Monday, December 11, 2017

The Diamond Theorem at SASTRA

Filed under: General,Geometry — Tags: — m759 @ 12:35 PM

The following IEEE paper is behind a paywall,
but the first page is now available for free
at deepdyve.com

For further details on the diamond theorem, see
finitegeometry.org/sc/ or the archived version at . . .


Friday, October 28, 2016

Diamond-Theorem Application

Filed under: General,Geometry — Tags: — m759 @ 1:06 PM


"Protection of digital content from being tapped by intruders is a crucial task in the present generation of Internet world. In this paper, we proposed an implementation of new visual secret sharing scheme for gray level images using diamond theorem correlation. A secret image has broken into 4 × 4 non overlapped blocks and patterns of diamond theorem are applied sequentially to ensure the secure image transmission. Separate diamond patterns are utilized to share the blocks of both odd and even sectors. Finally, the numerical results show that a novel secret shares are generated by using diamond theorem correlations. Histogram representations demonstrate the novelty of the proposed visual secret sharing scheme."

— "New visual secret sharing scheme for gray-level images using diamond theorem correlation pattern structure," by  V. Harish, N. Rajesh Kumar, and N. R. Raajan.

Published in: 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT).
Date of Conference: 18-19 March 2016. Publisher: IEEE.
Date Added to IEEE Xplore: 04 August 2016

Excerpts —

Related material — Posts tagged Diamond Theorem Correlation.

Friday, August 1, 2014

The Diamond-Theorem Correlation

Filed under: General,Geometry — Tags: , — m759 @ 2:00 AM

Click image for a larger, clearer version.

IMAGE- The symplectic correlation underlying Rosenhain and Göpel tetrads

Tuesday, December 3, 2013

Diamond Space

Filed under: General,Geometry — Tags: — m759 @ 1:06 PM

A new website illustrates its URL.
See DiamondSpace.net.

IMAGE- Site with keywords 'Galois space, Galois geometry, finite geometry' at DiamondSpace.net

Monday, February 11, 2013

The Penrose Diamond

Filed under: General,Geometry — Tags: — m759 @ 2:01 PM

IMAGE- The Penrose Diamond

Related material:

(Click to enlarge.)

See also remarks on Penrose linked to in Sacerdotal Jargon.

(For a connection of these remarks to
the Penrose diamond, see April 1, 2012.)

Thursday, May 31, 2012

Black Diamond

Filed under: General — Tags: — m759 @ 12:26 PM

IMAGE- Four-elements-diamond test problem in the style of Raven's Progressive Matrices (answer: the black diamond)

“To say more is to say less.”
― Harlan Ellison, as quoted at goodreads.com

Saying less—

Saturday, March 17, 2012

The Purloined Diamond

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 PM


The diamond from the Chi-rho page
of the Book of Kells —

The diamond at the center of Euclid's
Proposition I, according to James Joyce
(i.e., the Diamond in the Mandorla) —

Geometry lesson: the vesica piscis in Finnegans Wake

The Diamond in the Football


“He pointed at the football
  on his desk. ‘There it is.’”
         – Glory Road

Wednesday, December 21, 2011

The Purloined Diamond

Filed under: General — Tags: , — m759 @ 9:48 AM

Stephen Rachman on "The Purloined Letter"

"Poe’s tale established the modern paradigm (which, as it happens, Dashiell Hammett and John Huston followed) of the hermetically sealed fiction of cross and double-cross in which spirited antagonists pursue a prized artifact of dubious or uncertain value."

For one such artifact, the diamond rhombus formed by two equilateral triangles, see Osserman in this journal.

Some background on the artifact is given by John T. Irwin's essay "Mysteries We Reread…" reprinted in Detecting Texts: The Metaphysical Detective Story from Poe to Postmodernism .

Related material—

Mathematics vulgarizer Robert Osserman died on St. Andrew's Day, 2011.

A Rhetorical Question

Osserman in 2004

"The past decade has been an exciting one in the world of mathematics and a fabulous one (in the literal sense) for mathematicians, who saw themselves transformed from the frogs of fairy tales— regarded with a who-would-want-to-kiss-that aversion, when they were noticed at all— into fascinating royalty, portrayed on stage and screen….

Who bestowed the magic kiss on the mathematical frog?"

A Rhetorical Answer


Above: Amy Adams in "Sunshine Cleaning"

Sunday, July 10, 2011

Wittgenstein’s Diamond

Filed under: General,Geometry — Tags: , — m759 @ 9:29 AM

Philosophical Investigations  (1953)

97. Thought is surrounded by a halo.
—Its essence, logic, presents an order,
in fact the a priori order of the world:
that is, the order of possibilities * ,
which must be common to both world and thought.
But this order, it seems, must be
utterly simple . It is prior  to all experience,
must run through all experience;
no empirical cloudiness or uncertainty can be allowed to affect it
——It must rather be of the purest crystal.
But this crystal does not appear as an abstraction;
but as something concrete, indeed, as the most concrete,
as it were the hardest  thing there is
(Tractatus Logico-Philosophicus  No. 5.5563).

— Translation by G.E.M. Anscombe


All propositions of our colloquial language
are actually, just as they are, logically completely in order.
That simple thing which we ought to give here is not
a model of the truth but the complete truth itself.

(Our problems are not abstract but perhaps
the most concrete that there are.)

97. Das Denken ist mit einem Nimbus umgeben.
—Sein Wesen, die Logik, stellt eine Ordnung dar,
und zwar die Ordnung a priori der Welt,
d.i. die Ordnung der Möglichkeiten ,
die Welt und Denken gemeinsam sein muß.
Diese Ordnung aber, scheint es, muß
höchst einfach  sein. Sie ist vor  aller Erfahrung;
muß sich durch die ganze Erfahrung hindurchziehen;
ihr selbst darf keine erfahrungsmäßige Trübe oder Unsicherheit anhaften.
——Sie muß vielmehr vom reinsten Kristall sein.
Dieser Kristall aber erscheint nicht als eine Abstraktion;
sondern als etwas Konkretes, ja als das Konkreteste,
gleichsam Härteste . (Log. Phil. Abh.  No. 5.5563.)

See also

Related language in Łukasiewicz (1937)—


* Updates of 9:29 PM ET July 10, 2011—

A  mnemonic  from a course titled “Galois Connections and Modal Logics“—

“Traditionally, there are two modalities, namely, possibility and necessity.
The basic modal operators are usually written box (square) for necessarily
and diamond (diamond) for possibly. Then, for example, diamondP  can be read as
‘it is possibly the case that P .'”

See also Intensional Semantics , lecture notes by Kai von Fintel and Irene Heim, MIT, Spring 2007 edition—

“The diamond symbol for possibility is due to C.I. Lewis, first introduced in Lewis & Langford (1932), but he made no use of a symbol for the dual combination ¬¬. The dual symbol was later devised by F.B. Fitch and first appeared in print in 1946 in a paper by his doctoral student Barcan (1946). See footnote 425 of Hughes & Cresswell (1968). Another notation one finds is L for necessity and M for possibility, the latter from the German möglich  ‘possible.’”

Barcan, Ruth C.: 1946. “A Functional Calculus of First Order Based on Strict Implication.” Journal of Symbolic Logic, 11(1): 1–16. URL http://www.jstor.org/pss/2269159.

Hughes, G.E. & Cresswell, M.J.: 1968. An Introduction to Modal Logic. London: Methuen.

Lewis, Clarence Irving & Langford, Cooper Harold: 1932. Symbolic Logic. New York: Century.

Monday, December 27, 2010

Church Diamond

Filed under: General,Geometry — Tags: — m759 @ 3:09 PM

IMAGE- The diamond property

Also known, roughly speaking, as confluence  or the Church-Rosser property.

From “NYU Lambda Seminar, Week 2” —

[See also the parent page Seminar in Semantics / Philosophy of Language or:
What Philosophers and Linguists Can Learn From Theoretical Computer Science But Didn’t Know To Ask)

A computational system is said to be confluent, or to have the Church-Rosser or diamond property, if, whenever there are multiple possible evaluation paths, those that terminate always terminate in the same value. In such a system, the choice of which sub-expressions to evaluate first will only matter if some of them but not others might lead down a non-terminating path.

The untyped lambda calculus is confluent. So long as a computation terminates, it always terminates in the same way. It doesn’t matter which order the sub-expressions are evaluated in.

A computational system is said to be strongly normalizing if every permitted evaluation path is guaranteed to terminate. The untyped lambda calculus is not strongly normalizing: ω ω doesn’t terminate by any evaluation path; and (\x. y) (ω ω) terminates only by some evaluation paths but not by others.

But the untyped lambda calculus enjoys some compensation for this weakness. It’s Turing complete! It can represent any computation we know how to describe. (That’s the cash value of being Turing complete, not the rigorous definition. There is a rigorous definition. However, we don’t know how to rigorously define “any computation we know how to describe.”) And in fact, it’s been proven that you can’t have both. If a computational system is Turing complete, it cannot be strongly normalizing.

There is no connection, apart from the common reference to an elementary geometric shape, between the use of “diamond” in the above Church-Rosser sense and the use of “diamond” in the mathematics of (Cullinane’s) Diamond Theory.

Any attempt to establish such a connection would, it seems, lead quickly into logically dubious territory.

Nevertheless, in the synchronistic spirit of Carl Jung and Arthur Koestler, here are some links to such a territory —

 Link One — “Insane Symmetry”  (Click image for further details)—


See also the quilt symmetry in this  journal on Christmas Day.

Link Two — Divine Symmetry

(George Steiner on the Name in this journal on Dec. 31 last year (“All about Eve“)) —

“The links are direct between the tautology out of the Burning Bush, that ‘I am’ which accords to language the privilege of phrasing the identity of God, on the one hand, and the presumptions of concordance, of equivalence, of translatability, which, though imperfect, empower our dictionaries, our syntax, our rhetoric, on the other. That ‘I am’ has, as it were, at an overwhelming distance, informed all predication. It has spanned the arc between noun and verb, a leap primary to creation and the exercise of creative consciousness in metaphor. Where that fire in the branches has gone out or has been exposed as an optical illusion, the textuality of the world, the agency of the Logos in logic—be it Mosaic, Heraclitean, or Johannine—becomes ‘a dead letter.'”

George Steiner, Grammars of Creation

(See also, from Hanukkah this year,  A Geometric Merkabah and The Dreidel is Cast.)

Link Three – Spanning the Arc —

Part A — Architect Louis Sullivan on “span” (see also Kindergarten at Stonehenge)

Part B — “Span” in category theory at nLab —


Also from nLab — Completing Spans to Diamonds

“It is often interesting whether a given span in some partial ordered set can be completed into a diamond. The property of a collection of spans to consist of spans which are expandable into diamonds is very useful in the theory of rewriting systems and producing normal forms in algebra. There are classical results e.g. Newman’s diamond lemma, Širšov-Bergman’s diamond lemma (Širšov is also sometimes spelled as Shirshov), and Church-Rosser theorem (and the corresponding Church-Rosser confluence property).”

The concepts in this last paragraph may or may not have influenced the diamond theory of Rudolf Kaehr (apparently dating from 2007).

They certainly have nothing to do with the Diamond Theory of Steven H. Cullinane (dating from 1976).

For more on what the above San Francisco art curator is pleased to call “insane symmetry,” see this journal on Christmas Day.

For related philosophical lucubrations (more in the spirit of Kaehr than of Steiner), see the New York Times  “The Stone” essay “Span: A Remembrance,” from December 22—

“To understand ourselves well,” [architect Louis] Sullivan writes, “we must arrive first at a simple basis: then build up from it.”

Around 300 BC, Euclid arrived at this: “A point is that which has no part. A line is breadthless length.”

See also the link from Christmas Day to remarks on Euclid and “architectonic” in Mere Geometry.

Thursday, July 1, 2010

Plato’s Code

Filed under: General,Geometry — m759 @ 12:00 PM

John Allen Paulos yesterday at Twitter

"Plato's code cracked? http://bit.ly/ad6k1S
Fascinating if not a hoax or hype."

The story that Paulos linked to is about a British
academic who claims to have found some
symbolism hidden in Plato's writings by
splitting each into 12 parts and correlating
the 12 parts with semitones of a musical scale.

I prefer a different approach to Plato that is
related to the following hoax and hype—


From Dan Brown's novel Angels & Demons  (2000)

IMAGE- Illuminati Diamond, pp. 359-360 in 'Angels & Demons,' Simon & Schuster Pocket Books 2005, 448 pages, ISBN 0743412397


Image-- From 'Alchemy,' by Holmyard, the diamond of Aristotle's 4 elements and 4 qualities

This  four-elements diamond summarizes the classical
four elements and four qualities neatly, but some scholars
might call the figure "hype" since it deals with an academically
disreputable subject, alchemy, and since its origin is unclear.

For the four elements' role in some literature more respectable
than Dan Brown's, see Poetry's Bones.

Although an author like Brown might spin the remarks
below into a narrative—  The Plato Code — they are
neither  hoax nor hype.


Image-- From the Diamond in Plato's Meno to Modern Finite Geometry



For related non-hoax, non-hype remarks, see
The Rational Enterprise: Logos in Plato's Theaetetus,
by Rosemary Desjardins.

Those who prefer  hoax and hype in their philosophy may consult
the writings of, say, Barbara Johnson, Rosalind Krauss, and—
in yesterday's NY Times's  "The Stone" columnNancy Bauer.

Image-- The Philosophers' Stone according to The New York Times

— The New York Times

Saturday, June 26, 2010

Plato’s Logos

Filed under: General,Geometry — m759 @ 9:00 AM

“The present study is closely connected with a lecture* given by Prof. Ernst Cassirer at the Warburg Library whose subject was ‘The Idea of the Beautiful in Plato’s Dialogues’…. My investigation traces the historical destiny of the same concept….”

* See Cassirer’s Eidos und Eidolon : Das Problem des Schönen und der Kunst in Platons Dialogen, in Vorträge der Bibliothek Warburg II, 1922/23 (pp. 1–27). Berlin and Leipzig, B.G. Teubner, 1924.

