to see it with its surrounding text.

Related material:

Wednesday, June 10, 2015

Epistemic States

Filed under: Uncategorized — m759 @ 10:25 PM

From Socrates to Waterloo —

(Click images to enlarge.)

See also today's earlier Epistemic Tetrads.

Epistemic* Tetrads

Filed under: Uncategorized — m759 @ 12:45 PM

"Those that can be obtained…." —

Related music video: Waterloo.

* "In defense of the epistemic view of quantum states:
a toy theory," by Robert W. Spekkens, Perimeter Institute
for Theoretical Physics, Waterloo, Canada 

Thursday, January 1, 2015

Fifteen for 2015

Filed under: Uncategorized — m759 @ 8:00 PM

The title refers to a set of fifteen Göpel tetrads
that form the lines of a Cremona-Richmond configuration .  

"Spiel ist nicht Spielerei. 
Es hat hohen Ernst 
und tiefe Bedeutung."

— Friedrich W.A. Fröbel
    (1782-1852)

Sunday, August 24, 2014

Symplectic Structure…

Filed under: Uncategorized — Tags: , — m759 @ 12:00 PM

In the Miracle Octad Generator (MOG):

The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:

http://www.log24.com/log/pix10A/100514-Curtis1976MOG.jpg

From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.

The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.

Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.

Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements  in two pictures, each showing 10 of the
3-subsets.

This pair of pictures corresponds to the 20 Rosenhain tetrads  among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads  among the 35 lines.

See Rosenhain and Göpel tetrads in PG(3,2). Some further background:

Friday, August 15, 2014

The Omega Matrix

Filed under: Uncategorized — m759 @ 11:00 PM

(Continued)

The webpage Rosenhain and Göpel Tetrads in PG(3,2)
has been updated to include more material on symplectic structure.

Monday, August 11, 2014

Syntactic/Symplectic

Filed under: Uncategorized — Tags: , — m759 @ 4:00 PM

(Continued from August 9, 2014.)

Syntactic:

Symplectic:

"Visual forms— lines, colors, proportions, etc.— are just as capable of
articulation , i.e. of complex combination, as words. But the laws that govern
this sort of articulation are altogether different from the laws of syntax that
govern language. The most radical difference is that visual forms are not
discursive 
. They do not present their constituents successively, but
simultaneously, so the relations determining a visual structure are grasped
in one act of vision."

– Susanne K. LangerPhilosophy in a New Key

For examples, see The Diamond-Theorem Correlation
in Rosenhain and Göpel Tetrads in PG(3,2).

This is a symplectic  correlation,* constructed using the following
visual structure:

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven).

* Defined in (for instance) Paul B. Yale, Geometry and Symmetry ,
Holden-Day, 1968, sections 6.9 and 6.10.

Wednesday, August 6, 2014

Symplectic Structure*

Filed under: Uncategorized — Tags: — m759 @ 1:00 PM

From Gotay and Isenberg, "The Symplectization of Science,"
Gazette des Mathématiciens  54, 59-79 (1992):

"… what is the origin of the unusual name 'symplectic'? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure 'line complex group' the 'symplectic group.'
… the adjective 'symplectic' means 'plaited together' or 'woven.'
This is wonderfully apt…."

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  structure** now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).

Some related passages from the literature:

http://www.log24.com/log/pix10B/100915-SteinbergOnChevalleyGroups.jpg

* The title is a deliberate abuse of language .
For the real definition of "symplectic structure," see (for instance)
"Symplectic Geometry," by Ana Cannas da Silva (article written for
Handbook of Differential Geometry, vol 2.) To establish that the
above figure is indeed symplectic , see the post Zero System of
July 31, 2014.

** See Steven H. Cullinane, Inscapes III, 1986

Monday, August 4, 2014

A Wrinkle in Space

Filed under: Uncategorized — Tags: — m759 @ 10:30 AM

“There is  such a thing as a tesseract.” — Madeleine L’Engle

An approach via the Omega Matrix:

http://www.log24.com/log/pix10A/100619-TesseractAnd4x4.gif

See, too, Rosenhain and Göpel as The Shadow Guests .

