Log24

Friday, May 14, 2021

In Memory of Ernst Eduard Kummer

Filed under: General — Tags: , , — m759 @ 3:33 pm

(29 January 1810 – 14 May 1893)

See as well some earlier references to diamond signs here .

The proper context for some diamond figures that I  am interested in
is the 4×4 array that appears, notably, in Hudson's 1905 classic 
Kummer's Quartic Surface . Hence this post's "Kummerhenge" tag,
suggested also by some monumental stonework at Tufte's site.

Tuesday, October 8, 2019

Kummer at Noon

Filed under: General — Tags: — m759 @ 12:00 pm

The Hudson array mentioned above is as follows —

See also Whitehead and the
Relativity Problem
(Sept. 22).

For coordinatization  of a 4×4
array, see a note from 1986
in the Feb. 26 post Citation.

Thursday, February 7, 2019

Geometry of the 4×4 Square: The Kummer Configuration

Filed under: General — Tags: , , , — m759 @ 12:00 am

From the series of posts tagged Kummerhenge

A Wikipedia article relating the above 4×4 square to the work of Kummer —

A somewhat more interesting aspect of the geometry of the 4×4 square
is its relationship to the 4×6 grid underlying the Miracle Octad Generator
(MOG) of R. T. Curtis.  Hudson's 1905 classic Kummer's Quartic Surface
deals with the Kummer properties above and also foreshadows, without
explicitly describing, the finite-geometry properties of the 4×4 square as
a finite affine 4-space — properties that are of use in studying the Mathieu
group M24  with the aid of the MOG.

Thursday, November 22, 2018

Rosenhain and Göpel Meet Kummer in Projective 3-Space

Filed under: General,Geometry — Tags: — m759 @ 2:07 pm

For further details, see finitegeometry.org/sc/35/hudson.html.

Friday, April 14, 2017

Hudson and Finite Geometry

Filed under: General,Geometry — Tags: , — m759 @ 3:00 am

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

The above four-element sets of black subsquares of a 4×4 square array 
are 15 of the 60 Göpel tetrads , and 20 of the 80 Rosenhain tetrads , defined
by R. W. H. T. Hudson in his 1905 classic Kummer's Quartic Surface .

Hudson did not  view these 35 tetrads as planes through the origin in a finite
affine 4-space (or, equivalently, as lines in the corresponding finite projective
3-space).

In order to view them in this way, one can view the tetrads as derived,
via the 15 two-element subsets of a six-element set, from the 16 elements
of the binary Galois affine space pictured above at top left.

This space is formed by taking symmetric-difference (Galois binary)
sums of the 15 two-element subsets, and identifying any resulting four-
element (or, summing three disjoint two-element subsets, six-element)
subsets with their complements.  This process was described in my note
"The 2-subsets of a 6-set are the points of a PG(3,2)" of May 26, 1986.

The space was later described in the following —

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

Sunday, December 11, 2016

Complexity to Simplicity via Hudson and Rosenhain*

Filed under: General,Geometry — m759 @ 1:20 am

'Desargues via Rosenhain'- April 1, 2013- The large Desargues configuration mapped canonically to the 4x4 square

*The Hudson of the title is the author of Kummer's Quartic Surface  (1905).
The Rosenhain of the title is the author for whom Hudson's 4×4 diagrams
of "Rosenhain tetrads" are named. For the "complexity to simplicity" of
the title, see Roger Fry in the previous post.

Monday, September 12, 2016

The Kummer Lattice

The previous post quoted Tom Wolfe on Chomsky's use of
the word "array." 

An example of particular interest is the 4×4  array
(whether of dots or of unit squares) —

      .

Some context for the 4×4 array —

The following definition indicates that the 4×4 array, when
suitably coordinatized, underlies the Kummer lattice .

Further background on the Kummer lattice:

Alice Garbagnati and Alessandra Sarti, 
"Kummer Surfaces and K3 surfaces
with $(Z/2Z)^4$ symplectic action." 
To appear in Rocky Mountain J. Math.

The above article is written from the viewpoint of traditional
algebraic geometry. For a less traditional view of the underlying
affine 4-space from finite  geometry, see the website
Finite Geometry of the Square and Cube.

Some further context

"To our knowledge, the relation of the Golay code
to the Kummer lattice is a new observation."

— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of
Kummer surfaces in the Mathieu group M24 
"

As noted earlier, Taormina and Wendland seem not to be aware of
R. W. H. T. Hudson's use of the (uncoordinatized*) 4×4 array in his
1905 book Kummer's Quartic Surface.  The array was coordinatized,
i.e. given a "vector space structure," by Cullinane eight years prior to
the cited remarks of Curtis.

* Update of Sept. 14: "Uncoordinatized," but parametrized  by 0 and
the 15 two-subsets of a six-set. See the post of Sept. 13.

Saturday, September 14, 2019

Landscape Art

Filed under: General — Tags: , — m759 @ 11:18 am

From "Six Significant Landscapes," by Wallace Stevens (1916) —

VI
 Rationalists, wearing square hats,
 Think, in square rooms,
 Looking at the floor,
 Looking at the ceiling.
 They confine themselves
 To right-angled triangles.
 If they tried rhomboids,
 Cones, waving lines, ellipses —
 As, for example, the ellipse of the half-moon —
 Rationalists would wear sombreros.
 

The mysterious 'ellipse of the half-moon'?

But see "cones, waving lines, ellipses" in Kummer's Quartic Surface 
(by R. W. H. T. Hudson, Cambridge University Press, 1905) and their
intimate connection with the geometry of the 4×4 square.

Thursday, June 21, 2018

Dirac and Geometry (continued)

"Just fancy a scale model of Being 
made out of string and cardboard."

Nanavira Thera, 1 October 1957,
on a model of Kummer's Quartic Surface
mentioned by Eddington

"… a treatise on Kummer's quartic surface."

The "super-mathematician" Eddington did not see fit to mention
the title or the author of the treatise he discussed.

See Hudson + Kummer in this  journal.

See also posts tagged Dirac and Geometry.

Friday, February 16, 2018

Two Kinds of Symmetry

Filed under: General,Geometry — Tags: — m759 @ 11:29 pm

The Institute for Advanced Study (IAS) at Princeton in its Fall 2015 Letter 
revived "Beautiful Mathematics" as a title:

This ugly phrase was earlier used by Truman State University
professor Martin Erickson as a book title. See below. 

In the same IAS Fall 2015 Letter appear the following remarks
by Freeman Dyson —

". . . a special case of a much deeper connection that Ian Macdonald 
discovered between two kinds of symmetry which we call modular and affine.
The two kinds of symmetry were originally found in separate parts of science,
modular in pure mathematics and affine in physics. Modular symmetry is
displayed for everyone to see in the drawings of flying angels and devils
by the artist Maurits Escher. Escher understood the mathematics and got the
details right. Affine symmetry is displayed in the peculiar groupings of particles
created by physicists with high-energy accelerators. The mathematician
Robert Langlands was the first to conjecture a connection between these and
other kinds of symmetry. . . ." (Wikipedia link added.)

The adjective "modular"  might aptly be applied to . . .

The adjective "affine"  might aptly be applied to . . .

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

The geometry of the 4×4 square combines modular symmetry
(i.e., related to theta functions) with the affine symmetry above.

Hudson's 1905 discussion of modular symmetry (that of Rosenhain
tetrads and Göpel tetrads) in the 4×4 square used a parametrization
of that square by the digit 0 and the fifteen 2-subsets of a 6-set, but 
did not discuss the 4×4 square as an affine space.

For the connection of the 15 Kummer modular 2-subsets with the 16-
element affine space over the two-element Galois field GF(2), see my note
of May 26, 1986, "The 2-subsets of a 6-set are the points of a PG(3,2)" —

— and the affine structure in the 1979 AMS abstract
"Symmetry invariance in a diamond ring" —

For some historical background on the symmetry investigations by
Dyson and Macdonald, see Dyson's 1972 article "MIssed Opportunities."

For Macdonald's own  use of the words "modular" and "affine," see
Macdonald, I. G., "Affine Lie algebras and modular forms," 
Séminaire N. Bourbaki , Vol. 23 (1980-1981), Talk no. 577, pp. 258-276.