— Erwin Panofsky, Idea: A Concept in Art Theory, foreword to the first German edition, Hamburg, March 1924

On a figure from Plato’s Meno

IMAGE- Plato's diamond and finite geometry

The above figures illustrate Husserl’s phrase  “eidetic variation”
a phrase based on Plato’s use of eidos, a word
closely related to the word “idea” in Panofsky’s title.

For remarks by Cassirer on the theory of groups, a part of
mathematics underlying the above diamond variations, see
his “The Concept of Group and the Theory of Perception.”

Sketch of some further remarks—


The Waterfield question in the sketch above
is from his edition of Plato’s Theaetetus
(Penguin Classics, 1987).

The “design theory” referred to in the sketch
is that of graphic  design, which includes the design
of commercial logos. The Greek  word logos
has more to do with mathematics and theology.

“If there is one thread of warning that runs
through this dialogue, from beginning to end,
it is that verbal formulations as such are
shot through with ambiguity.”

— Rosemary Desjardins, The Rational Enterprise:
Logos in Plato’s Theaetetus
, SUNY Press, 1990

Related material—

(Click to enlarge.)


Wednesday, February 3, 2021

Art of the Possible

Filed under: General — Tags: , , — m759 @ 3:40 PM

Nietzsche, 'law in becoming' and 'play in necessity'

Nietzsche on Heraclitus— 'play in necessity' and 'law in becoming'— illustrated.

Related philosophy — Wittgenstein’s Diamond.

Friday, January 29, 2021

Space Laser Theory

Filed under: General — Tags: , , — m759 @ 12:45 AM

From this journal on Nov. 17, 2018

See also another disastrous-mess commentary  from Nov. 17, 2018.

Related weblog post

Related theology — “Diamonds Are Forever” in this journal.

Related art — “Black Diamond.”

Tuesday, January 12, 2021

Silence, Exile, and . . .

Filed under: General — Tags: — m759 @ 12:25 PM

In honor of the Auckland opening of the opera
The Cunning Little Vixen” on January 27, 2010 —

Monday, September 14, 2020

Socrates in the Marketplace

Filed under: General — Tags: — m759 @ 7:39 AM

Plato's diamond in Jowett's version of the Meno dialogue

Diamond Matrix slide template at presentationgo.com

“The 2×2 matrix is commonly used in business strategy
as a representational tool to show conflicting concepts and
for decision making. This four-quadrant matrix diagram
is perfect to be used for business or marketing matrices
like BCG, SWOT, Ansoff, risk assessment…

Additionally, it will also be suitable to illustrate 4 ideas or
concepts.” [Link on “illustrate” added.]

See also a Log24 search for “Resplendent.”

Saturday, August 22, 2020

An Object Lesson

Filed under: General — Tags: — m759 @ 9:15 AM

Posts tagged Plato’s Video continue.

IMAGE- A Jesuit on words and shadows

Related literary remarks from this  journal on Oct. 1, 2016

— A Heart for the Gods of Mexico , Conrad Aiken, 1939

Related imagery this morning from the Gulf of Mexico —

Meanwhile, also on Oct. 1, 2016, related imagery from Star Wars Rebels —

Click here to enlarge the holocrons.

Sunday, August 2, 2020

The Sword and the Stone

Filed under: General — Tags: , — m759 @ 12:42 PM

A post of May 26, 2005, displays, if not the sword,
a place  for it —

Drama of the Diagonal

“The beautiful in mathematics resides in contradiction.
Incommensurability, logoi alogoi, was the first splendor
in mathematics.” — Simone Weil, Oeuvres Choisies,
éd. Quarto
, Gallimard, 1999, p. 100

Logos Alogos  by S. H. Cullinane

“To a mathematician, mathematical entities have their own existence,
they habitate spaces created by their intention.  They do things,
things happen to them, they relate to one another.  We can imagine
on their behalf all sorts of stories, providing they don’t contradict
what we know of them.  The drama of the diagonal, of the square…

— Dennis Guedj, abstract of “The Drama of Mathematics,” a talk
to be given this July at the Mykonos conference on mathematics and
narrative. For the drama of the diagonal of the square, see

Wednesday, July 1, 2020

The Long Strange Road

Filed under: General — Tags: — m759 @ 12:55 PM

“The road is long
With many a winding turn”

Neil Diamond

Magic Child

Filed under: General — Tags: , — m759 @ 12:06 PM

Wednesday, April 15, 2020

Oslo Prophet (after Varignon)

Filed under: General — Tags: , — m759 @ 12:06 PM

See also Invariance, a Log24 post from yesterday morning —

Note the resemblance to Plato’s Diamond.

“Causal Invariance” According to Wolfram

Filed under: General — Tags: — m759 @ 12:40 AM

Stephen Wolfram yesterday —

“Causal invariance may at first seem like a rather obscure property.
But in the context of our models, we will see in what follows that
it may in fact be the key to a remarkable range of fundamental features
of physics, including relativistic invariance, general covariance, and
local gauge invariance, as well as the possibility of objective reality in
quantum mechanics.”

From . . .

Tuesday, April 14, 2020

Confluence, or:

Filed under: General — Tags: — m759 @ 7:21 PM

Church Diamond   Continued

The above article leads to remarks by Stephen Wolfram published today :

See also “Invariance” as the title of the previous post  here.


Filed under: General — Tags: , — m759 @ 9:00 AM

Note the resemblance to Plato’s Diamond.

Click the Pritchard passage above for an interactive version.

Sunday, February 2, 2020

Tetrads for McLuhan, or “Blame It on Video”

Filed under: General — Tags: — m759 @ 11:22 PM

"I like to put people on myself by skipping logical steps
in the conversation until they're dizzy." — Jemima Brown
in The Eiger Sanction

Related posts — See "McLuhan Tetrad" in this journal.

Related theology — See  "The Meaning of Perichoresis."
Background — The New Yorker , "On Religion:
Richard Rohr Reorders the Universe," by Eliza Griswold
on February 2, 2020, and a different reordering in posts
tagged Eightfold Metaphysics.

Game of Shadows

Filed under: General — Tags: — m759 @ 2:27 PM

A search in this journal for "Game of Shadows" yields

IMAGE- A Jesuit on words and shadows

“Krauss, Portman; Portman, Krauss.”

Filed under: General — Tags: , , — m759 @ 12:58 AM

Prominent in the oeuvre  of art theorist Rosalind Krauss, the Klein group
is a four-element group named for Felix Christian Klein.

The Klein Four-Group, illustration by Steven H. Cullinane

It is commonly known as the four-group.
Mathematicians sometimes call this group
"V," for its German name, Vierergruppe .

For those who prefer narrative to mathematics

Thursday, January 23, 2020

The Demarcation of Nothing

Filed under: General — Tags: , , , , — m759 @ 3:50 PM

" nothing could be demarcated as 'hors d'oeuvre'…"

Geoffrey Hartman in his Haskins Lecture for 2000
(quoted here on Columbus Day, 2004).

See also May Day 2016 and Gap Dance.

Saturday, January 18, 2020


Filed under: General — Tags: — m759 @ 1:40 PM

"This interplay of necessity and contingency
produces our anxious— and highly pleasurable—
speculation about the future path of the story."

— Michel Chaouli in "How Interactive Can Fiction Be?"
(Critical Inquiry  31, Spring 2005, page 613.)

See also . . .

Nietzsche, 'law in becoming' and 'play in necessity'

Continuing previous Modal Diamond Box posts:

Nietzsche on Heraclitus— 'play in necessity' and 'law in becoming'— illustrated.

Tuesday, October 15, 2019

A White Stone for Bloom

Filed under: General — Tags: , — m759 @ 12:00 AM

Excerpt from a long poem by Eliza Griswold 
in a recent New Yorker —

Sunday, October 28, 2018

Commonwealth Tales, or “Lost in Physics”

Filed under: General — m759 @ 11:00 PM

From Ulysses , by James Joyce —

John Eglinton, frowning, said, waxing wroth:

—Upon my word it makes my blood boil to hear anyone compare Aristotle with Plato.

—Which of the two, Stephen asked, would have banished me from his commonwealth?

Compare and contrast:

Plato's diamond in Jowett's version of the Meno dialogue

Fans of Plato might enjoy tales of Narnia, but fans of
James Joyce and Edgar Allan Poe might prefer
a tale by Michael Chabon from April 2001 about a
"doleful little corner of western Pennsylvania."

Monday, June 11, 2018


Filed under: General,Geometry — Tags: — m759 @ 8:32 PM

A Scientific American  headline today —

Glittering Diamond Dust in Space
Might Solve a 20-Year-Old Mystery

Related art —

"Never underestimate the power of glitter."

Glitter by Josefine Lyche, as of diamond dust

Background:  "Diamond Dust" + Glitter in this journal.

Saturday, June 9, 2018

SASTRA paper

Filed under: General,Geometry — Tags: — m759 @ 11:14 PM

Now out from behind a paywall . . .

The diamond theorem at SASTRA —

Monday, May 14, 2018

Logos at Harvard

Filed under: General,Geometry — Tags: , — m759 @ 3:01 PM

In 2013, Harvard University Press changed its logo to an abstract "H."

Harvard University Press Logo, Before and After

Both logos now accompany a Harvard video first published in 2012,
"The World of Mathematical Reality." 

In the video, author Paul Lockhart discusses Varignon's theorem
without naming Varignon (1654-1722) . . .

Paul Lockhart on geometry

A related view of "mathematical reality" —

Note the resemblance to Plato's Diamond.

Saturday, April 14, 2018

Immanentizing the Transcendence

Filed under: General — Tags: — m759 @ 10:15 AM

The title refers to the previous two posts.

Related literature —

Plato’s Ghost: The Modernist Transformation of Mathematics
(Princeton University Press, 2008)  and . . .

Plato’s diamond-in-a-matrix:

Plato's diamond in Jowett's version of the Meno dialogue

Friday, April 6, 2018

A Service

Filed under: General — m759 @ 11:36 AM

From a Boston Globe obituary for Andrew Lewis, an Oscar-nominated
screenwriter who reportedly died at 92 on Feb. 28, 2018 —

"A service has been held for Mr. Lewis . . . ."

—  Bryan Marquard, Globe staff, April 5, 2018

From this  journal on the reported date of his death —

The Globe reports that Lewis's father was Clarence Irving Lewis,
a professor of philosophy at Harvard University.

Fact check:  See page 246 of C. I. Lewis: The Last Great Pragmatist ,
by Murray G. Murphey (SUNY Press, 2005).

Figure (a) above is not unrelated to philosophy. See Plato 's Meno  dialogue.
See also a different diamond — a symbol devised by C. I. Lewis for use in
modal logic — in the post Wittgenstein's Diamond (July 10, 2011).

Friday, December 8, 2017

Logos (Continued)

Filed under: General — Tags: — m759 @ 3:00 PM

Nietzsche, 'law in becoming' and 'play in necessity'

"Denn die Welt braucht ewig die Wahrheit,
also braucht sie ewig Heraklit:
obschon er ihrer nicht bedarf.
Was geht ihn sein Ruhm an?
Der Ruhm bei »immer fortfließenden Sterblichen!«,
wie er höhnisch ausruft.
Sein Ruhm geht die Menschen etwas an, nicht ihn,
die Unsterblichkeit der Menschheit braucht ihn,
nicht er die Unsterblichkeit des Menschen Heraklit.
Das, was er schaute, die Lehre vom Gesetz im Werden
und vom
Spiel in der Notwendigkeit 
, muß von jetzt
ab ewig geschaut werden: er hat von diesem größten
Schauspiel den Vorhang aufgezogen."

Logos for Philosophers
(Suggested by Modal Logic) —

Nietzsche, 'law in becoming' and 'play in necessity'

Saturday, October 28, 2017

Lowell Brown at Vanity Fair

Filed under: G-Notes,General,Geometry — Tags: — m759 @ 8:18 PM

A sequel to the post  CP  is for Consolation Prize  (Sept. 3, 2016)

An image from Log24 on this date last year:

A recent comment on a discussion of CP symmetry

Monday, July 17, 2017

Athens Meets Jerusalem . . .

Filed under: General,Geometry — Tags: , — m759 @ 9:00 AM

At the Googleplex .

For those whose only interest in higher mathematics
is as a path to the occult

Plato's Diamond and the Hebrew letter Aleph —


and some related (if only graphically) mathematics —

Click the above image for some related purely mathematical  remarks.

Monday, June 19, 2017

Final Club

Filed under: General — m759 @ 11:20 AM

Today’s New York Times  on a character in a 1978 film —

“Cluelessly upbeat and charmingly idiotic.”

Related material from a post Saturday —

Plato's Formula: A Hollywood version of Plato's diamond from the Meno dialogue

Director with Oscar

Coda —

See as well this  journal on the above date — Sept. 24, 2015.

Thursday, June 15, 2017

Early Personal Computer

Filed under: General — m759 @ 10:01 AM

(The title is from yesterday morning's Graphical Interfaces.)

Plato's diamond in Jowett's version of the Meno dialogue

Monday, May 15, 2017

Appropriation at MoMA

Filed under: General,Geometry — m759 @ 1:14 PM

For example, Plato's diamond as an object to be transformed —

Plato's diamond in Jowett's version of the Meno dialogue

Versions of the transformed object —

See also The 4×4 Relativity Problem in this journal.

Wednesday, November 23, 2016


Filed under: General,Geometry — Tags: , — m759 @ 12:31 PM

From the American Mathematical Society (AMS) webpage today —

From the current AMS Notices

Related material from a post of Aug. 6, 2014


(Here "five point sets" should be "five-point sets.")

From Gotay and Isenberg, “The Symplectization of Science,”
Gazette des Mathématiciens  54, 59-79 (1992):

“… what is the origin of the unusual name ‘symplectic’? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure ‘line complex group’ the ‘symplectic group.’
… the adjective ‘symplectic’ means ‘plaited together’ or ‘woven.’
This is wonderfully apt….”

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  structure* now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).