Friday, August 1, 2014

The Diamond-Theorem Correlation

Filed under: Uncategorized — Tags: , — m759 @ 2:00 AM

Click image for a larger, clearer version.

IMAGE- The symplectic correlation underlying Rosenhain and Göpel tetrads

Saturday, February 15, 2014

Rosenhain and Göpel

Filed under: Uncategorized — Tags: , — m759 @ 11:00 PM

(Continued)

See The Oslo Version in this journal and the New Year’s Day 2014 post.
The pictures of the 56 spreads in that post (shown below) are based on
the 20 Rosenhain and 15 Göpel tetrads that make up the 35 lines of
PG(3,2), the finite projective 3-space over the 2-element Galois field.

IMAGE- The 56 spreads in PG(3,2)

Click for a larger image.

Monday, February 10, 2014

Mystery Box III: Inside, Outside

Filed under: Uncategorized — Tags: , , , — m759 @ 2:28 PM

(Continued from Mystery Box, Feb. 4, and Mystery Box II, Feb. 5.)

The Box

Inside the Box

Outside the Box

For the connection of the inside  notation to the outside  geometry,
see Desargues via Galois.

(For a related connection to curves  and surfaces  in the outside
geometry, see Hudson's classic Kummer's Quartic Surface  and
Rosenhain and Göpel Tetrads in PG(3,2).)

Saturday, September 21, 2013

Geometric Incarnation

The  Kummer 166  configuration  is the configuration of sixteen
6-sets within a 4×4 square array of points in which each 6-set
is determined by one of the 16 points of the array and
consists of the 3 other points in that point's row and the
3 other points in that point's column.

See Configurations and Squares.

The Wikipedia article Kummer surface  uses a rather poetic
phrase* to describe the relationship of the 166 to a number
of other mathematical concepts — "geometric incarnation."

Geometric Incarnation in the Galois Tesseract

Related material from finitegeometry.org —

IMAGE- 4x4 Geometry: Rosenhain and Göpel Tetrads and the Kummer Configuration

* Apparently from David Lehavi on March 18, 2007, at Citizendium .

Mathematics and Narrative (continued)

Filed under: Uncategorized — Tags: , — m759 @ 1:00 AM

Mathematics:

A review of posts from earlier this month —

Wednesday, September 4, 2013

Moonshine

Filed under: Uncategorized — m759 @ 4:00 PM

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.)

Thursday, September 5, 2013

Moonshine II

Filed under: Uncategorized — Tags:  — m759 @ 10:31 AM

(Continued from yesterday)

The foreword by Wolf Barth in the 1990 Cambridge U. Press
reissue of Hudson's 1905 classic Kummer's Quartic Surface
covers some of the material in yesterday's post Moonshine.

The distinction that Barth described in 1990 was also described, and illustrated,
in my 1986 note "Picturing the smallest projective 3-space."  The affine 4-space
over the the finite Galois field GF(2) that Barth describes was earlier described—
within a 4×4 array like that pictured by Hudson in 1905— in a 1979 American
Mathematical Society abstract, "Symmetry invariance in a diamond ring."

"The distinction between Rosenhain and Goepel tetrads
is nothing but the distinction between isotropic and
non-isotropic planes in this affine space over the finite field."

The 1990 paragraph of Barth quoted above may be viewed as a summary
of these facts, and also of my March 17, 2013, note "Rosenhain and Göpel
Tetrads in PG(3,2)
."

Narrative:

Aooo.

Happy birthday to Stephen King.

Thursday, September 5, 2013

Moonshine II

Filed under: Uncategorized — Tags: , , , , — m759 @ 10:31 AM

(Continued from yesterday)

The foreword by Wolf Barth in the 1990 Cambridge U. Press
reissue of Hudson's 1905 classic Kummer's Quartic Surface
covers some of the material in yesterday's post Moonshine.