Saturday, September 2, 2017

A Touchstone

Filed under: General,Geometry — Tags: , — m759 @ 10:16 pm

From a paper by June Barrow-Green and Jeremy Gray on the history of geometry at Cambridge, 1863-1940

This post was suggested by the names* (if not the very abstruse
concepts ) in the Aug. 20, 2013, preprint "A Panoramic Overview
of Inter-universal Teichmuller Theory
," by S. Mochizuki.

* Specifically, Jacobi  and Kummer  (along with theta functions).
I do not know of any direct  connection between these names'
relevance to the writings of Mochizuki and their relevance
(via Hudson, 1905) to my own much more elementary studies of
the geometry of the 4×4 square.

Tuesday, September 13, 2016

Parametrizing the 4×4 Array

Filed under: General,Geometry — Tags: , , , , , — m759 @ 10:00 pm

The previous post discussed the parametrization of 
the 4×4 array as a vector 4-space over the 2-element 
Galois field GF(2).

The 4×4 array may also be parametrized by the symbol
0  along with the fifteen 2-subsets of a 6-set, as in Hudson's
1905 classic Kummer's Quartic Surface

Hudson in 1905:

These two ways of parametrizing the 4×4 array — as a finite space
and as an array of 2-element sets —  were related to one another
by Cullinane in 1986 in describing, in connection with the Curtis
"Miracle Octad Generator,"  what turned out to be 15 of Hudson's
1905 "Göpel tetrads":

A recap by Cullinane in 2013:

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click images for further details.

Tuesday, May 24, 2016

Rosenhain and Göpel Revisited

The authors Taormina and Wendland in the previous post
discussed some mathematics they apparently did not know was
related to a classic 1905 book by R. W. H. T. Hudson, Kummer's
Quartic Surface
.

"This famous book is a prototype for the possibility
of explaining and exploring a many-faceted topic of
research, without focussing on general definitions,
formal techniques, or even fancy machinery. In this
regard, the book still stands as a highly recommendable,
unparalleled introduction to Kummer surfaces, as a
permanent source of inspiration and, last but not least, 
as an everlasting symbol of mathematical culture."

— Werner Kleinert, Mathematical Reviews ,
     as quoted at Amazon.com

Some 4×4 diagrams from that book are highly relevant to the
discussion by Taormina and Wendland of the 4×4 squares within
the 1974 Miracle Octad Generator of R. T. Curtis that were later,
in 1987, described by Curtis as pictures of the vector 4-space over
the two-element Galois field GF(2).

Hudson did not think of his 4×4 diagrams as illustrating a vector space,
but he did use them to picture certain subsets of the 16 cells in each
diagram that he called Rosenhain and Göpel tetrads .

Some related work of my own (click images for related posts)—

Rosenhain tetrads as 20 of the 35 projective lines in PG(3,2)

IMAGE- Desargues's theorem in light of Galois geometry

Göpel tetrads as 15 of the 35 projective lines in PG(3,2)

Anticommuting Dirac matrices as spreads of projective lines

Related terminology describing the Göpel tetrads above

Ron Shaw on symplectic geometry and a linear complex in PG(3,2)

Saturday, July 4, 2015

Context

Filed under: General,Geometry — Tags: , — m759 @ 10:00 am

Some context for yesterday's post on a symplectic polarity —

This 1986 note may or may not have inspired some remarks 
of Wolf Barth in his foreword to the 1990 reissue of Hudson's
1905 Kummer's Quartic Surface .

See also the diamond-theorem correlation.  

Wednesday, June 17, 2015

Slow Art, Continued

Filed under: General,Geometry — Tags: , , — m759 @ 10:01 am

The title of the previous post, "Slow Art," is a phrase
of the late art critic Robert Hughes.

Example from mathematics:

  • Göpel tetrads as subsets of a 4×4 square in the classic
    1905 book Kummer's Quartic Surface  by R. W. H. T. Hudson.
    These subsets were constructed as helpful schematic diagrams,
    without any reference to the concept of finite  geometry they
    were later to embody.
     
  • Göpel tetrads (not named as such), again as subsets of
    a 4×4 square, that form the 15 isotropic projective lines of the
    finite projective 3-space PG(3,2) in a note on finite geometry
    from 1986 —

    Göpel tetrads in an inscape, April 1986

  • Göpel tetrads as these figures of finite  geometry in a 1990
    foreword to the reissued 1905 book of Hudson:

IMAGE- Galois geometry in Wolf Barth's 1990 foreword to Hudson's 1905 'Kummer's Quartic Surface'

Click the Barth passage to see it with its surrounding text.