* The phrase as used here is a deliberate 
abuse of language .  For the real definition of 
“symplectic structure,” see (for instance) 
“Symplectic Geometry,” by Ana Cannas da Silva
(article written for Handbook of Differential
, Vol 2.) To establish that the above
figure is indeed symplectic , see the post 
Zero System of July 31, 2014.

Tuesday, September 27, 2016

Chomsky and Lévi-Strauss in China

Filed under: General,Geometry — Tags: — m759 @ 7:31 AM

Or:  Philosophy for Jews

From a New Yorker  weblog post dated Dec. 6, 2012 —

Happy Birthday, Noam Chomsky” by Gary Marcus—

“… two titans facing off, with Chomsky, as ever,
defining the contest”

“Chomsky sees himself, correctly, as continuing
a conversation that goes back to Plato, especially
the Meno dialogue, in which a slave boy is
revealed by Socrates to know truths about
geometry that he hadn’t realized he knew.”

Socrates and the slave boy discussed a rather elementary “truth
about geometry” — A diamond inscribed in a square has area 2
(and side the square root of 2) if the square itself has area 4
(and side 2).

Consider that not-particularly-deep structure from the Meno dialogue
in the light of the following…

The following analysis of the Meno diagram from yesterday’s
post “The Embedding” contradicts the Lévi-Strauss dictum on
the impossibility of going beyond a simple binary opposition.
(The Chinese word taiji  denotes the fundamental concept in
Chinese philosophy that such a going-beyond is both useful
and possible.)

The matrix at left below represents the feminine yin  principle
and the diamond at right represents the masculine yang .

      From a post of Sept. 22,
Binary Opposition Illustrated” —

A symbol of the unity of yin and yang —

Related material:

A much more sophisticated approach to the “deep structure” of the
Meno diagram —

The larger cases —

The diamond theorem

Sunday, June 19, 2016

Making Gatsby Great Again

Filed under: General,Geometry — m759 @ 2:24 PM

Image-- From the Diamond in Plato's Meno to Modern Finite Geometry

See also the previous post.

Saturday, June 4, 2016


Filed under: General — Tags: , — m759 @ 12:00 PM

From this morning's news, a  cultural icon —

From November 18, 2015, four  icons —

— the three favicons above, and the following:

Jack in the Box, by Natasha Wescoat

Sunday, May 15, 2016

One Ring

Filed under: General,Geometry — Tags: , — m759 @ 5:06 PM

(Continued from May 11 and May 15.)

Poem by Eleanor Wilner from 'Reversing the Spell' speaks of diamonds and 'glitter.' (Pbk. publ. Nov. 1, 1997)

Friday, April 29, 2016

Blackboard Jungle…

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Continues .

An older and wiser James Spader —

"Never underestimate the power of glitter."

Glitter by Josefine Lyche, as of diamond dust

Tuesday, April 26, 2016


Filed under: General,Geometry — m759 @ 8:31 PM

"… I would drop the keystone into my arch …."

— Charles Sanders Peirce, "On Phenomenology"

" 'But which is the stone that supports the bridge?' Kublai Khan asks."

— Italo Calvino, Invisible Cities, as quoted by B. Elan Dresher.

(B. Elan Dresher. Nordlyd  41.2 (2014): 165-181,
special issue on Features edited by Martin Krämer,
Sandra Ronai and Peter Svenonius. University of Tromsø –
The Arctic University of Norway.

Peter Svenonius and Martin Krämer, introduction to the
Nordlyd  double issue on Features —

"Interacting with these questions about the 'geometric' 
relations among features is the algebraic structure
of the features."

For another such interaction, see the previous post.

This  post may be viewed as a commentary on a remark in Wikipedia

"All of these ideas speak to the crux of Plato's Problem…."

See also The Diamond Theorem at Tromsø and Mere Geometry.

Saturday, January 23, 2016


Filed under: General — Tags: — m759 @ 9:00 PM

"Hard Science Fiction in the era of short attention spans,
crowd-sourcing, and rapid obsolescence"

— May 26, 2012, Dragon Press Bookstore symposium

Related material:  Posts now tagged Black Diamond.

IMAGE- 'The Stars My Destination' (with cover slightly changed)

Friday, January 22, 2016


Filed under: General — Tags: — m759 @ 10:21 AM

The New Yorker , April 12, 2004 —

Wednesday, November 18, 2015

Tuesday, November 17, 2015

Friday, November 13, 2015

A Connection between the 16 Dirac Matrices and the Large Mathieu Group

Note that the six anticommuting sets of Dirac matrices listed by Arfken
correspond exactly to the six spreads in the above complex of 15 projective
lines of PG(3,2) fixed under a symplectic polarity (the diamond theorem
). As I noted in 1986, this correlation underlies the Miracle
Octad Generator of R. T. Curtis, hence also the large Mathieu group.


Arfken, George B., Mathematical Methods for Physicists , Third Edition,
Academic Press, 1985, pages 213-214

Cullinane, Steven H., Notes on Groups and Geometry, 1978-1986

Related material:

The 6-set in my 1986 note above also appears in a 1996 paper on
the sixteen Dirac matrices by David M. Goodmanson —

Background reading:

Ron Shaw on finite geometry, Clifford algebras, and Dirac groups 
(undated compilation of publications from roughly 1994-1995)—

Thursday, October 15, 2015

Contrapuntal Interweaving

Filed under: General,Geometry — Tags: — m759 @ 2:01 AM

The title is a phrase from R. D. Laing's book The Politics of Experience .
(Published in the psychedelic year 1967. The later "contrapuntal interweaving"
below is of a less psychedelic nature.)

An illustration of the "interweaving' part of the title —
The "deep structure" of the diamond theorem:

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven).

The word "symplectic" from the end of last Sunday's (Oct. 11) sermon
describes the "interwoven" nature of the above illustration.

An illustration of the "contrapuntal" part of the title (click to enlarge):

The diamond-theorem correlation


Saturday, July 4, 2015


Filed under: General,Geometry — Tags: , — m759 @ 10:00 AM

Some context for yesterday's post on a symplectic polarity —

This 1986 note may or may not have inspired some remarks 
of Wolf Barth in his foreword to the 1990 reissue of Hudson's
1905 Kummer's Quartic Surface .

See also the diamond-theorem correlation.  

Saturday, June 13, 2015

Egg Tales

Filed under: General — Tags: , — m759 @ 12:00 PM

"And not all the king's men nor his horses
 Will resurrect his corpus."

Finnegans Wake

See as well Andy Weir's "The Egg" and Working Backward.

Thursday, May 7, 2015

Paradigm for Pedagogues

Filed under: General,Geometry — Tags: , — m759 @ 7:14 PM

Illustrations from a post of Feb. 17, 2011:

Plato’s paradigm in the Meno —


Changed paradigm in the diamond theorem (2×2 case) —


Wednesday, February 25, 2015

Words and Images

Filed under: General,Geometry — Tags: — m759 @ 5:30 PM

The words:  "symplectic polarity"—

The images:

The Natural Symplectic Polarity in PG(3,2)

Symmetry Invariance in a Diamond Ring

The Diamond-Theorem Correlation

Picturing the Smallest Projective 3-Space

Quilt Block Designs

Saturday, February 21, 2015

High and Low Concepts

Filed under: General,Geometry — Tags: — m759 @ 4:30 PM

Steven Pressfield on April 25, 2012:

What exactly is High Concept?

Let’s start with its opposite, low concept.
Low concept stories are personal,
idiosyncratic, ambiguous, often European. 
“Well, it’s a sensitive fable about a Swedish
sardine fisherman whose wife and daughter
find themselves conflicted over … ”


Fans of Oslo artist Josefine Lyche know she has
valiantly struggled to find a high-concept approach
to the diamond theorem. Any such approach must,
unfortunately, reckon with the following low
(i.e., not easily summarized) concept —

The Diamond Theorem Correlation:

From left to right





For some backstory, see ProjPoints.gif and "Symplectic Polarity" in this journal.

Sunday, November 9, 2014


Filed under: General — Tags: , , , — m759 @ 11:00 AM

The Ideas

“We tell ourselves stories in order to live….
We interpret what we see, select the most workable
of multiple choices. We live entirely, especially if we
are writers, by the imposition of a narrative line upon
disparate images, by the ‘ideas’  with which we have
learned to freeze the shifting phantasmagoria
which is our actual experience.”
— Joan Didion

See Didion and the I Ching  and posts tagged Plato in China .

Tuesday, September 16, 2014

Where the Joints Are

Filed under: General,Geometry — Tags: , , — m759 @ 10:00 AM

An image related to the recent posts Sense and Sensibility:

A quote from yesterday's post The Eight:

A possible source for the above phrase about phenomena "carved at their joints":

See also the carving at the joints of Plato's diamond from the Meno :

Image-- Plato's diamond and a modern version from finite geometry

Related material: Phaedrus on Kant as a diamond cutter
in Zen and the Art of Motorcycle Maintenance .

Wednesday, August 27, 2014


Filed under: General,Geometry — Tags: , , — m759 @ 11:00 AM

"To every man upon this earth,
Death cometh soon or late.
And how can man die better
Than facing fearful odds,
For the ashes of his fathers,
and the temples of his gods…?"

— Macaulay, quoted in the April 2013 film "Oblivion"

"Leave a space." — Tom Stoppard, "Jumpers"

Related material: The August 16, 2014, sudden death in Scotland
of an architect of the above Cardross seminary, and a Log24 post,
Plato's Logos, from the date of the above photo: June 26, 2010.

See also…

IMAGE- T. Lux Feininger on 'Gestaltung'

Here “eidolon” should instead be “eidos .”

An example of eidos — Plato's diamond (from the Meno ) —


Sunday, August 24, 2014

Symplectic Structure…

In the Miracle Octad Generator (MOG):

The above details from a one-page note of April 26, 1986, refer to the
Miracle Octad Generator of R. T. Curtis, as it was published in 1976:


From R. T. Curtis (1976). A new combinatorial approach to M24,
Mathematical Proceedings of the Cambridge Philosophical Society ,
79, pp 25-42. doi:10.1017/S0305004100052075.

The 1986 note assumed that the reader would be able to supply, from the
MOG itself, the missing top row of each heavy brick.

Note that the interchange of the two squares in the top row of each
heavy brick induces the diamond-theorem correlation.

Note also that the 20 pictured 3-subsets of a 6-set in the 1986 note
occur as paired complements  in two pictures, each showing 10 of the

This pair of pictures corresponds to the 20 Rosenhain tetrads  among
the 35 lines of PG(3,2), while the picture showing the 2-subsets
corresponds to the 15 Göpel tetrads  among the 35 lines.

See Rosenhain and Göpel tetrads in PG(3,2). Some further background:

Wednesday, August 13, 2014

Symplectic Structure continued

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 PM

Some background for the part of the 2002 paper by Dolgachev and Keum
quoted here on January 17, 2014 —

Related material in this journal (click image for posts) —

Monday, August 11, 2014


(Continued from August 9, 2014.)



"Visual forms— lines, colors, proportions, etc.— are just as capable of
articulation , i.e. of complex combination, as words. But the laws that govern
this sort of articulation are altogether different from the laws of syntax that
govern language. The most radical difference is that visual forms are not
. They do not present their constituents successively, but
simultaneously, so the relations determining a visual structure are grasped
in one act of vision."

– Susanne K. LangerPhilosophy in a New Key

For examples, see The Diamond-Theorem Correlation
in Rosenhain and Göpel Tetrads in PG(3,2).

This is a symplectic  correlation,* constructed using the following
visual structure:

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven).

* Defined in (for instance) Paul B. Yale, Geometry and Symmetry ,
Holden-Day, 1968, sections 6.9 and 6.10.

Wednesday, August 6, 2014

Symplectic Structure*

Filed under: General,Geometry — Tags: — m759 @ 1:00 PM

From Gotay and Isenberg, "The Symplectization of Science,"
Gazette des Mathématiciens  54, 59-79 (1992):

"… what is the origin of the unusual name 'symplectic'? ….
Its mathematical usage is due to Hermann Weyl who,
in an effort to avoid a certain semantic confusion, renamed
the then obscure 'line complex group' the 'symplectic group.'
… the adjective 'symplectic' means 'plaited together' or 'woven.'
This is wonderfully apt…."

IMAGE- A symplectic structure -- i.e. a structure that is symplectic (meaning plaited or woven)

The above symplectic  structure** now appears in the figure
illustrating the diamond-theorem correlation in the webpage
Rosenhain and Göpel Tetrads in PG(3,2).

Some related passages from the literature:


* The title is a deliberate abuse of language .
For the real definition of "symplectic structure," see (for instance)
"Symplectic Geometry," by Ana Cannas da Silva (article written for
Handbook of Differential Geometry, vol 2.) To establish that the
above figure is indeed symplectic , see the post Zero System of
July 31, 2014.

** See Steven H. Cullinane, Inscapes III, 1986

Thursday, July 31, 2014

Zero System

Filed under: General,Geometry — Tags: , — m759 @ 6:11 PM

The title phrase (not to be confused with the film 'The Zero Theorem')
means, according to the Encyclopedia of Mathematics,
a null system , and

"A null system is also called null polarity,
a symplectic polarity or a symplectic correlation….
it is a polarity such that every point lies in its own
polar hyperplane."

See Reinhold Baer, "Null Systems in Projective Space,"
Bulletin of the American Mathematical Society, Vol. 51
(1945), pp. 903-906.

An example in PG(3,2), the projective 3-space over the
two-element Galois field GF(2):

IMAGE- The natural symplectic polarity in PG(3,2), illustrating a symplectic structure

See also the 10 AM ET post of Sunday, June 8, 2014, on this topic.

Sunday, June 8, 2014


Filed under: General,Geometry — Tags: , , — m759 @ 10:00 AM

Some background on the large Desargues configuration

“The relevance of a geometric theorem is determined by what the theorem
tells us about space, and not by the eventual difficulty of the proof.”

— Gian-Carlo Rota discussing the theorem of Desargues

What space  tells us about the theorem :  

In the simplest case of a projective space  (as opposed to a plane ),
there are 15 points and 35 lines: 15 Göpel  lines and 20 Rosenhain  lines.*
The theorem of Desargues in this simplest case is essentially a symmetry
within the set of 20 Rosenhain lines. The symmetry, a reflection
about the main diagonal in the square model of this space, interchanges
10 horizontally oriented (row-based) lines with 10 corresponding
vertically oriented (column-based) lines.