The distinction that Barth described in 1990 was also described, and illustrated,
in my 1986 note "Picturing the smallest projective 3-space."  The affine 4-space
over the the finite Galois field GF(2) that Barth describes was earlier described—
within a 4×4 array like that pictured by Hudson in 1905— in a 1979 American
Mathematical Society abstract, "Symmetry invariance in a diamond ring."

"The distinction between Rosenhain and Goepel tetrads
is nothing but the distinction between isotropic and
non-isotropic planes in this affine space over the finite field."

The 1990 paragraph of Barth quoted above may be viewed as a summary
of these facts, and also of my March 17, 2013, note "Rosenhain and Göpel
Tetrads in PG(3,2)
."

Wednesday, September 4, 2013

Moonshine

Filed under: Uncategorized — Tags: , — m759 @ 4:00 PM

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the 
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.) 

A Google search documents the moonshine
relating Rosenhain's and Göpel's 19th-century work
in complex analysis to M24  via the book of Hudson and
the geometry of the 4×4 square.

Saturday, August 17, 2013

Up-to-Date Geometry

Filed under: Uncategorized — Tags: — m759 @ 7:24 PM

The following excerpt from a January 20, 2013, preprint shows that
a Galois-geometry version of the large Desargues 154203 configuration,
although based on the nineteenth-century work of Galois* and of Fano,** 
may at times have twenty-first-century applications.

IMAGE- James Atkinson, Jan. 2013 preprint on Yang-Baxter maps mentioning finite geometry

Some context —

Atkinson's paper does not use the square model of PG(3,2), which later
in 2013 provided a natural view of the large Desargues 154203 configuration.
See my own Classical Geometry in Light of Galois Geometry.  Atkinson's
"subset of 20 lines" corresponds to 20 of the 80 Rosenhain tetrads
mentioned in that later article and pictured within 4×4 squares in Hudson's
1905 classic Kummer's Quartic Surface.

* E. Galois, definition of finite fields in "Sur la Théorie des Nombres,"
  Bulletin des Sciences Mathématiques de M. Férussac,
  Vol. 13, 1830, pp. 428-435.

** G. Fano, definition of PG(3,2) in "Sui Postulati Fondamentali…,"
    Giornale di Matematiche, Vol. 30, 1892, pp. 106-132.

Tuesday, May 28, 2013

Codes

Filed under: Uncategorized — Tags: , , , — m759 @ 12:00 PM

The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Sunday, May 19, 2013

Priority Claim

Filed under: Uncategorized — Tags: , , , — m759 @ 9:00 AM

From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):

"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis
in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."

[Cur89] reference:
 R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 
32 (1989), 345-353 (received on
July 20, 1987).

— Anne Taormina and Katrin Wendland,
    "The overarching finite symmetry group of Kummer
      surfaces in the Mathieu group 24 ,"
     arXiv.org > hep-th > arXiv:1107.3834

"First mentioned by Curtis…."

No. I claim that to the best of my knowledge, the 
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.

Update of the above paragraph on July 6, 2013—

No. The vector space structure was described by
(for instance) Peter J. Cameron in a 1976
Cambridge University Press book —
Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pages 59 and 60.

The vector space structure as it occurs in a 4×4 array
of the sort that appears in the Curtis Miracle Octad
Generator may first have been pointed out by me,
Steven H. Cullinane,
 in an AMS abstract submitted in
October 1978, some nine years before the Curtis article.

See Notes on Finite Geometry for some background.

See in particular The Galois Tesseract.

For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).

Thursday, April 25, 2013

Rosenhain and Göpel Revisited

Filed under: Uncategorized — Tags: , — m759 @ 5:24 PM

Some historical background for today's note on the geometry
underlying the Curtis Miracle Octad Generator (MOG):

IMAGE- Bateman in 1906 on Rosenhain and Göpel tetrads

The above incidence diagram recalls those in today's previous post
on the MOG, which is used to construct the large Mathieu group M24.