Related material:

Saturday, March 22, 2014

Two Types of Symmetry

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

Mathematical

IMAGE- Weber hexads in 'Kummer's Quartic Surface'

IMAGE- Ohashi on the 192 Weber hexads

Literary (also from May 18, 2010)

IMAGE- Heraclitus, 'Immortals mortal, mortals immortal'- 'athanatoi thnetoi, thnetoi athanatoi'

Monday, February 10, 2014

Mystery Box III: Inside, Outside

Filed under: General,Geometry — Tags: , , , , — m759 @ 2:28 pm

(Continued from Mystery Box, Feb. 4, and Mystery Box II, Feb. 5.)

The Box

Inside the Box

Outside the Box

For the connection of the inside  notation to the outside  geometry,
see Desargues via Galois.

(For a related connection to curves  and surfaces  in the outside
geometry, see Hudson's classic Kummer's Quartic Surface  and
Rosenhain and Göpel Tetrads in PG(3,2).)

Saturday, September 21, 2013

Mathematics and Narrative (continued)

Filed under: General,Geometry — Tags: , , — m759 @ 1:00 am

Mathematics:

A review of posts from earlier this month —

Wednesday, September 4, 2013

Moonshine

Filed under: Uncategorized — m759 @ 4:00 PM

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.)

Thursday, September 5, 2013

Moonshine II

Filed under: Uncategorized — Tags:  — m759 @ 10:31 AM

(Continued from yesterday)

The foreword by Wolf Barth in the 1990 Cambridge U. Press
reissue of Hudson's 1905 classic Kummer's Quartic Surface
covers some of the material in yesterday's post Moonshine.

The distinction that Barth described in 1990 was also described, and illustrated,
in my 1986 note "Picturing the smallest projective 3-space."  The affine 4-space
over the the finite Galois field GF(2) that Barth describes was earlier described—
within a 4×4 array like that pictured by Hudson in 1905— in a 1979 American
Mathematical Society abstract, "Symmetry invariance in a diamond ring."

"The distinction between Rosenhain and Goepel tetrads
is nothing but the distinction between isotropic and
non-isotropic planes in this affine space over the finite field."

The 1990 paragraph of Barth quoted above may be viewed as a summary
of these facts, and also of my March 17, 2013, note "Rosenhain and Göpel
Tetrads in PG(3,2)
."

Narrative:

Aooo.

Happy birthday to Stephen King.

Thursday, September 5, 2013

Moonshine II

(Continued from yesterday)

The foreword by Wolf Barth in the 1990 Cambridge U. Press
reissue of Hudson's 1905 classic Kummer's Quartic Surface
covers some of the material in yesterday's post Moonshine.

The distinction that Barth described in 1990 was also described, and illustrated,
in my 1986 note "Picturing the smallest projective 3-space."  The affine 4-space
over the the finite Galois field GF(2) that Barth describes was earlier described—
within a 4×4 array like that pictured by Hudson in 1905— in a 1979 American
Mathematical Society abstract, "Symmetry invariance in a diamond ring."

"The distinction between Rosenhain and Goepel tetrads
is nothing but the distinction between isotropic and
non-isotropic planes in this affine space over the finite field."

The 1990 paragraph of Barth quoted above may be viewed as a summary
of these facts, and also of my March 17, 2013, note "Rosenhain and Göpel
Tetrads in PG(3,2)
."

Wednesday, September 4, 2013

Moonshine

Unexpected connections between areas of mathematics
previously thought to be unrelated are sometimes referred
to as "moonshine."  An example—  the apparent connections
between parts of complex analysis and groups related to the 
large Mathieu group M24. Some recent work on such apparent
connections, by Anne Taormina and Katrin Wendland, among
others (for instance, Miranda C.N. Cheng and John F.R. Duncan),
involves structures related to Kummer surfaces .
In a classic book, Kummer's Quartic Surface  (1905),
R.W.H.T. Hudson pictured a set of 140 structures, the 80
Rosenhain tetrads and the 60 Göpel tetrads, as 4-element
subsets of a 16-element 4×4 array.  It turns out that these
140 structures are the planes of the finite affine geometry
AG(4,2) of four dimensions over the two-element Galois field.
(See Diamond Theory in 1937.) 