Vide  Classical Geometry in Light of Galois Geometry.

* Update of June 9: For a more traditional nomenclature, see (for instance)
R. Shaw, 1995.  The “simplest case” link above was added to point out that
the two types of lines named are derived from a natural symplectic polarity 
in the space. The square model of the space, apparently first described in
notes written in October and December, 1978, makes this polarity clearly visible:

A coordinate-free approach to symplectic structure

Sunday, March 2, 2014


Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

Raiders of the Lost  (Continued)

"Socrates: They say that the soul of man is immortal…."

From August 16, 2012

In the geometry of Plato illustrated below,
"the figure of eight [square] feet" is not ,  at this point
in the dialogue, the diamond in Jowett's picture.

An 1892 figure by Jowett illustrating Plato's Meno

A more correct version, from hermes-press.com —

Socrates: He only guesses that because the square is double, the line is double.Meno: True.


Socrates: Observe him while he recalls the steps in regular order. (To the Boy.) Tell me, boy, do you assert that a double space comes from a double line? Remember that I am not speaking of an oblong, but of a figure equal every way, and twice the size of this-that is to say of eight feet; and I want to know whether you still say that a double square comes from double line?

[Boy] Yes.

Socrates: But does not this line (AB) become doubled if we add another such line here (BJ is added)?

[Boy] Certainly.

Socrates: And four such lines [AJ, JK, KL, LA] will make a space containing eight feet?

[Boy] Yes.

Socrates: Let us draw such a figure: (adding DL, LK, and JK). Would you not say that this is the figure of eight feet?

[Boy] Yes.

Socrates: And are there not these four squares in the figure, each of which is equal to the figure of four feet? (Socrates draws in CM and CN)

[Boy] True.

Socrates: And is not that four times four?

[Boy] Certainly.

Socrates: And four times is not double?

[Boy] No, indeed.

Socrates: But how much?

[Boy] Four times as much.

Socrates: Therefore the double line, boy, has given a space, not twice, but four times as much.

[Boy] True.

Socrates: Four times four are sixteen— are they not?

[Boy] Yes.

As noted in the 2012 post, the diagram of greater interest is
Jowett's incorrect  version rather than the more correct version
shown above. This is because the 1892 version inadvertently
illustrates a tesseract:

A 4×4 square version, by Coxeter in 1950, of  a tesseract

This square version we may call the Galois  tesseract.

Friday, February 21, 2014

Night’s Hymn of the Rock

Filed under: General,Geometry — Tags: , , — m759 @ 3:33 AM

One way of interpreting the symbol  IMAGE- Modal Diamond in a square 
at the end of yesterday's post is via
the phrase "necessary possibility."

See that phrase in (for instance) a post
of July 24, 2013, The Broken Tablet .

The Tablet  post may be viewed in light
of a Tom Wolfe passage quoted here on
the preceding day, July 23, 2013—

IMAGE- Tom Wolfe in 'The Painted Word' on conceptual art

On that  day (July 23) another weblog had
a post titled

Wallace Stevens: Night's Hymn of the Rock.

Some related narrative —

IMAGE- The 2001 film 'The Discovery of Heaven'

I prefer the following narrative —

Part I:  Stevens's verse from "The Rock" (1954) —
"That in which space itself is contained"

Part II:  Mystery Box III: Inside, Outside (2014)

Thursday, February 20, 2014

Relativity Blues

Filed under: General,Geometry — Tags: , — m759 @ 9:00 AM


A review of this date in 2005 —

Modal Theology

“We symbolize logical necessity
with the box (box.gif (75 bytes))
and logical possibility
with the diamond (diamond.gif (82 bytes)).”

— Keith Allen Korcz

And what do we  
   symbolize by   The image “http://www.log24.com/theory/images/Modal-diamondbox.gif” cannot be displayed, because it contains errors. ?

Wednesday, December 18, 2013

Bing Bang Theory

Filed under: General,Geometry — Tags: , — m759 @ 3:00 PM

Microsoft in 2009 on its new search engine name—

"We like Bing because it sounds off in our heads
when we think about that moment of discovery
and decision making— when you resolve those
important tasks."

A search on Bing today —

IMAGE- Top search result on Bing for 'diamond space' on Dec. 18, 2013

A colorful tale —

IMAGE- The Diamond 16 Puzzle, with commentary

"Bing bang, I saw the whole gang
Bobby Darin, 1958

Thursday, December 12, 2013

Outsider Art

Filed under: General,Geometry — Tags: — m759 @ 4:10 PM

"… Galois was a mathematical outsider…."

— Tony Mann, "head of the department of mathematical sciences,
University of Greenwich, and president, British Society for the
History of Mathematics," in a May 6, 2010, review of Duel at Dawn
in Times Higher Education.

Related art: 

(Click for a larger image.)

IMAGE- Google search for 'Diamond Space' + Galois

For a less outside  version of the central image
above, see Kunstkritikk  on Oct. 15, 2013.

Monday, August 12, 2013


Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The Galois tesseract is the basis for a representation of the smallest
projective 3-space, PG(3,2), that differs from the representation at
Wolfram Demonstrations Project. For the latter, see yesterday’s post.

The tesseract representation underlies the diamond theorem, illustrated
below in its earliest form, also from the above February 1977 article—

IMAGE- Steven H. Cullinane, diamond theorem, from 'Diamond Theory,' Computer Graphics and Art, Vol. 2 No. 1, Feb. 1977, pp. 5-7

As noted in a more recent version, the group described by
the diamond theorem is also the group of the 35 square
patterns within the 1976 Miracle Octad Generator  (MOG) of
R. T. Curtis.

Sunday, July 28, 2013


Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

(Simplicity continued)

"Understanding a metaphor is like understanding a geometrical
truth. Features of various geometrical figures or of various contexts
are pulled into revealing alignment with one another by  the
demonstration or the metaphor.

What is 'revealed' is not that the alignment is possible; rather,
that the alignment is possible reveals the presence of already-
existing shapes or correspondences that lay unnoticed. To 'see' a
proof or 'get' a metaphor is to experience the significance of the
correspondence for what the thing, concept, or figure is ."

— Jan Zwicky, Wisdom & Metaphor , page 36 (left)

Zwicky illustrates this with Plato's diamond figure
​from the Meno  on the facing page— her page 36 (right).

A more sophisticated geometrical figure—

Galois-geometry key to
Desargues' theorem:

   D   E   F
 S'  P Q R
 S  P' Q' R'
 O  P1 Q1 R1

For an explanation, see 
Classical Geometry in Light of Galois Geometry.

Tuesday, July 9, 2013

Vril Chick

Filed under: General,Geometry — m759 @ 4:30 AM

Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo

Profile picture for "Jo Lyxe" (Josefine Lyche) at Vimeo

Compare to an image of Vril muse Maria Orsitsch.

From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,

Josefine Lyche
Born in 1973 in Bergen, Norway.
Lives and works in Oslo and Berlin.

Keywords (to help place my artwork in the
proper context): Aliens, affine geometry, affine
planes, affine spaces, automorphisms, binary
codes, block designs, classical groups, codes,
coding theory, collineations, combinatorial,
combinatorics, conjugacy classes, the Conwell
correspondence, correlations, Cullinane,
R. T. Curtis, design theory, the diamond theorem,
diamond theory, duads, duality, error correcting
codes, esoteric, exceptional groups,
extraterrestrials, finite fields, finite geometry, finite
groups, finite rings, Galois fields, generalized
quadrangles, generators, geometry, GF(2),
GF(4), the (24,12) Golay code, group actions,
group theory, Hadamard matrices, hypercube,
hyperplanes, hyperspace, incidence structures,
invariance, Karnaugh maps, Kirkman’s schoolgirls
problem, Latin squares, Leech lattice, linear
groups, linear spaces, linear transformations,
Magick, Mathieu groups, matrix theory, Meno,
Miracle Octad Generator, MOG, multiply transitive
groups, occultism, octahedron, the octahedral
group, Orsic, orthogonal arrays, outer automorphisms,
parallelisms, partial geometries,
permutation groups, PG(3,2), Plato, Platonic
solids, polarities, Polya-Burnside theorem, projective
geometry, projective planes, projective
spaces, projectivities, Pythagoras, reincarnation,
Reed-Muller codes, the relativity problem,
reverse engineering, sacred geometry, Singer
cycle, skew lines, Socrates, sporadic simple
groups, Steiner systems, Sylvester, symmetric,
symmetry, symplectic, synthemes, synthematic,
Theosophical Society tesseract, Tessla, transvections,
Venn diagrams, Vril society, Walsh
functions, Witt designs.

(See also the original catalog page.)

Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.

For some background, see (for instance) 
Conspiracy Theories and Secret Societies for Dummies .

Saturday, June 29, 2013

Thursday, June 27, 2013

Tuesday, May 28, 2013


The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Wednesday, February 13, 2013


Filed under: General,Geometry — Tags: , — m759 @ 9:29 PM

Story, Structure, and the Galois Tesseract

Recent Log24 posts have referred to the 
"Penrose diamond" and Minkowski space.

The Penrose diamond has nothing whatever
to do with my 1976 monograph "Diamond Theory,"
except for the diamond shape and the connection
of the Penrose diamond to the Klein quadric—

IMAGE- The Penrose diamond and the Klein quadric

The Klein quadric occurs in the five-dimensional projective space
over a field. If the field is the two-element Galois field GF(2), the
quadric helps explain certain remarkable symmetry properties 
of the R. T. Curtis Miracle Octad Generator  (MOG), hence of
the large Mathieu group M24. These properties are also 
relevant to the 1976 "Diamond Theory" monograph.

For some background on the quadric, see (for instance)

IMAGE- Stroppel on the Klein quadric, 2008

See also The Klein Correspondence,
Penrose Space-Time, and a Finite Model

Related material:

"… one might crudely distinguish between philosophical
and mathematical motivation. In the first case one tries
to convince with a telling conceptual story; in the second
one relies more on the elegance of some emergent
mathematical structure. If there is a tradition in logic
it favours the former, but I have a sneaking affection for
the latter. Of course the distinction is not so clear cut.
Elegant mathematics will of itself tell a tale, and one with
the merit of simplicity. This may carry philosophical
weight. But that cannot be guaranteed: in the end one
cannot escape the need to form a judgement of significance."

– J. M. E. Hyland. "Proof Theory in the Abstract." (pdf)
Annals of Pure and Applied Logic 114, 2002, 43-78.

Those who prefer story to structure may consult 

  1. today's previous post on the Penrose diamond
  2. the remarks of Scott Aaronson on August 17, 2012
  3. the remarks in this journal on that same date
  4. the geometry of the 4×4 array in the context of M24.

Transgressing the Boundary

Filed under: General — Tags: — m759 @ 12:00 PM

The title refers not to the 1996 Sokal hoax (which has
Boundaries , plural, in the title), but to the boundary
discussed in Monday's Penrose diamond post

"Science is a differential equation.
Religion is a boundary condition."

Alan Turing in the epigraph to the
first chapter of a book by Terence Tao

From the Tao book, page 170—

"Typically the transformed solution extends to the
boundary of the Penrose diamond and beyond…."

Transgressing the boundary between science
and religion is the topic of a 1991 paper available
at JSTOR for $29.

For the Pope on Ash Wednesday:

"Think you might have access 
to this content via your library?" —JSTOR

See also Durkheim at Harvard.

Friday, February 1, 2013

Get Quotes

Filed under: General — Tags: , — m759 @ 4:01 PM

For Tony Kushner fans:

For logic fans:

IMAGE- NY Times market quotes, American Express Gold Card ad, Kevin Spacey in 'House of Cards' ad

John Searle on Derrida:

On necessity, possibility, and 'necessary possibility'

In the box-diamond notation, the axiom Searle quotes is


"The euclidean property guarantees the truth of this." — Wikipedia

Linking to Euclid

Clicking on "euclidean" above yields another Wikipedia article

"In mathematics, Euclidean relations are a class of binary relations that satisfy a weakened form of transitivity that formalizes Euclid's 'Common Notion 1' in The Elements : things which equal the same thing also equal one another."

Verification: See, for instance, slides on modal logic at Carnegie Mellon University and modal logic at plato.stanford.edu.

Thursday, January 31, 2013

Scholarship in 1961…

Filed under: General,Geometry — m759 @ 12:00 PM

Before Derrida's writings on Plato and on inscription

A remark by the late William Harris:

"Scholarship has many dark ages, and they do not all fall
in the safe confines of remote antiquity."

For more about Harris, see the previous post.

Discussing an approach to solving a geometrical problem 
from section 86e of the Meno , Harris wrote that

"… this is a very important element of method and purpose,
one which must be taken with great seriousness and respect.
In fact it is as good an example of the master describing for us
his method as Plato ever gives us. Tricked by the appearance
of brevity and unwilling to follow through Plato's thought on
the road to Euclid, we have garbled or passed over a unique
piece of philosophical information."

Harris, though not a geometer, was an admirable man.
His remark on the Meno  method is itself worthy of respect.

In memory of Harris, Plato, and pre-Derrida scholarship, here
are some pages from 1961 on the problem Harris discussed.

A pair of figures from the 1961 pages indicates how one view of the
section 86e problem (at right below) resembles the better-known 
demonstration earlier in the Meno  of how to construct
a square of area 2 —

Tuesday, January 22, 2013

Raven Light

Filed under: General — Tags: , — m759 @ 11:40 AM

"…a fundamental cognitive ability known as 'fluid' intelligence: the capacity to solve novel problems, to learn, to reason, to see connections and to get to the bottom of things. …

…matrices are considered the gold standard of fluid-intelligence tests. Anyone who has taken an intelligence test has seen matrices like those used in the Raven’s: three rows, with three graphic items in each row, made up of squares, circles, dots or the like. Do the squares get larger as they move from left to right? Do the circles inside the squares fill in, changing from white to gray to black, as they go downward? One of the nine items is missing from the matrix, and the challenge is to find the underlying patterns— up, down and across— from six possible choices. Initially the solutions are readily apparent to most people, but they get progressively harder to discern. By the end of the test, most test takers are baffled."