For some related material that is more up-to-date, search the Web
for Mathieu + Kummer .

Friday, April 19, 2013

The Large Desargues Configuration

Filed under: Uncategorized — Tags: — m759 @ 9:25 AM

Desargues' theorem according to a standard textbook:

"If two triangles are perspective from a point
they are perspective from a line."

The converse, from the same book:

"If two triangles are perspective from a line
they are perspective from a point."

Desargues' theorem according to Wikipedia
combines the above statements:

"Two triangles are in perspective axially  [i.e., from a line]
if and only if they are in perspective centrally  [i.e., from a point]."

A figure often used to illustrate the theorem,
the Desargues configuration , has 10 points and 10 lines,
with 3 points on each line and 3 lines on each point.

A discussion of the "if and only if" version of the theorem
in light of Galois geometry requires a larger configuration—
15 points and 20 lines, with 3 points on each line
and 4 lines on each point.

This large  Desargues configuration involves a third triangle,
needed for the proof   (though not the statement ) of the
"if and only if" version of the theorem. Labeled simply
"Desargues' Theorem," the large  configuration is the
frontispiece to Volume I (Foundations)  of Baker's 6-volume
Principles of Geometry .

Point-line incidence in this larger configuration is,
as noted in a post of April 1, 2013, described concisely
by 20 Rosenhain tetrads  (defined in 1905 by
R. W. H. T. Hudson in Kummer's Quartic Surface ).

The third triangle, within the larger configuration,
is pictured below.

IMAGE- The proof of the converse of Desargues' theorem involves a third triangle.

Saturday, April 13, 2013

Princeton’s Christopher Robin

Filed under: Uncategorized — Tags: , , — m759 @ 9:48 AM

The title is that of a talk (see video) given by
George Dyson at a Princeton land preservation trust,
reportedly on March 21, 2013.  The talk's subtitle was
"Oswald Veblen and the Six-hundred-acre Woods."

Meanwhile

Thursday, March 21, 2013

Geometry of Göpel Tetrads (continued)

m759 @ 7:00 PM

An update to Rosenhain and Göpel Tetrads in PG(3,2)
supplies some background from
Notes on Groups and Geometry, 1978-1986,
and from a 2002 AMS Transactions  paper.

IMAGE- Göpel tetrads in an inscape, April 1986

 

Related material for those who prefer narrative
to mathematics:

Log24 on June 6, 2006:

 

The Omen:
 

Now we are 

6!

Related material for those who prefer mathematics
to narrative:

What the Omen narrative above and the mathematics of Veblen
have in common is the number 6. Veblen, who came to
Princeton in 1905 and later helped establish the Institute,
wrote extensively on projective geometry.  As the British
geometer H. F. Baker pointed out,  6 is a rather important number
in that discipline.  For the connection of 6 to the Göpel tetrads
figure above from March 21, see a note from May 1986.

See also last night's Veblen and Young in Light of Galois.

"There is  such a thing as a tesseract." — Madeleine L'Engle

Monday, April 8, 2013

Star Wars

Filed under: Uncategorized — m759 @ 11:01 AM

See searches in this journal for Balliol and for Star Quality.

Related material:

Above: A Google image search for Göpel tetrads  today. Click to enlarge.

Monday, April 1, 2013

Desargues via Rosenhain

Filed under: Uncategorized — Tags: — m759 @ 6:00 PM

Background: Rosenhain and Göpel Tetrads in PG(3,2)

Introduction:

The Large Desargues Configuration

Added by Steven H. Cullinane on Friday, April 19, 2013

Desargues' theorem according to a standard textbook:

"If two triangles are perspective from a point
they are perspective from a line."

The converse, from the same book:

"If two triangles are perspective from a line
they are perspective from a point."

Desargues' theorem according to Wikipedia 
combines the above statements:

"Two triangles are in perspective axially  [i.e., from a line]
if and only if they are in perspective centrally  [i.e., from a point]."

A figure often used to illustrate the theorem, 
the Desargues configuration , has 10 points and 10 lines,
with 3 points on each line and 3 lines on each point.