A Google search documents the moonshine
relating Rosenhain's and Göpel's 19th-century work
in complex analysis to M24  via the book of Hudson and
the geometry of the 4×4 square.

Saturday, August 17, 2013

Up-to-Date Geometry

Filed under: General,Geometry — Tags: , , — m759 @ 7:24 pm

The following excerpt from a January 20, 2013, preprint shows that
a Galois-geometry version of the large Desargues 154203 configuration,
although based on the nineteenth-century work of Galois* and of Fano,** 
may at times have twenty-first-century applications.

IMAGE- James Atkinson, Jan. 2013 preprint on Yang-Baxter maps mentioning finite geometry

Some context —

Atkinson's paper does not use the square model of PG(3,2), which later
in 2013 provided a natural view of the large Desargues 154203 configuration.
See my own Classical Geometry in Light of Galois Geometry.  Atkinson's
"subset of 20 lines" corresponds to 20 of the 80 Rosenhain tetrads
mentioned in that later article and pictured within 4×4 squares in Hudson's
1905 classic Kummer's Quartic Surface.

* E. Galois, definition of finite fields in "Sur la Théorie des Nombres,"
  Bulletin des Sciences Mathématiques de M. Férussac,
  Vol. 13, 1830, pp. 428-435.

** G. Fano, definition of PG(3,2) in "Sui Postulati Fondamentali…,"
    Giornale di Matematiche, Vol. 30, 1892, pp. 106-132.

Sunday, May 19, 2013

Priority Claim

From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):

"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis
in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."

[Cur89] reference:
 R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 
32 (1989), 345-353 (received on
July 20, 1987).

— Anne Taormina and Katrin Wendland,
    "The overarching finite symmetry group of Kummer
      surfaces in the Mathieu group 24 ,"
     arXiv.org > hep-th > arXiv:1107.3834

"First mentioned by Curtis…."

No. I claim that to the best of my knowledge, the 
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.

Update of the above paragraph on July 6, 2013—

No. The vector space structure was described by
(for instance) Peter J. Cameron in a 1976
Cambridge University Press book —
Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pages 59 and 60.

The vector space structure as it occurs in a 4×4 array
of the sort that appears in the Curtis Miracle Octad
Generator may first have been pointed out by me,
Steven H. Cullinane,
 in an AMS abstract submitted in
October 1978, some nine years before the Curtis article.

See Notes on Finite Geometry for some background.

See in particular The Galois Tesseract.

For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).

Thursday, April 25, 2013

Rosenhain and Göpel Revisited

Filed under: General,Geometry — Tags: , , , — m759 @ 5:24 pm

Some historical background for today's note on the geometry
underlying the Curtis Miracle Octad Generator (MOG):

IMAGE- Bateman in 1906 on Rosenhain and Göpel tetrads

The above incidence diagram recalls those in today's previous post
on the MOG, which is used to construct the large Mathieu group M24.

For some related material that is more up-to-date, search the Web
for Mathieu + Kummer .

Friday, April 19, 2013

The Large Desargues Configuration

Filed under: General,Geometry — Tags: — m759 @ 9:25 am

Desargues' theorem according to a standard textbook:

"If two triangles are perspective from a point
they are perspective from a line."

The converse, from the same book:

"If two triangles are perspective from a line
they are perspective from a point."

Desargues' theorem according to Wikipedia
combines the above statements:

"Two triangles are in perspective axially  [i.e., from a line]
if and only if they are in perspective centrally  [i.e., from a point]."

A figure often used to illustrate the theorem,
the Desargues configuration , has 10 points and 10 lines,
with 3 points on each line and 3 lines on each point.

A discussion of the "if and only if" version of the theorem
in light of Galois geometry requires a larger configuration—
15 points and 20 lines, with 3 points on each line
and 4 lines on each point.

This large  Desargues configuration involves a third triangle,
needed for the proof   (though not the statement ) of the
"if and only if" version of the theorem. Labeled simply
"Desargues' Theorem," the large  configuration is the
frontispiece to Volume I (Foundations)  of Baker's 6-volume
Principles of Geometry .