— Dan Hurley, "Can You Make Yourself Smarter?," NY Times , April 18, 2012

See also "Raven Steals the Light" in this  journal.

Related material:

Plan 9 from MIT and, perhaps exemplifying crystallized  rather than fluid  intelligence, Black Diamond.

Saturday, December 8, 2012

Defining the Contest…

Filed under: General,Geometry — Tags: , , , , — m759 @ 5:48 AM

Chomsky vs. Santa

From a New Yorker  weblog yesterday—

"Happy Birthday, Noam Chomsky." by Gary Marcus—

"… two titans facing off, with Chomsky, as ever,
defining the contest"

"Chomsky sees himself, correctly, as continuing
a conversation that goes back to Plato, especially
the Meno dialogue, in which a slave boy is
revealed by Socrates to know truths about
geometry that he hadn’t realized he knew."

See Meno Diamond in this journal. For instance, from 
the Feast of Saint Nicholas (Dec. 6th) this year—

The Meno Embedding

Plato's Diamond embedded in The Matrix

For related truths about geometry, see the diamond theorem.

For a related contest of language theory vs. geometry,
see pattern theory (Sept. 11, 16, and 17, 2012).

See esp. the Sept. 11 post,  on a Royal Society paper from July 2012
claiming that

"With the results presented here, we have taken the first steps
in decoding the uniquely human  fascination with visual patterns,
what Gombrich* termed our ‘sense of order.’ "

The sorts of patterns discussed in the 2012 paper —

IMAGE- Diamond Theory patterns found in a 2012 Royal Society paper

"First steps"?  The mathematics underlying such patterns
was presented 35 years earlier, in Diamond Theory.

* See Gombrich-Douat in this journal.

Thursday, December 6, 2012

The Embedding

Filed under: General — m759 @ 6:29 PM

Part I

Embedding the Stone (March 23, 2012) —

The Meno Embedding

Plato's Diamond embedded in The Matrix

Part II

ReverbNation.com — Lawrence Class —

Thursday, November 1, 2012

For All Saints’ Day

Filed under: General — Tags: , — m759 @ 5:31 AM

Conclusion of "The Storyteller," a story 
by Cynthia Zarin about author Madeleine L'Engle—

The New Yorker , April 12, 2004 —

Note the black diamond at the story's end.

Monday, September 17, 2012

The Count

Filed under: General — Tags: , — m759 @ 11:01 PM

… I saw a shadow
sliding around the ropes
to get at me. The referee
moved it back, and then
went over and picked up the count.
"One!" The fog was clearing.

I rose to a knee,
and at "nine" to my feet.

— Louis Simpson, "The Appointment"

Simpson reportedly died on Holy Cross Day.

That day in this journal—

IMAGE- Log24 posts 'Please Mister Please' and 'Plan 9'

Thursday, August 16, 2012

Raiders of the Lost Tesseract

Filed under: General,Geometry — Tags: — m759 @ 8:00 PM

(Continued from August 13. See also Coxeter Graveyard.)

Coxeter exhuming Geometry

Here the tombstone says
"GEOMETRY… 600 BC — 1900 AD… R.I.P."

In the geometry of Plato illustrated below,
"the figure of eight [square] feet" is not , at this point
in the dialogue, the diamond in Jowett's picture.

An 1892 figure by Jowett illustrating Plato's Meno

Jowett's picture is nonetheless of interest for
its resemblance to a figure drawn some decades later
by the Toronto geometer H. S. M. Coxeter.

A similar 1950 figure by Coxeter illustrating a tesseract

For a less scholarly, but equally confusing, view of the number 8,
see The Eight , a novel by Katherine Neville.

Saturday, May 26, 2012

Talk Amongst Yourselves

Filed under: General,Geometry — Tags: , — m759 @ 3:33 PM

Hard Science Fiction weekend at Dragon Press Bookstore

Saturday May 26:
11am-noon Playing with the net up:
Hard Science Fiction in the era of
short attention spans, crowd-sourcing,
and rapid obsolescence
( Greg Benford, James Cambias, Kathryn Cramer)
3pm-4:30 Technological optimism and pessimism;
utopia and dystopia; happy endings & sad endings:
what do these oppositions have to do with one another?
Are they all the same thing? How are they different
from one another? Group discussion.

My own interests in this area include…

(Click image for some context)

IMAGE- 'The Stars My Destination' (with cover slightly changed)

    The above was adapted from a 1996 cover

IMAGE- PyrE on the 1996 Vintage Books cover of 'The Stars My Destination'

 Vintage Books, July 1996. Cover: Evan Gaffney.

For the significance of the flames, 
see PyrE in the book. For the significance
of the cube in the altered cover, see
The 2×2×2 Cube and The Diamond Archetype.

Sunday, April 1, 2012

The Palpatine Dimension

Filed under: General,Geometry — Tags: — m759 @ 9:00 AM

A physics quote relayed at Peter Woit's weblog today—

"The relation between 4D N=4 SYM and the 6D (2, 0) theory
is just like that between Darth Vader and the Emperor.
You see Darth Vader and you think 'Isn’t he just great?
How can anyone be greater than that? No way.'
Then you meet the Emperor."

— Arkani-Hamed

Some related material from this  weblog—

(See Big Apple and Columbia Film Theory)


The Meno Embedding:

Plato's Diamond embedded in The Matrix

Some related material from the Web—

IMAGE- The Penrose diamond and the Klein quadric

See also uses of the word triality  in mathematics. For instance…

A discussion of triality by Edward Witten

Triality is in some sense the last of the exceptional isomorphisms,
and the role of triality for n = 6  thus makes it plausible that n = 6
is the maximum dimension for superconformal symmetry,
though I will not give a proof here.

— "Conformal Field Theory in Four and Six Dimensions"

and a discussion by Peter J. Cameron

There are exactly two non-isomorphic ways
to partition the 4-subsets of a 9-set
into nine copies of AG( 3,2).
Both admit 2-transitive groups.

— "The Klein Quadric and Triality"

Exercise: Is Witten's triality related to Cameron's?
(For some historical background, see the triality  link from above
and Cameron's Klein Correspondence and Triality.)

Cameron applies his  triality to the pure geometry of a 9-set.
For a 9-set viewed in the context of physics, see A Beginning

From MIT Commencement Day, 2011—

A symbol related to Apollo, to nine, and to "nothing"

A minimalist favicon—

IMAGE- Generic 3x3 square as favicon

This miniature 3×3 square— http://log24.com/log/pix11A/110518-3x3favicon.ico — may, if one likes,
be viewed as the "nothing" present at the Creation. 
See Feb. 19, 2011, and Jim Holt on physics.

Happy April 1.

Friday, March 23, 2012

Embedding the Stone

Filed under: General,Geometry — m759 @ 8:00 AM

"Imbedding the God character in a holy book's very detailed narrative
and building an entire culture around this narrative
seems by itself to confer a kind of existence on Him."

John Allen Paulos in the philosophy column "The Stone,"
     New York Times  online, Oct. 24, 2010

A related post from Log24 later that year—

Sunday, November 28, 2010

The Embedding

 — m759 @ 6:00 AM

The New York Times Magazine  this morning on a seminar on film theory at Columbia University—

"When the seminar reconvened after the break, Schamus said, 'Let’s dive into the Meno,' a dialogue in which Plato and Socrates consider virtue. 'The heart of it is the mathematical proof.' He rose from his seat and went to the whiteboard, where he drew figures and scribbled numbers as he worked through the geometry. 'You can only get the proof visually,' he concluded, stepping back and gazing at it. Plato may be skeptical about the category of the visual, he said, but 'you are confronted with a visual proof that gets you back to the idea embedded in visuality.'"

The Meno Embedding

Plato's Diamond embedded in The Matrix

See also Plato's Code and
 Plato Thanks the Academy.

"Next come the crown of thorns and Jesus' agonized crawl across the stage,
bearing the weight of his own crucifix. And at last, after making
yet another entrance, Mr. Nolan strikes the pose immortalized
in centuries of art, clad in a demure loincloth, arms held out to his sides,
one leg artfully bent in front of the other, head hanging down
in tortured exhaustion. Gently spotlighted, he rises from the stage
as if by magic, while a giant cross, pulsing with hot gold lights,
descends from above to meet him. Mr. Lloyd Webber's churning guitar rock
hits a climactic note, and the audience erupts in excited applause."

— Charles Isherwood, review of "Jesus Christ Superstar" in today's  New York Times

Other remarks on embedding —

Part I

Review of a new book on linguistics, embedding, and a South American tribe—

"Imagine a linguist from Mars lands on Earth to survey the planet's languages…."
Chronicle of Higher Education , March 20, 2012

Part II

The Embedding , by Ian Watson (Review of a 1973 novel from Shakespeare's birthday, 2006)

Thursday, October 20, 2011

The Thing Itself

Filed under: General,Geometry — m759 @ 11:29 AM

Suggested by an Oct. 18 piece in the Book Bench section
of the online New Yorker  magazine—



Related material suggested by the "Shouts and Murmurs" piece
in The New Yorker , issue dated Oct. 24, 2011—

"a series of e-mails from a preschool teacher planning to celebrate
the Day of the Dead instead of Halloween…"

A search for Coxeter + Graveyard in this journal yields…

Coxeter exhuming Geometry

Here the tombstone says "GEOMETRY… 600 BC — 1900 AD… R.I.P."

A related search for Plato + Tombstone yields an image from July 6, 2007…

The image “http://www.log24.com/log/pix06A/061019-Tombstones.jpg” cannot be displayed, because it contains errors.

Here Plato's poems to Aster suggested
the "Star and Diamond" tombstone.

The eight-rayed star is an ancient symbol of Venus
and the diamond is from Plato's Meno .

The star and diamond are combined in a figure from
12 AM on September 6th, 2011—

The Diamond Star


See Configurations and Squares.

That webpage explains how Coxeter
united the diamond and the star.

Those who prefer narrative to mathematics may consult
a definition of the Spanish word lucero  from March 28, 2003.

Tuesday, August 30, 2011


Filed under: General — Tags: — m759 @ 11:07 AM

A comment yesterday on the New York Times  philosophy column “The Stone” quoted Karl Barth—

Man is the creature of the boundary between heaven and earth.”

See also Plato’s theory of ideas (or “forms”) and the I Ching

The eight trigrams are images not so much of objects as of states of change. This view is associated with the concept expressed in the teachings of Lao-tse, as also in those of Confucius, that every event in the visible world is the effect of an “image,” that is, of an idea in the unseen world. Accordingly, everything that happens on earth is only a reproduction, as it were, of an event in a world beyond our sense perception; as regards its occurrence in time, it is later than the suprasensible event. The holy men and sages, who are in contact with those higher spheres, have access to these ideas through direct intuition and are therefore able to intervene decisively in events in the world. Thus man is linked with heaven, the suprasensible world of ideas, and with earth, the material world of visible things, to form with these a trinity of the primal powers.

— Richard Wilhelm, Introduction to the I Ching

Thursday, August 4, 2011

Midnight in Oslo

Filed under: General,Geometry — m759 @ 6:00 PM

For Norway's Niels Henrik Abel (1802-1829)
on his birthday, August Fifth

(6 PM Aug. 4, Eastern Time, is 12 AM Aug. 5 in Oslo.)


Plato's Diamond

The above version by Peter Pesic is from Chapter I of his book Abel's Proof , titled "The Scandal of the Irrational." Plato's diamond also occurs in a much later mathematical story that might be called "The Scandal of the Noncontinuous." The story—


"These passages suggest that the Form is a character or set of characters common to a number of things, i.e. the feature in reality which corresponds to a general word. But Plato also uses language which suggests not only that the forms exist separately (χωριστά ) from all the particulars, but also that each form is a peculiarly accurate or good particular of its own kind, i.e. the standard particular of the kind in question or the model (παράδειγμα ) [i.e. paradigm ] to which other particulars approximate….

… Both in the Republic  and in the Sophist  there is a strong suggestion that correct thinking is following out the connexions between Forms. The model is mathematical thinking, e.g. the proof given in the Meno  that the square on the diagonal is double the original square in area."

– William and Martha Kneale, The Development of Logic , Oxford University Press paperback, 1985

Plato's paradigm in the Meno


Changed paradigm in the diamond theorem (2×2 case) —


Aspects of the paradigm change—

Monochrome figures to
   colored figures

Areas to

Continuous transformations to
   non-continuous transformations

Euclidean geometry to
   finite geometry

Euclidean quantities to
   finite fields

The 24 patterns resulting from the paradigm change—


Each pattern has some ordinary or color-interchange symmetry.

This is the 2×2 case of a more general result. The patterns become more interesting in the 4×4 case. For their relationship to finite geometry and finite fields, see the diamond theorem.

Related material: Plato's Diamond by Oslo artist Josefine Lyche.

Plato’s Ghost  evokes Yeats’s lament that any claim to worldly perfection inevitably is proven wrong by the philosopher’s ghost….”

— Princeton University Press on Plato’s Ghost: The Modernist Transformation of Mathematics  (by Jeremy Gray, September 2008)

"Remember me to her."

— Closing words of the Algis Budrys novel Rogue Moon .

Background— Some posts in this journal related to Abel or to random thoughts from his birthday.

Sunday, April 10, 2011


Filed under: General — Tags: — m759 @ 10:30 PM

From tonight's online New York Times

John McCracken, Sculptor of Geometric Forms, Dies at 76

McCracken died in Manhattan on Friday, April 8.

From Christopher Knight in tonight's online LA Times

… the works embody perceptual and philosophical conundrums. The colored planks stand on the floor like sculptures….

McCracken was bedeviled by Stanley Kubrick's famously obscure science-fiction epic, "2001: A Space Odyssey," with its iconic image of an ancient monolith floating in outer space. The 1968 blockbuster was released two years after the artist made his first plank.