A discussion of the "if and only if" version of the theorem
in light of Galois geometry requires a larger configuration—
15 points and 20 lines, with 3 points on each line 
and 4 lines on each point.

This large  Desargues configuration involves a third triangle,
needed for the proof   (though not the statement ) of the 
"if and only if" version of the theorem. Labeled simply
"Desargues' Theorem," the large  configuration is the
frontispiece to Volume I (Foundations)  of Baker's 6-volume
Principles of Geometry .

Point-line incidence in this larger configuration is,
as noted in the post of April 1 that follows
this introduction, described concisely 
by 20 Rosenhain tetrads  (defined in 1905 by
R. W. H. T. Hudson in Kummer's Quartic Surface ).

The third triangle, within the larger configuration,
is pictured below.

IMAGE- The proof of the converse of Desargues' theorem involves a third triangle.

 

A connection discovered today (April 1, 2013)—

(Click to enlarge the image below.)

Update of April 18, 2013

Note that  Baker's Desargues-theorem figure has three triangles,
ABC, A'B'C', A"B"C", instead of the two triangles that occur in
the statement of the theorem. The third triangle appears in the
course of proving, not just stating, the theorem (or, more precisely,
its converse). See, for instance, a note on a standard textbook for 
further details.

(End of April 18, 2013 update.)

Update of April 14, 2013

See Baker's Proof (Edited for the Web) for a detailed explanation 
of the above picture of Baker's Desargues-theorem frontispiece.

(End of April 14, 2013 update.)

Update of April 12, 2013

A different figure, from a site at National Tsing Hua University,
shows the three triangles of Baker's figure more clearly:

IMAGE- Desargues' theorem with three triangles, and Galois-geometry version

(End of update of April 12, 2013)

Update of April 13, 2013

Another in a series of figures illustrating
Desargues's theorem in light of Galois geometry:
IMAGE- Veblen and Young 1910 Desargues illustration, with 2013 Galois-geometry version

See also the original Veblen-Young figure in context.

(End of update of April 13, 2013)

Rota's remarks, while perhaps not completely accurate, provide some context
for the above Desargues-Rosenhain connection.  For some other context,
see the interplay in this journal between classical and finite geometry, i.e.
between Euclid and Galois.

For the recent  context of the above finite-geometry version of Baker's Vol. I
frontispiece, see Sunday evening's finite-geometry version of Baker's Vol. IV
frontispiece, featuring the Göpel, rather than the Rosenhain, tetrads.

For a 1986 illustration of Göpel and Rosenhain tetrads (though not under
those names), see Picturing the Smallest Projective 3-Space.

In summary… the following classical-geometry figures
are closely related to the Galois geometry PG(3,2):

Volume I of Baker's Principles  
has a cover closely related to 
the Rosenhain tetrads in PG(3,2)
Volume IV of Baker's Principles 
has a cover closely related to
the Göpel tetrads in PG(3,2) 
Foundations
(click to enlarge)

 

 

Higher Geometry
(click to enlarge)

 

 

 

Thursday, March 28, 2013

Wunderkammer

Filed under: Uncategorized — Tags: — m759 @ 11:30 AM

The title is from a New York Times  article
by Roberta Smith on the Barnes collection
(see previous post):

“Nearly every room is an exhibition
unto itself— a kind of art wunderkammer,
or cabinet of curiosities….”

Another sort of Wunderkammer:

Shown above is a Google image search today for Göpel tetrads .

The selected detail is an Oct. 7, 2011, image search
for claves regni caelorum escher  (2 MB).

Thursday, March 21, 2013

Geometry of Göpel Tetrads (continued)

Filed under: Uncategorized — Tags: — m759 @ 7:00 PM

An update to Rosenhain and Göpel Tetrads in PG(3,2) 
supplies some background from
Notes on Groups and Geometry, 1978-1986,
and from a 2002 AMS Transactions  paper.