Point-line incidence in this larger configuration is,
as noted in a post of April 1, 2013, described concisely
by 20 Rosenhain tetrads  (defined in 1905 by
R. W. H. T. Hudson in Kummer's Quartic Surface ).

The third triangle, within the larger configuration,
is pictured below.

IMAGE- The proof of the converse of Desargues' theorem involves a third triangle.

Monday, April 1, 2013

Desargues via Rosenhain

Filed under: General,Geometry — Tags: , , — m759 @ 6:00 pm

Background: Rosenhain and Göpel Tetrads in PG(3,2)

Introduction:

The Large Desargues Configuration

Added by Steven H. Cullinane on Friday, April 19, 2013

Desargues' theorem according to a standard textbook:

"If two triangles are perspective from a point
they are perspective from a line."

The converse, from the same book:

"If two triangles are perspective from a line
they are perspective from a point."

Desargues' theorem according to Wikipedia 
combines the above statements:

"Two triangles are in perspective axially  [i.e., from a line]
if and only if they are in perspective centrally  [i.e., from a point]."

A figure often used to illustrate the theorem, 
the Desargues configuration , has 10 points and 10 lines,
with 3 points on each line and 3 lines on each point.

A discussion of the "if and only if" version of the theorem
in light of Galois geometry requires a larger configuration—
15 points and 20 lines, with 3 points on each line 
and 4 lines on each point.

This large  Desargues configuration involves a third triangle,
needed for the proof   (though not the statement ) of the 
"if and only if" version of the theorem. Labeled simply
"Desargues' Theorem," the large  configuration is the
frontispiece to Volume I (Foundations)  of Baker's 6-volume
Principles of Geometry .

Point-line incidence in this larger configuration is,
as noted in the post of April 1 that follows
this introduction, described concisely 
by 20 Rosenhain tetrads  (defined in 1905 by
R. W. H. T. Hudson in Kummer's Quartic Surface ).

The third triangle, within the larger configuration,
is pictured below.

IMAGE- The proof of the converse of Desargues' theorem involves a third triangle.

 

 

 

A connection discovered today (April 1, 2013)—

(Click to enlarge the image below.)

Update of April 18, 2013

Note that  Baker's Desargues-theorem figure has three triangles,
ABC, A'B'C', A"B"C", instead of the two triangles that occur in
the statement of the theorem. The third triangle appears in the
course of proving, not just stating, the theorem (or, more precisely,
its converse). See, for instance, a note on a standard textbook for 
further details.

(End of April 18, 2013 update.)

Update of April 14, 2013

See Baker's Proof (Edited for the Web) for a detailed explanation 
of the above picture of Baker's Desargues-theorem frontispiece.

(End of April 14, 2013 update.)

Update of April 12, 2013

A different figure, from a site at National Tsing Hua University,
shows the three triangles of Baker's figure more clearly:

IMAGE- Desargues' theorem with three triangles, and Galois-geometry version

(End of update of April 12, 2013)

Update of April 13, 2013

Another in a series of figures illustrating
Desargues's theorem in light of Galois geometry:
IMAGE- Veblen and Young 1910 Desargues illustration, with 2013 Galois-geometry version

See also the original Veblen-Young figure in context.

(End of update of April 13, 2013)

Rota's remarks, while perhaps not completely accurate, provide some context
for the above Desargues-Rosenhain connection.  For some other context,
see the interplay in this journal between classical and finite geometry, i.e.
between Euclid and Galois.

For the recent  context of the above finite-geometry version of Baker's Vol. I
frontispiece, see Sunday evening's finite-geometry version of Baker's Vol. IV
frontispiece, featuring the Göpel, rather than the Rosenhain, tetrads.

For a 1986 illustration of Göpel and Rosenhain tetrads (though not under
those names), see Picturing the Smallest Projective 3-Space.

