Log24

Tuesday, September 24, 2024

Software Hardware

Filed under: General — Tags: , , — m759 @ 11:43 am

The "Cara.app" name in the previous post suggests . . .

    Other "techniques d'avant garde" in 1985 —
 

85-03-26…  Visualizing GL(2, p)

85-04-05…  Group actions on partitions

85-04-05…  GL(2, 3) actions on a cube

85-04-28…  Generating the octad generator 

85-08-22…  Symmetry invariance under M12

85-11-17…  Groups related by a nontrivial identity

85-12-11…  Dynamic and algebraic compatibility of groups

Tuesday, August 20, 2024

Bullshit Studies

Filed under: General — Tags: — m759 @ 12:59 pm

From the above piece by Colby College professor Scott Taylor

"… a metaphorical 'Rosetta stone' of analogies between
advanced versions of three basic mathematical objects:
numbers, polynomials and geometric spaces."

This is the same sort of contemptible dumbing-down discussed here in
a May 8, 2024 post. In fact, it links to the Quanta  essay discussed in that post.

A rather different connection between the above "three basic
mathematical objects" —

Thursday, July 18, 2024

Brick Space

Filed under: General — Tags: , , — m759 @ 1:45 am
 

Compare and Contrast

 

A rearranged illustration from . . .

R. T. Curtis, "A New Combinatorial Approach to M24 ,"
Mathematical Proceedings of the Cambridge Philosophical Society ,
Volume 79 , Issue 1 , January 1976 , pp. 25 – 42
DOI: https://doi.org/10.1017/S0305004100052075

The image “MOGCurtis03.gif” cannot be displayed, because it contains errors.


The "Brick Space" model of PG(5,2) —

Brick space: The 2x4 model of PG(5,2)

Background: See "Conwell heptads" on the Web.

See as well Nocciolo  in this journal and . . .

Saturday, June 3, 2023

Space Drama

Filed under: General — m759 @ 12:29 pm

"It seems fitting that a handsome, professional and future-minded
space drama in fine color, like 'Marooned,' should open a new
jewel box of a theater, the Ziegfeld."

— Howard Thompson in The New York Times , Dec. 19, 1969

A related film tells of a real-life April 1970 sequel 
to the 1969 film "Marooned."

Then there is my own "jewel box" picture with three horses . . .

Tuesday, April 25, 2023

For the Crimson Abyss

Filed under: General — Tags: , , , — m759 @ 10:52 pm

Compare and contrast:

'Visualising Finite Fields' at Stack Exchange

See as well this  journal on the above Stack Exchange date.

Tuesday, February 7, 2023

The Graduate School of Design

Filed under: General — Tags: , , — m759 @ 1:03 pm

The above cubic equation may also be written as

x3 – x – 1 = 0.

The equation occurred in my own work in 1985:

An architects' equation appears also in Galois geometry.

An architects' equation that appears also in Galois geometry.

For further details on the plastic number, see an article by
Siobhan Roberts on John Baez  in  The New York Times —

Wednesday, September 21, 2022

Outside the White Cube

Filed under: General — Tags: , , — m759 @ 12:01 pm

      

"Remember, remember the fifth of November"

  — Hugo Weaving in 2005

"If it's Tuesday . . ."

Wednesday, September 14, 2022

Not Safe for Work?

Filed under: General — Tags: — m759 @ 11:51 pm

      

Tuesday, September 13, 2022

A Helpful Survey of the Literature

Filed under: General — Tags: — m759 @ 9:39 pm

Some background for the exercise of 9/11

Vera Pless, "More on the uniqueness of the Golay codes,"
Discrete Mathematics 106/107 (1992) 391-398 —

"Several people [1-2,6] have shown that
any set of 212 binary vectors of length 24,
distance ≥ 8, containing 0, must be the
unique (up to equivalence) [24,12,8] Golay code." 

[1] P. Delsarte and J.M. Goethals, "Unrestricted codes
with the Golay parameters are unique
,"
Discrete Math. 12 (1975) 211-224.

[2] A. Neumeier, private communication, 1990.

[6] S.L. Snover, "The uniqueness of the
Nordstrom-Robinson and the Golay binary codes
,"
Ph.D. Thesis, Dept. of Mathematics, 
Michigan State Univ., 1973.

Related images —

"Before time began, there was the Cube."