"At the time, some people thought I had designed the monolith or that it had been derived from my work," he told art critic Frances Colpitt of the coincidence in a 1998 interview.

Two photos of McCracken's 1967 Black Plank  seem relevant—

November 28, 2010 (Click to enlarge)


December 28, 2010 (Click to enlarge)


Material that an artist might view as related, if only synchronistically—

Two posts in this journal on the dates the photos were taken—
The Embedding on November 28 and Dry Bones on December 28.

The photos are of an exhibition titled "There is nothing to see here" at the
National Gallery of Art, October 30, 2010-April 24, 2011 —

Click to enlarge.


For related nihilism from the National Gallery, see "Pictures of Nothing" in this journal.

Some less nihilistic illustrations—

The Meno  Embedding

Plato's Diamond embedded in The Matrix

A photo by one of the artists whose work is displayed above beside McCracken's—


"Accentuate the Positive."
 — Clint Eastwood

Thursday, February 17, 2011


Filed under: General,Geometry — Tags: — m759 @ 4:16 PM

"These passages suggest that the Form is a character or set of characters
common to a number of things, i.e. the feature in reality which corresponds
to a general word. But Plato also uses language which suggests not only
that the forms exist separately (χωριστά ) from all the particulars, but also
that each form is a peculiarly accurate or good particular of its own kind,
i.e. the standard particular of the kind in question or the model (παράδειγμα )
[i.e. paradigm ] to which other particulars approximate….

… Both in the Republic  and in the Sophist  there is a strong suggestion
that correct thinking is following out the connexions between Forms.
The model is mathematical thinking, e.g. the proof given in the Meno
that the square on the diagonal is double the original square in area."

— William and Martha Kneale, The Development of Logic,
Oxford University Press paperback, 1985

Plato's paradigm in the Meno


Changed paradigm in the diamond theorem (2×2 case) —


Aspects of the paradigm change* —

Monochrome figures to
colored figures

Areas to

Continuous transformations to
non-continuous transformations

Euclidean geometry to
finite geometry

Euclidean quantities to
finite fields

Some pedagogues may find handling all of these
conceptual changes simultaneously somewhat difficult.

* "Paradigm shift " is a phrase that, as John Baez has rightly pointed out,
should be used with caution. The related phrase here was suggested by Plato's
term παράδειγμα  above, along with the commentators' specific reference to
the Meno  figure that serves as a model. (For "model" in a different sense,
see Burkard Polster.) But note that Baez's own beloved category theory
has been called a paradigm shift.

Sunday, November 28, 2010

The Embedding

Filed under: General,Geometry — m759 @ 6:00 AM

The New York Times Magazine  this morning on a seminar on film theory at Columbia University—

"When the seminar reconvened after the break, Schamus said, 'Let’s dive into the Meno,' a dialogue in which Plato and Socrates consider virtue. 'The heart of it is the mathematical proof.' He rose from his seat and went to the whiteboard, where he drew figures and scribbled numbers as he worked through the geometry. 'You can only get the proof visually,' he concluded, stepping back and gazing at it. Plato may be skeptical about the category of the visual, he said, but 'you are confronted with a visual proof that gets you back to the idea embedded in visuality.'"

The Meno Embedding

Plato's Diamond embedded in The Matrix

See also Plato's Code and
 Plato Thanks the Academy.

Sunday, October 3, 2010

Search for the Basic Picture

Filed under: General,Geometry — m759 @ 5:01 PM

(Click to enlarge.)


The above is the result of a (fruitless) image search today for a current version of Giovanni Sambin's "Basic Picture: A Structure for Topology."

That search was suggested by the title of today's New York Times  op-ed essay "Found in Translation" and an occurrence of that phrase in this journal on January 5, 2007.

Further information on one of the images above—


A search in this journal on the publication date of Giaquinto's Visual Thinking in Mathematics  yields the following—

Thursday July 5, 2007

m759 @ 7:11 PM

In defense of Plato’s realism

(vs. sophists’ nominalism– see recent entries.)

Plato cited geometry, notably in the Meno , in defense of his realism.
Consideration of the Meno 's diamond figure leads to the following:

The Eightfold Cube and its Inner Structure

For the Meno 's diamond figure in Giaquinto, see a review—


— Review by Jeremy Avigad (preprint)

Finite geometry supplies a rather different context for Plato's  "basic picture."

In that context, the Klein four-group often cited by art theorist Rosalind Krauss appears as a group of translations in the mathematical sense. (See Kernel of Eternity and Sacerdotal Jargon at Harvard.)

The Times  op-ed essay today notes that linguistic  translation "… is not merely a job assigned to a translator expert in a foreign language, but a long, complex and even profound series of transformations that involve the writer and reader as well."

The list of four-group transformations in the mathematical  sense is neither long nor complex, but is apparently profound enough to enjoy the close attention of thinkers like Krauss.

Monday, June 7, 2010

Inspirational Combinatorics

Filed under: General,Geometry — Tags: — m759 @ 9:00 AM

According to the Mathematical Association of America this morning, one purpose of the upcoming June/July issue of the Notices of the American Mathematical Society  is

"…to stress the inspirational role of combinatorics…."

Here is another contribution along those lines—

Eidetic Variation

from page 244 of
From Combinatorics to Philosophy: The Legacy of  G.-C. Rota,
hardcover, published by Springer on August 4, 2009

(Edited by Ernesto Damiani, Ottavio D'Antona, Vincenzo Marra, and Fabrizio Palombi)

"Rota's Philosophical Insights," by Massimo Mugnai—

"… In other words, 'objectivism' is the attitude [that tries] to render a particular aspect absolute and dominant over the others; it is a kind of narrow-mindedness attempting to reduce to only one the multiple layers which constitute what we call 'reality.' According to Rota, this narrow-mindedness limits in an essential way even of [sic ] the most basic facts of our cognitive activity, as, for example, the understanding of a simple declarative sentence: 'So objectivism is the error we [make when we] persist in believing that we can understand what a declarative sentence means without a possible thematization of this declarative sentence in one of [an] endless variety of possible contexts' (Rota, 1991*, p. 155). Rota here implicitly refers to what, amongst phenomenologists is known as eidetic variation, i.e. the change of perspective, imposed by experience or performed voluntarily, from which to look at things, facts or sentences of the world. A typical example, proposed by Heidegger, in Sein und Zeit  (1927) and repeated many times by Rota, is that of the hammer."

* Rota, G.-C. (1991), The End of Objectivity: The Legacy of Phenomenology. Lectures at MIT, Cambridge, MA, MIT Mathematics Department

The example of the hammer appears also on yesterday's online New York Times  front page—


Related material:

From The Blackwell Dictionary of Western Philosophy

Eidetic variation — an alternative expression for eidetic reduction

Eidetic reduction

Husserl's term for an intuitive act toward an essence or universal, in contrast to an empirical intuition or perception. He also called this act an essential intuition, eidetic intuition, or eidetic variation. In Greek, eideo  means “to see” and what is seen is an eidos  (Platonic Form), that is, the common characteristic of a number of entities or regularities in experience. For Plato, eidos  means what is seen by the eye of the soul and is identical with essence. Husserl also called this act “ideation,” for ideo  is synonymous with eideo  and also means “to see” in Greek. Correspondingly, idea  is identical to eidos.

An example of eidosPlato's diamond (from the Meno )—


For examples of variation of this eidos, see the diamond theorem.
See also Blockheads (8/22/08).

Related poetic remarks— The Trials of Device.

Saturday, March 7, 2009

Saturday March 7, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 PM

One or Two Ideas
Today's birthday: Piet Mondrian
From James Joyce's A Portrait of the Artist as a Young Man:

he hearth and began to stroke his chin.

–When may we expect to have something from you on the esthetic question? he asked.

–From me! said Stephen in astonishment. I stumble on an idea once a fortnight if I am lucky.

–These questions are very profound, Mr Dedalus, said the dean. It is like looking down from the cliffs of Moher into the depths. Many go down into the depths and never come up. Only the trained diver can go down into those depths and explore them and come to the surface again.

–If you mean speculation, sir, said Stephen, I also am sure that there is no such thing as free thinking inasmuch as all thinking must be bound by its own laws.


–For my purpose I can work on at present by the light of one or two ideas of Aristotle and Aquinas.

–I see. I quite see your point.

Besides being Mondrian's birthday, today is also the dies natalis (in the birth-into-heaven sense) of St. Thomas Aquinas and, for those who believe worthy pre-Christians also enter heaven, possibly of Aristotle.

Pope Benedict XVI explained the dies natalis concept on Dec. 26, 2006:

"For believers the day of death, and even more the day of martyrdom, is not the end of all; rather, it is the 'transit' towards immortal life. It is the day of definitive birth, in Latin, dies natalis."

The Pope's remarks on that date
were in St. Peter's Square.
From this journal on that date,
a different square —
The Seventh Symbol:

Box symbol

Pictorial version
of Hexagram 20,
Contemplation (View)

The square may be regarded as
symbolizing art itself.
(See Nov.30 – Dec.1, 2008.)

In honor of
Aristotle and Aquinas,
here is a new web site,
with versions of the diamond shape
made famous by Mondrian

Cover of  Mondrian: The Diamond Compositions

— a shape symbolizing
possibility within modal logic
 as well as the potentiality of
 Aristotle's prima materia.

Monday, December 29, 2008

Monday December 29, 2008

Filed under: General — Tags: — m759 @ 12:21 PM
The Gift

Plato's Diamond

Robert Stone,
A Flag for Sunrise:

"'That old Jew gave me this here.' Egan looked at the diamond. 'I ain't giving this to you, understand? The old man gave it to me for my boy. It's worth a whole lot of money– you can tell that just by looking– but it means something, I think. It's got a meaning, like.'

'Let's see,' Egan said, 'what would it mean?' He took hold of Pablo's hand cupping the stone and held his own hand under it. '"The jewel is in the lotus," perhaps that's what it means. The eternal in the temporal. The Boddhisattva declining nirvana out of compassion. Contemplating the ignorance of you and me, eh? That's a metaphor of our Buddhist friends.'

Pablo's eyes glazed over. 'Holy shit,' he said. 'Santa Maria.' He stared at the diamond in his palm with passion."

For further details, click on the diamond.


Related narratives:

Today's online Times on
the Saturday, Dec. 27,
death of an artist:

Robert Graham obituary, NY Times, 12/29/08

"Dale Wasserman… the playwright responsible for two Broadway hits of the 1960s, 'One Flew Over the Cuckoo’s Nest' and 'Man of La Mancha,' died on Sunday [December 21, 2008] at his home in Paradise Valley, Ariz., near Phoenix….

Mr. Wasserman wrote more than 75 scripts for television, the stage and the movies, including screenplays for 'The Vikings' (1958), a seafaring epic with Tony Curtis and Kirk Douglas, and 'A Walk With Love and Death' (1969), a John Huston film set in 14th-century Europe….

He feuded with… John Huston, who gave the lead female role in 'Walk' to his teenage daughter, Anjelica, against Mr. Wasserman's wishes. And he never attended ceremonies to receive the awards he won."

Accepting for Mr. Wasserman:
Mr. Graham's widow,
Anjelica Huston

Anjelica Huston and Jack Nicholson


Monday, November 10, 2008

Monday November 10, 2008

Filed under: General,Geometry — m759 @ 10:31 AM

Frame Tales

From June 30

("Will this be on the test?")

Frame Tale One:

Summer Reading

The King and the Corpse: Tales of the Soul's Conquest of Evil

Tales of the Soul's
Conquest of Evil

Frame Tale Two:

Barry Sharples
on his version of the
  Kaleidoscope Puzzle


"A possible origin of this puzzle is found in a dialogue
 between Socrates and Meno written by the Greek philosopher,
 Plato, where a square is drawn inside
a square such that
the blue square is twice the area  of the yellow square.

Plato's Diamond

Colouring the triangles produces a starting pattern
which is a one-diamond figure made up of four tiles
and there are 24 different possible arrangements."

Twenty-four Variations on a Theme of Plato

The King and the Corpse  —

"The king asked, in compensation for his toils during this strangest
of all the nights he had ever known, that the twenty-four riddle tales
told him by the specter, together with the story of the night itself,
should be made known over the whole earth
and remain eternally famous among men."

Frame Tale Three:

Finnegans Wake

"The quad gospellers may own the targum
but any of the Zingari shoolerim may pick a peck
of kindlings yet from the sack of auld hensyne."

Wednesday, October 8, 2008

Wednesday October 8, 2008

Filed under: General,Geometry — m759 @ 12:00 PM

Serious Numbers

A Yom Kippur

"When times are mysterious
Serious numbers
Will always be heard."
— Paul Simon,
"When Numbers Get Serious"

"There is a pleasantly discursive treatment of Pontius Pilate's unanswered question 'What is truth?'"

— H. S. M. Coxeter, introduction to Richard J. Trudeau's remarks on the "story theory" of truth as opposed to the "diamond theory" of truth in The Non-Euclidean Revolution

Trudeau's 1987 book uses the phrase "diamond theory" to denote the philosophical theory, common since Plato and Euclid, that there exist truths (which Trudeau calls "diamonds") that are certain and eternal– for instance, the truth in Euclidean geometry that the sum of a triangle's angles is 180 degrees. As the excerpt below shows, Trudeau prefers what he calls the "story theory" of truth–

"There are no diamonds. People make up stories about what they experience. Stories that catch on are called 'true.'"

(By the way, the phrase "diamond theory" was used earlier, in 1976, as the title of a monograph on geometry of which Coxeter was aware.)

Richard J. Trudeau on the 'Story Theory' of truth

Excerpt from
The Non-Euclidean Revolution

What does this have to do with numbers?

Pilate's skeptical tone suggests he may have shared a certain confusion about geometric truth with thinkers like Trudeau and the slave boy in Plato's Meno. Truth in a different part of mathematics– elementary arithmetic– is perhaps more easily understood, although even there, the existence of what might be called "non-Euclidean number theory"– i.e., arithmetic over finite fields, in which 1+1 can equal zero– might prove baffling to thinkers like Trudeau.