In summary… the following classical-geometry figures
are closely related to the Galois geometry PG(3,2):

Volume I of Baker's Principles  
has a cover closely related to 
the Rosenhain tetrads in PG(3,2)
Volume IV of Baker's Principles 
has a cover closely related to
the Göpel tetrads in PG(3,2) 
Foundations
(click to enlarge)

 

 

 

 

Higher Geometry
(click to enlarge)

 

 

 

 

 

Sunday, March 27, 2011

A Many-Sided Theory

Filed under: General,Geometry — m759 @ 5:48 pm

On this date 106 years ago…

Prefatory note from Hudson's classic Kummer's Quartic Surface ,
Cambridge University Press, 1905—

RONALD WILLIAM HENRY TURNBULL HUDSON would have
been twenty-nine years old in July of this year; educated at
St Paul's School, London, and at St John's College, Cambridge,
he obtained the highest honours in the public examinations of the
University, in 1898, 1899, 1900; was elected a Fellow of St John's
College in 1900; became a Lecturer in Mathematics at University
College, Liverpool, in 1902; was D.Sc. in the University of London
in 1903; and died, as the result of a fall while climbing in Wales,
in the early autumn of 1904….

A many-sided theory such as that of this volume is
generally to be won only by the work of many lives;
one who held so firmly the faith that the time is well spent
could ill be spared.

— H. F. Baker, 27 March 1905

For some more recent remarks related to the theory, see
Defining Configurations and its updates, March 20-27, 2011.

Friday, March 18, 2011

Defining Configurations*

Filed under: General,Geometry — Tags: , — m759 @ 7:00 pm

The On-Line Encyclopedia of Integer Sequences has an article titled "Number of combinatorial configurations of type (n_3)," by N.J.A. Sloane and D. Glynn.

From that article:

  • DEFINITION: A combinatorial configuration of type (n_3) consists of an (abstract) set of n points together with a set of n triples of points, called lines, such that each point belongs to 3 lines and each line contains 3 points.
  • EXAMPLE: The unique (8_3) configuration consists of the triples 125, 148, 167, 236, 278, 347, 358, 456.

The following corrects the word "unique" in the example.

http://www.log24.com/log/pix11/110320-MoebiusKantorConfig500w.jpg

* This post corrects an earlier post, also numbered 14660 and dated 7 PM March 18, 2011, that was in error.
   The correction was made at about 11:50 AM on March 20, 2011.

_____________________________________________________________

Update of March 21

The problem here is of course with the definition. Sloane and Glynn failed to include in their definition a condition that is common in other definitions of configurations, even abstract or purely "combinatorial" configurations. See, for instance, Configurations of Points and Lines , by Branko Grunbaum (American Mathematical Society, 2009), p. 17—

In the most general sense we shall consider combinatorial (or abstract) configurations; we shall use the term set-configurations as well. In this setting "points" are interpreted as any symbols (usually letters or integers), and "lines" are families of such symbols; "incidence" means that a "point" is an element of a "line". It follows that combinatorial configurations are special kinds of general incidence structures. Occasionally, in order to simplify and clarify the language, for "points" we shall use the term marks, and for "lines" we shall use blocks. The main property of geometric configurations that is preserved in the generalization to set-configurations (and that characterizes such configurations) is that two marks are incident with at most one block, and two blocks with at most one mark.

Whether or not omitting this "at most one" condition from the definition is aesthetically the best choice, it dramatically changes the number  of configurations in the resulting theory, as the above (8_3) examples show.

Update of March 22 (itself updated on March 25)

For further background on configurations, see Dolgachev—

http://www.log24.com/log/pix11/110322-DolgachevIntro.gif

Note that the two examples Dolgachev mentions here, with 16 points and 9 points, are not unrelated to the geometry of 4×4 and 3×3 square arrays. For the Kummer and related 16-point configurations, see section 10.3, "The Three Biplanes of Order 4," in Burkard Polster's A Geometrical Picture Book  (Springer, 1998). See also the 4×4 array described by Gordon Royle in an undated web page and in 1980 by Assmus and Sardi. For the Hesse configuration, see (for instance) the passage from Coxeter quoted in Quaternions in an Affine Galois Plane.

Update of March 27

See the above link to the (16,6) 4×4 array and the (16,6) exercises using this array in R.D. Carmichael's classic Introduction to the Theory of Groups of Finite Order  (1937), pp. 42-43. For a connection of this sort of 4×4 geometry to the geometry of the diamond theorem, read "The 2-subsets of a 6-set are the points of a PG(3,2)" (a note from 1986) in light of R.W.H.T. Hudson's 1905 classic Kummer's Quartic Surface , pages 8-9, 16-17, 44-45, 76-77, 78-79, and 80.

Powered by WordPress