IMAGE- Göpel tetrads in an inscape, April 1986

Tuesday, March 19, 2013

Mathematics and Narrative (continued)

Filed under: Uncategorized — Tags: — m759 @ 10:18 AM

Angels & Demons meet Hudson Hawk

Dan Brown's four-elements diamond in Angels & Demons :

IMAGE- Illuminati Diamond, pp. 359-360 in 'Angels & Demons,' Simon & Schuster Pocket Books 2005, 448 pages, ISBN 0743412397

The Leonardo Crystal from Hudson Hawk :

Hudson:

Mathematics may be used to relate (very loosely)
Dan Brown's fanciful diamond figure to the fanciful
Leonardo Crystal from Hudson Hawk 

"Giving himself a head rub, Hawk bears down on
the three oddly malleable objects. He TANGLES 
and BENDS and with a loud SNAP, puts them together,
forming the Crystal from the opening scene."

— A screenplay of Hudson Hawk

Happy birthday to Bruce Willis.

Saturday, March 16, 2013

The Crosswicks Curse

Filed under: Uncategorized — Tags: — m759 @ 4:00 PM

Continues.

From the prologue to the new Joyce Carol Oates
novel Accursed

"This journey I undertake with such anticipation
is not one of geographical space but one of Time—
for it is the year 1905 that is my destination.

1905!—the very year of the Curse."

Today's previous post supplied a fanciful link
between the Crosswicks Curse of Oates and
the Crosswicks tesseract  of Madeleine L'Engle.

The Crosswicks Curse according to L'Engle
in her classic 1962 novel A Wrinkle in Time —

"There is  such a thing as a tesseract."

A tesseract is a 4-dimensional hypercube that
(as pointed out by Coxeter in 1950) may also 
be viewed as a 4×4 array (with opposite edges
identified).

Meanwhile, back in 1905

For more details, see how the Rosenhain and Göpel tetrads occur naturally
in the diamond theorem model of the 35 lines of the 15-point projective
Galois space PG(3,2).

See also Conwell in this journal and George Macfeely Conwell in the
honors list of the Princeton Class of 1905.

Saturday, September 3, 2011

The Galois Tesseract (continued)

Filed under: Uncategorized — Tags: — m759 @ 1:00 PM

A post of September 1, The Galois Tesseract, noted that the interplay
of algebraic and geometric properties within the 4×4 array that forms
two-thirds of the Curtis Miracle Octad Generator (MOG) may first have
been described by Cullinane (AMS abstract 79T-A37, Notices , Feb. 1979).

Here is some supporting material—

http://www.log24.com/log/pix11B/110903-Carmichael-Conway-Curtis.jpg

The passage from Carmichael above emphasizes the importance of
the 4×4 square within the MOG.

The passage from Conway and Sloane, in a book whose first edition
was published in 1988, makes explicit the structure of the MOG's
4×4 square as the affine 4-space over the 2-element Galois field.

The passage from Curtis (1974, published in 1976) describes 35 sets
of four "special tetrads" within the 4×4 square of the MOG. These
correspond to the 35 sets of four parallel 4-point affine planes within
the square. Curtis, however, in 1976 makes no mention of the affine
structure, characterizing his 140 "special tetrads" rather by the parity
of their intersections with the square's rows and columns.

The affine structure appears in the 1979 abstract mentioned above—

IMAGE- An AMS abstract from 1979 showing how the affine group AGL(4,2) of 322,560 transformations acts on a 4x4 square

The "35 structures" of the abstract were listed, with an application to
Latin-square orthogonality, in a note from December 1978

IMAGE- Projective-space structure and Latin-square orthogonality in a set of 35 square arrays

See also a 1987 article by R. T. Curtis—

Further elementary techniques using the miracle octad generator
, by R. T. Curtis. Abstract:

“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”

(Received July 20 1987)

Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353

* For instance:

Algebraic structure in the 4x4 square, by Cullinane (1985) and Curtis (1987)

Update of Sept. 4— This post is now a page at finitegeometry.org.

Powered by WordPress