Trudeau's book exhibits, though it does not discuss, a less confusing use of numbers– to mark the location of pages. For some philosophical background on this version of numerical truth that may be of interest to devotees of the Semitic religions on this evening's High Holiday, see Zen and Language Games.

For uses of numbers that are more confusing, see– for instance– the new website The Daily Beast and the old website Story Theory and the Number of the Beast.

Saturday, June 28, 2008

Saturday June 28, 2008

Filed under: General — Tags: — m759 @ 12:00 PM
The God Factor

NY Lottery June 23, 2008: Mid-day 322, Evening 000

The following poem of Emily Dickinson is quoted here in memory of John Watson Foster Dulles, a scholar of Brazilian history who died at 95 on June 23.  He was the eldest son of Secretary of State John Foster Dulles, a nephew of Director of Central Intelligence Allen Dulles, brother of Roman Catholic Cardinal Avery Dulles, and a grandson of Presbyterian minister Allen Macy Dulles, author of The True Church.

I asked no other thing,   
No other was denied.   
I offered Being for it;   
The mighty merchant smiled.   
Brazil? He twirled a button,           
Without a glance my way:   
"But, madam, is there nothing else   
That we can show to-day?"

"He twirled a button…."

Plato's diamond figure from the 'Meno'

The above figure
of Plato
(see 3/22)
was suggested by
Lacan's diamond
Lacan's lozenge - said by some to symbolize Derrida's 'differance'
(losange or poinçon)
as a symbol —
according to Frida Saal
of Derrida's
which is, in turn,
"that which enables and
results from Being itself"
—  according to
Professor John Lye

I prefer Plato and Dulles
to Lacan and Lye.

Tuesday, April 29, 2008

Tuesday April 29, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 11:09 AM
Sacerdotal Jargon
at Harvard:

Thomas Wolfe

Thomas Wolfe
(Harvard M.A., 1922)


Rosalind Krauss

Rosalind Krauss
(Harvard M.A., 1964,
Ph.D., 1969)


The Kernel of Eternity

"No culture has a pact with eternity."
George Steiner, interview in  
The Guardian of April 19

"At that instant he saw,
in one blaze of light, an image
of unutterable conviction….
the core of life, the essential
pattern whence all other things
proceed, the kernel of eternity."

— Thomas Wolfe, Of Time
and the River, quoted in
Log24 on June 9, 2005


From today's online Harvard Crimson:

"… under the leadership of Faust,
Harvard students should look forward
to an ever-growing opportunity for
international experience
and artistic endeavor."


Wolfgang Pauli as Mephistopheles

Pauli as Mephistopheles
in a 1932 parody of
Faust at Niels Bohr's
institute in Copenhagen

From a recent book
on Wolfgang Pauli,
The Innermost Kernel:

Pauli's Dream Square (square plus the two diagonals)

A belated happy birthday
to the late
Felix Christian Klein
  (born on April 25) —

The Klein Group: The four elements in four colors, with black points representing the identity

Another Harvard figure quoted here on Dec. 5, 2002:

"The theory of poetry, that is to say, the total of the theories of poetry, often seems to become in time a mystical theology or, more simply, a mystique. The reason for this must by now be clear. The reason is the same reason why the pictures in a museum of modern art often seem to become in time a mystical aesthetic, a prodigious search of appearance, as if to find a way of saying and of establishing that all things, whether below or above appearance, are one and that it is only through reality, in which they are reflected or, it may be, joined together, that we can reach them. Under such stress, reality changes from substance to subtlety, a subtlety in which it was natural for Cézanne to say: 'I see planes bestriding each other and sometimes straight lines seem to me to fall' or 'Planes in color…. The colored area where shimmer the souls of the planes, in the blaze of the kindled prism, the meeting of planes in the sunlight.' The conversion of our Lumpenwelt went far beyond this. It was from the point of view of another subtlety that Klee could write: 'But he is one chosen that today comes near to the secret places where original law fosters all evolution. And what artist would not establish himself there where the organic center of all movement in time and space– which he calls the mind or heart of creation– determines every function.' Conceding that this sounds a bit like sacerdotal jargon, that is not too much to allow to those that have helped to create a new reality, a modern reality, since what has been created is nothing less."

— Wallace Stevens, Harvard College Class of 1901, "The Relations between Poetry and Painting" in The Necessary Angel (Knopf, 1951)

From a review of Rosalind Krauss's The Optical Unconscious  (MIT Press hardcover, 1993):

Krauss is concerned to present Modernism less in terms of its history than its structure, which she seeks to represent by means of a kind of diagram: "It is more interesting to think of modernism as a graph or table than a history." The "table" is a square with diagonally connected corners, of the kind most likely to be familiar to readers as the Square of Opposition, found in elementary logic texts since the mid-19th century. The square, as Krauss sees it, defines a kind of idealized space "within which to work out unbearable contradictions produced within the real field of history." This she calls, using the inevitable gallicism, "the site of Jameson's Political Unconscious" and then, in art, the optical unconscious, which consists of what Utopian Modernism had to kick downstairs, to repress, to "evacuate… from its field."

— Arthur C. Danto in ArtForum, Summer 1993

Rosalind Kraus in The Optical Unconscious (MIT Press paperback, 1994):

For a presentation of the Klein Group, see Marc Barbut, "On the Meaning of the Word 'Structure' in Mathematics," in Introduction to Structuralism, ed. Michael Lane (New York: Basic Books, 1970). Claude Lévi-Strauss uses the Klein group in his analysis of the relation between Kwakiutl and Salish masks in The Way of the Masks, trans. Sylvia Modelski (Seattle: University of Washington Press, 1982), p. 125; and in relation to the Oedipus myth in "The Structural Analysis of Myth," Structural Anthropology, trans. Claire Jackobson [sic] and Brooke Grundfest Schoepf (New York: Basic Books, 1963). In a transformation of the Klein Group, A. J. Greimas has developed the semiotic square, which he describes as giving "a slightly different formulation to the same structure," in "The Interaction of Semiotic Constraints," On Meaning (Minneapolis: University of Minnesota Press, 1987), p. 50. Jameson uses the semiotic square in The Political Unconscious (see pp. 167, 254, 256, 277) [Fredric Jameson, The Political Unconscious: Narrative as a Socially Symbolic Act (Ithaca: Cornell University Press, 1981)], as does Louis Marin in "Disneyland: A Degenerate Utopia," Glyph, no. 1 (1977), p. 64.

For related non-sacerdotal jargon, see…

Wikipedia on the Klein group (denoted V, for Vierergruppe):

In this representation, V is a normal subgroup of the alternating group A4 (and also the symmetric group S4) on 4 letters. In fact, it is the kernel of a surjective map from S4 to S3. According to Galois theory, the existence of the Klein four-group (and in particular, this representation of it) explains the existence of the formula for calculating the roots of quartic equations in terms of radicals.

For radicals of another sort, see A Logocentric Meditation, A Mass for Lucero, and [update of 7 PM] Steven Erlanger in today's New York Times— "France Still Divided Over Lessons of 1968 Unrest."

For material related to Klee's phrase mentioned above by Stevens, "the organic center of all movement in time and space," see the following Google search:

April 29, 2008, Google search on 'penrose space time'

Click on the above
 image for details.

See also yesterday's
Religious Art.

Sunday, April 27, 2008

Sunday April 27, 2008

Filed under: General,Geometry — m759 @ 8:28 AM
Happy Birthday
to the late
Gian-Carlo Rota,
mathematician and
scholar of philosophy

Rota* on his favorite philosopher:

“I believe Husserl to be the greatest philosopher of all times….

Intellectual honesty is the striking quality of Husserl’s writings. He wrote what he honestly believed to be true, neither more nor less. However, honesty is not clarity; as a matter of fact, honesty and clarity are at opposite ends. Husserl proudly refused to stoop to the demands of showmanship that are indispensable in effective communication.”

B.C. by Hart, April 27, 2008:  Discovery of the Wheel and of the Diamond

Related material:
The Diamond Theorem


* Gian-Carlo Rota, “Ten Remarks on Husserl and Phenomenology,” in O.K. Wiegand et al. (eds.), Phenomenology on Kant, German Idealism, Hermeneutics and Logic, pp. 89-97, Kluwer Academic Publishers, 2000

Wednesday, July 25, 2007

Wednesday July 25, 2007

Filed under: General,Geometry — m759 @ 9:00 AM
The Comedy of
George Tabori

George Tabori

From AP “Obituaries in the News”–
Filed with The New York Times
at 11:16 p.m. ET July 24, 2007–

George Tabori

“BERLIN (AP) — Hungarian-born playwright and director George Tabori, a legend in Germany’s postwar theater world whose avant-garde works confronted anti-Semitism, died Monday [July 23, 2007]. He was 93.

Tabori, who as recently as three years ago dreamed of returning to stage to play the title role in Shakespeare’s ‘King Lear,’ died in his apartment near the theater, the Berliner Ensemble said Tuesday, noting that friends and family had accompanied him through his final days. No cause of death was given.

Born into a Jewish family in Budapest on May 24, 1914, Tabori fled in 1936 to London, where he started working for the British Broadcasting Corp., and became a British citizen. His father, and other members of his family, were killed at Auschwitz.

Tabori moved to Hollywood in the 1950s, where he worked as a scriptwriter, most notably co-writing the script for Alfred Hitchcock’s 1953 film, ‘I Confess.’

He moved to Germany in the 1970s and launched a theater career that spanned from acting to directing to writing. He used sharp wit and humor in his plays to examine the relationship between Germany and the Jews, as well as attack anti-Semitism.

Among his best-known works are ‘Mein Kampf,’ set in the Viennese hostel where Adolf Hitler lived from 1910-1913, and the ‘Goldberg Variations,’ both dark farces that poke fun at the Nazis.”

From Year of Jewish Culture:

“The year 2006 marks the 100th anniversary of the establishment of the Jewish Museum in Prague.”

From the related page Programme (October-December):

Divadlo v Dlouhé
George Tabori: GOLDBERGOVSKÉ VARIACE / THE GOLDBERG VARIATIONS, 19 October, 7 p.m. A comedy on creation and martyrdom.”

Variations on
Birth and Death

From Log24 on the date of
the Prague production of the
Tabori “Goldberg Variations,”
an illustration in honor of
Sir Thomas Browne, who
was born, and died,
on that date:

Laves tiling

The above is from
Variable Resolution 4–k Meshes:
Concepts and Applications
by Luiz Velho and Jonas Gomes.

See also Symmetry Framed
and The Garden of Cyrus.

Variations on
the Afterlife

 From Log24
on the date of
Tabori’s death:


(Plato, Meno)

Plato's Diamond colored

and Variations:

Diamond Theory cover, 1976

Click on “variations” above
for some material on
the “Goldberg Variations”
of Johann Sebastian Bach.


Monday, July 23, 2007

Monday July 23, 2007

Filed under: General,Geometry — Tags: — m759 @ 7:59 AM
Today’s Birthday:
Daniel Radcliffe
(“Harry Potter”)

Harry Potter and the Philosopher's Stone DVD


(Plato, Meno)

Plato's Diamond colored

and Variations:

Diamond Theory cover, 1976
Click on picture for details.

“A diamond jubilance
beyond the fire,
That gives its power
to the wild-ringed eye”

— Wallace Stevens,
“The Owl in the Sarcophagus”

Thursday, July 5, 2007

Thursday July 5, 2007

Filed under: General,Geometry — m759 @ 7:11 PM

In Defense of
Plato’s Realism

(vs. sophists’ nominalism–
see recent entries.)

Plato cited geometry,
notably in the Meno,
in defense of his realism.
Consideration of the
Menos diamond figure
leads to the following:

The Eightfold Cube and its Inner Structure

Click on image for details.

As noted in an entry,
Plato, Pegasus, and
the Evening Star,

linked to
at the end of today’s
previous entry,
the “universals”
of Platonic realism
are exemplified by
the hexagrams of
the I Ching,
which in turn are
based on the seven
trigrams above and
on the eighth trigram,
of all yin lines,
not shown above:

Trigram of K'un, the Receptive

The Receptive


Update of Nov. 30, 2013:

From  a little-known website in Kuala Lumpur:
(Click to enlarge.)

The remarks on Platonic realism are from Wikipedia.
The eightfold cube is apparently from this post.

Tuesday, January 9, 2007

Tuesday January 9, 2007

Filed under: General,Geometry — m759 @ 9:00 PM
Logos and Logic
(private, cut from prev. entry)

The diamond is used in modal logic to symbolize possibility.

  The 3×3 grid may also be used
to illustrate “possibility.”  It leads,
as noted at finitegeometry.org, to
the famed “24-cell,” which may be
pictured either as the diamond
figure from Plato’s Meno

The image “http://www.log24.com/theory/images/poly-24cell-sm.jpg” cannot be displayed, because it contains errors.

Click for details.

  — or as a figure
with 24 vertices:

The image “http://www.log24.com/theory/images/poly-24cell-02sm.jpg” cannot be displayed, because it contains errors.

Click for details.

The “diamond” version of the
24-cell seems unrelated to the
second version that shows all
vertices and edges, yet the
second version is implicit,
or hidden, in the first.
Hence “possibility.”

Neither version of the 24-cell
seems related in any obvious
way to the 3×3 grid, yet both
versions are implicit,
or hidden, in the grid.
Hence “possibility.”

Tuesday January 9, 2007

Filed under: General — Tags: — m759 @ 12:00 PM
For Balanchine's Birthday

(continued from
January 9, 2003)

George Balanchine

Encyclopædia Britannica Article

born January 22
[January 9, Old Style], 1904,
St. Petersburg, Russia
died April 30, 1983, New York,
New York, U.S.

Photograph:George Balanchine.
George Balanchine.
©1983 Martha Swope

original name 
Georgy Melitonovich Balanchivadze

most influential choreographer of classical ballet in the United States in the 20th century.  His works, characterized by a cool neoclassicism, include The Nutcracker (1954) and Don Quixote (1965), both pieces choreographed for the New York City Ballet, of which he was a founder (1948), the artistic director, and the…

Balanchine,  George… (75 of 1212 words)

"What on earth is
a concrete universal?"
— Robert M. Pirsig


From Wikipedia's
"Upper Ontology"
Epiphany 2007:

"There is no neutral ground
that can serve as
a means of translating between
specialized (lower) ontologies."

There is, however,
"the field of reason"–

the 3×3 grid:

The image “http://www.log24.com/theory/images/grid3x3.gif” cannot be displayed, because it contains errors.

Click on grid
for details.

As Rosalind Krauss
has noted, some artists
regard the grid as

"a staircase to
  the Universal."

Other artists regard
Epiphany itself as an
approach to
the Universal:

"Epiphany signals the traversal
of the finite by the infinite,
of the particular by the universal,
of the mundane by the mystical,
of time by eternity.

Richard Kearney, 2005,
in The New Arcadia Review

The image “http://www.log24.com/log/pix07/070109-Kearney2.jpg” cannot be displayed, because it contains errors.

Kearney (right) with
Martin Scorsese (left)
and Gregory Peck
in 1997.

"… one of the things that worried me about traditional metaphysics, at least as I imbibed it in a very Scholastic manner at University College Dublin in the seventies, is that philosophy was realism and realism was truth. What disturbed me about that was that everything was already acquired; truth was always a systematic given and it was there to be learned from Creation onwards; it was spoken by Jesus Christ and then published by St. Thomas Aquinas: the system as perfect synthesis. Hence, my philosophy grew out of a hunger for the 'possible' and it was definitely a reaction to my own philosophical formation. Yet that wasn't my only reaction. I was also reacting to what I considered to be the deep pessimism, and even at times 'nihilism' of the postmodern turn."

— Richard Kearney, interview (pdf) in The Leuven Philosophy Newsletter, Vol. 14, 2005-2006

For more on "the possible," see Kearney's The God Who May Be, Diamonds Are Forever, and the conclusion of Mathematics and Narrative:


"We symbolize
logical necessity
with the box (box.gif (75 bytes))
and logical possibility
with the diamond (diamond.gif (82 bytes))."


Keith Allen Korcz 

The image “http://www.log24.com/log/pix05B/050802-Stone.gif” cannot be displayed, because it contains errors.

"The possibilia that exist,
and out of which
the Universe arose,
are located in
     a necessary being…."

Michael Sudduth,
Notes on
God, Chance, and Necessity
by Keith Ward,
Regius Professor of Divinity,
Christ Church College, Oxford
(the home of Lewis Carroll)

Friday, December 29, 2006

Friday December 29, 2006

Filed under: General — Tags: , — m759 @ 11:01 AM
of Christ Church

"For every kind of vampire,
there is a kind of cross."
— Thomas Pynchon

Cover of Thomas, by Shelley Mydans: Sword and its shadow, a cross

Click on picture for details.

Today is the feast
of St. Thomas Becket.

In his honor, a meditation
on tools and causation:

"Lewis Wolpert, an eminent developmental biologist at University College London, has just published Six Impossible Things Before Breakfast, a pleasant, though rambling, look at the biological basis of belief. While the book focuses on our ability to form causal beliefs about everyday matters (the wind moved the trees, for example), it spends considerable time on the origins of religious and moral beliefs. Wolpert defends the unusual idea that causal thinking is an adaptation required for tool-making. Religious beliefs can thus be seen as an odd extension of causal thinking about technology to more mysterious matters. Only a species that can reason causally could assert that 'this storm was sent by God because we sinned.' While Wolpert's attitude toward religion is tolerant, he's an atheist who seems to find religion more puzzling than absorbing."

Review by H. Allen Orr in
The New York Review of Books,
Vol. 54, No. 1, January 11, 2007    

"An odd extension"–

Wolpert's title is, of course,
from Lewis Carroll.

Related material:

"It's a poor sort of memory
that only works backwards."
Through the Looking-Glass

An event at the Kennedy Center
broadcast on
December 26, 2006
(St. Steven's Day):

"Conductor John Williams, a 2004 Honoree, says, 'Steven, sharing our 34-year collaboration has been a great privilege for me. It's been an inspiration to watch you dream your dreams, nurture them and make them grow. And, in the process, entertain and edify billions of people around the world. Tonight we'd like to salute you, musically, with a piece that expresses that spirit beautifully … It was written by Leonard Bernstein, a 1980 Kennedy Center Honoree who was, incidentally, the first composer to be performed in this hall.' Backed by The United States Army Chorus and The Choral Arts Society, soprano Harolyn Blackwell and tenor Gregory Turay sing the closing number for Spielberg's tribute and the gala itself. It's the finale to the opera 'Candide,' 'Make Our Garden Grow,' and Williams conducts."

CBS press release

See also the following,
from the conclusion to

"Mathematics and Narrative"

(Log24, Aug. 22, 2005):

Diamond on cover of Narrative Form, by Suzanne Keen

"At times, bullshit can
only be countered
   with superior bullshit."
Norman Mailer

Many Worlds and Possible Worlds in Literature and Art, in Wikipedia:

    "The concept of possible worlds dates back to at least Leibniz who in his Théodicée tries to justify the apparent imperfections of the world by claiming that it is optimal among all possible worlds.  Voltaire satirized this view in his picaresque novel Candide….
    Borges' seminal short story El jardín de senderos que se bifurcan ("The Garden of Forking Paths") is an early example of many worlds in fiction."

"Il faut cultiver notre jardin."
— Voltaire

"We symbolize
logical necessity
with the box (box.gif (75 bytes))
and logical possibility
with the diamond (diamond.gif (82 bytes))."

Keith Allen Korcz 

Diamond in a square

"The possibilia that exist,
and out of which
the Universe arose,
are located in
     a necessary being…."

Michael Sudduth,
Notes on
God, Chance, and Necessity
by Keith Ward,
 Regius Professor of Divinity,
  Christ Church College, Oxford
(the home of Lewis Carroll)

For further details,
click on the
Christ Church diamond.

Tuesday, October 10, 2006

Tuesday October 10, 2006

Filed under: General — Tags: , — m759 @ 8:00 PM
Mate in
Two Seconds

From Oct. 14 last year:

The image “http://www.log24.com/log/pix05B/051014-Tick.gif” cannot be displayed, because it contains errors.

From Oct. 13 last year
(Yom Kippur):

A Poem for Pinter
Oct. 13, 2005

The Guardian on Harold Pinter, winner of this year's Nobel Prize for Literature:

"Earlier this year, he announced his decision to retire from playwriting in favour of poetry,"

Michael Muskal in today's Los Angeles Times:

"Pinter, 75, is known for his sparse and thin style as well as his etched characters whose crystal patter cuts through the mood like diamond drill bits."

Robert Stone, A Flag for Sunrise (See Jan. 25):

"'That old Jew gave me this here.'  Egan looked at the diamond….  'It's worth a whole lot of money– you can tell that just by looking– but it means something, I think.  It's got a meaning, like.'

'Let's see,' Egan said, 'what would it mean?'  He took hold of Pablo's hand cupping the stone and held his own hand under it.  '"The jewel is in the lotus," perhaps that's what it means.  The eternal in the temporal….'"

Notes on Modal Logic:

"Modal logic was originally developed to investigate logic under the modes of necessary and possible truth.  The words 'necessary' and 'possible' are called modal connectives, or modalities.  A modality is a word that when applied to a statement indicates when, where, how, or under what circumstances the statement may be true.  In terms of notation, it is common to use a box [] for the modality 'necessary' and a diamond <> for the modality 'possible.'"

A Poem for Pinter

The image “http://www.log24.com/log/pix05B/051013-Waka.gif” cannot be displayed, because it contains errors.


"Waka" also means Japanese poem or Maori canoe.  (For instance, this Japanese poem and this Maori canoe.)

For a meditation on "bang splat," see Sept. 25-29.

For the meaning of "tick tick," see Emily Dickinson on "degreeless noon."

"Hash," of course, signifies "checkmate."  (See previous three entries.)

For language more suited to
the year's most holy day, see
this year's Yom Kippur entry,
from October 2.

That was also the day of the
Amish school killings in
Pennsylvania and the day that
mathematician Paul Halmos died.

For more on the former, see
Death in Two Seconds.

For more on the latter, see
The Halmos Tombstone.

4x9 black monolith

Tuesday, July 11, 2006

Tuesday July 11, 2006

Filed under: General,Geometry — Tags: — m759 @ 9:11 PM

Not Crazy Enough?

Some children of the sixties may feel that today's previous two entries, on Syd Barrett, the Crazy Diamond, are not crazy enough.  Let them consult the times of those entries– 2:11 and 8:15– and interpret those times, crazily, as dates: 2/11 and 8/15.

This brings us to Stephen King territory– apparently the natural habitat of Syd Barrett.

See Log24 on a 2/11, Along Came a Dreamcatcher, and Log24 on an 8/15, The Line.

From 8/15, a remark of Plato:

"There appears to be a sort of war of Giants and Gods going on…"

(Compare with the remarks by Abraham Cowley for Tom Stoppard's recent birthday.)

From 2/11, two links: Halloween Meditations  and We Are the Key.

From Dreamcatcher (the film and the book):

The image “http://www.log24.com/log/pix06/060211-Freeman2.jpg” cannot be displayed, because it contains errors.

The image “http://www.log24.com/log/pix06/060324-Dreamcatcher.gif” cannot be displayed, because it contains errors.

For Syd Barrett as Duddits,

The image “http://www.log24.com/log/pix06A/060711-Duddits.jpg” cannot be displayed, because it contains errors.

see Terry Kirby on Syd Barrett
(edited– as in Stephen King
and the New Testament
for narrative effect):

"He appeared as the Floyd performed the song 'Shine On You Crazy Diamond.' It contains the words: 'Remember when you were young, you shone like the sun. Shine on you crazy diamond. Now there's a look in your eyes, like black holes in the sky.'

At first, they didn't recognise the man, whose head and eyebrows were shaved….

But this was the 'crazy diamond' himself: Syd Barrett, the subject of the song….

When Roger Waters saw his old friend, he broke down….

Rick Wright, the keyboards player, later told an interviewer:

… 'Roger [Waters] was in tears, I think I was; we were both in tears. It was very shocking… seven years of no contact and then to walk in while we're actually doing that particular track. I don't know – coincidence, karma, fate, who knows? But it was very, very, very powerful.'"

Remarks suitable for Duddits's opponent, Mister Gray, may be found in the 1994 Ph.D. thesis of Noel Gray.

"I refer here to Plato's utilisation in the Meno of graphic austerity as the tool to bring to the surface, literally and figuratively, the inherent presence of geometry in the mind of the slave."

Plato's Diamond

Shine on, gentle Duddits.

Tuesday July 11, 2006

Filed under: General — Tags: — m759 @ 8:15 PM
"In Tom Stoppard's new play 'Rock 'n' Roll,' showing in the West End, he [Syd Barrett] is portrayed in the opening scene, and his life and music are a recurring theme."

— Terry Kirby, Syd Barrett: The Crazy Diamond, in The Independent of July 12


"Each scene is punctuated with a rock track from such acts as the Velvet Underground, the Doors, the Rolling Stones, Bob Dylan and Pink Floyd. Songs by Floyd's lost founder, Syd Barrett, are the keynote for Stoppard's theme that rock music sounded the death knell for repression but also heralded a freedom filled with its own perils."

— Ray Bennett, today's review of a new play, "Rock 'n' Roll," by Tom Stoppard

Related material:

Dance of the Numbers,
for Tom Stoppard
on his birthday,
July 3, 2006,

Knock, Knock, Knockin',
from yesterday.

'Cause I'm a poet
Don't you know it

— Syd Barrett,
Bob Dylan Blues

Tuesday July 11, 2006

Filed under: General — Tags: — m759 @ 2:11 PM

Pink Floyd co-founder
Syd Barrett dies

"Pink Floyd's 1975 track 'Shine On You Crazy Diamond,' from the album 'Wish You Were Here,' is widely believed to be a tribute to Barrett."– Reuters

Monday, July 10, 2006

Monday July 10, 2006

Filed under: General — Tags: — m759 @ 2:48 AM
Knock, Knock, Knockin'

An obituary in this morning's New York Times suggests a flashback. The Times says that Paul Nelson, 69, a music critic once famously ripped off by the young Bobby Zimmerman, was found dead in his Manhattan apartment last Wednesday. Here is a Log24 entry for that date. (The obituary, by Jon Pareles, notes that Nelson "prized hard-boiled detective novels and film noir.")

Wednesday, July 5, 2006  7:35 PM

Dance of the Numbers

A music review:

"… in the mode of
 a film noir murder mystery"

"For Bach, as Sellars explains,
 death is not an exit but an entrance."

Seven is Heaven,
Eight is a Gate,
Nine is a Vine.

Friday, March 31, 2006

Friday March 31, 2006

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Women's History Month continues…
Ontology Alignment

"He had with him a small red book of Mao's poems, and as he talked he squared it on the table, aligned it with the table edge first vertically and then horizontally.  To understand who Michael Laski is you must have a feeling for that kind of compulsion."

— Joan Didion in the
Saturday Evening Post,
Nov. 18, 1967 (reprinted in
Slouching Towards Bethlehem)

"Or were you," I said.
He said nothing.
"Raised a Catholic," I said.
He aligned a square crystal paperweight with the edge of his desk blotter.

— Joan Didion in
The Last Thing He Wanted,
Knopf, 1996

"It was Plato who best expressed– who veritably embodied– the tension between the narrative arts and mathematics….

Plato clearly loved them both, both mathematics and poetry.  But he approved of mathematics, and heartily, if conflictedly, disapproved of poetry.  Engraved above the entrance to his Academy, the first European university, was the admonition: Oudeis ageometretos eiseto.  Let none ignorant of geometry enter.  This is an expression of high approval indeed, and the symbolism could not have been more perfect, since mathematics was, for Plato, the very gateway for all future knowledge.  Mathematics ushers one into the realm of abstraction and universality, grasped only through pure reason.  Mathematics is the threshold we cross to pass into the ideal, the truly real."

— Rebecca Goldstein,
Mathematics and
the Character of Tragedy

Older Posts »

Powered by WordPress