              — Optimus Prime in 2007

      

"Remember, remember the fifth of November"

  — Hugo Weaving in 2005

“We Got This Covered”

Filed under: General — Tags: — m759 @ 3:45 am

The previous post's quotation of the word "leitmotif" suggests a review:

      

See as well Sunday's post "Raiders of the Lost Space."

Friday, May 7, 2021

Through the Miracle Looking Glass

Filed under: General — Tags: — m759 @ 11:30 am

(This post was suggested by the order of reading characters in
traditional Chinese calligraphy — top to bottom, right to left .)

. . . the Horses’ Heads
Were toward Eternity”
— Emily Dickinson

Thursday, July 25, 2019

Simple

Filed under: General — Tags: , — m759 @ 2:08 pm

From "110 in the Shade" —

   A quote from "Marshall, Meet Bagger," July 29, 2011:

"Time for you to see the field."

_________________________________________________________

  From a Log24 search for "To See the Field" —

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

Monday, April 8, 2019

Horses of a Dream

Filed under: General — Tags: — m759 @ 6:19 am

The previous post suggests a review —

Related mathematics —

Friday, March 29, 2019

Front-Row Seed

Filed under: General — Tags: — m759 @ 4:17 pm

"This outer automorphism can be regarded as
the seed from which grow about half of the
sporadic simple groups…." — Noam Elkies

Closely related material —

The Kummer 16_6 Configuration and the Nordstrom-Robinson Code

The top two cells of the Curtis "heavy brick" are also
the key to the diamond-theorem correlation.

Saturday, December 16, 2017

Triptychs

Filed under: General,Geometry — Tags: , — m759 @ 12:24 am

Two readings by James Parker —

From next year’s first Atlantic  issue

New Testament 'logos' in a review of a David Bentley Hart translation.

From last month’s Atlantic  issue

“Let’s return to that hillside where Clayton exited his Mercedes.
In the gray light, he climbs the pasture. Halfway up the slope,
three horses are standing: sculpturally still, casually composed
in a perfect triptych of horsitude.”

James Parker in The Atlantic , Nov. 2017 issue

Logos-related material 

Saturday, November 4, 2017

Seven-Cycles in an Octad

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 8:00 pm

Figures from a search in this journal for Springer Knight
and from the All Souls' Day post The Trojan Pony

     Binary coordinates for a 4x2 array  Chess knight formed by a Singer 7-cycle

For those who prefer pure abstraction to the quasi-figurative
1985 seven-cycle above, a different 7-cycle for M24 , from 1998 —


Compare and contrast with my own "knight" labeling
of a 4-row 2-column array (an M24 octad, in the system
of R. T. Curtis)  by the 8 points of the projective line
over GF(7),  from 2008 —

'Knight' octad labeling by the 8 points of the projective line over GF(7)

Friday, August 25, 2017

Two Paths for the Impersonal Essay

Filed under: General,Geometry — Tags: — m759 @ 12:12 pm

The above is a variation on a title from last night's post By Degrees.

The Literary Path —

The Hollywood Path —

Further remarks on algebra and space

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

See as well the above image in yesterday's post  Maori Chess, Vol. 2.

Thursday, August 24, 2017

Maori Chess, Vol. 2

Filed under: General,Geometry — Tags: , — m759 @ 4:20 pm

This just in

From IMDb

From Radio New Zealand

"Genesis Potini died of a heart attack aged 46
on the 15th August 2011."

The 15th of August in New Zealand overlapped
the 14th of August in the U.S.A.

From a Log24 post, "Sunday Review," on August 14, 2011 —

Part II (from "Marshall, Meet Bagger," July 29):

"Time for you to see the field."

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

McLuhan was a Toronto Catholic philosopher.
For related views of a Montreal Catholic philosopher,
see the Saturday evening post.

Thursday, February 16, 2017

Schoolgirls and Heptads

Filed under: General,Geometry — m759 @ 11:32 am

A Feb. 12 note in the "talk" section of the Wikipedia article
"Kirkman's schoolgirl problem" —

The illustration above was replaced by a new section in the article,
titled "Galois geometry."

The new section improves the article by giving it greater depth.  
For related material, see Conwell Heptads in this journal
(or, more generally, Conwell) and a 1985 note citing Conwell's work.

Friday, April 8, 2016

Ogdoads by Curtis

Filed under: General,Geometry — Tags: , , , , , — m759 @ 12:25 pm

As was previously noted here, the construction of the Miracle Octad Generator
of R. T. Curtis in 1974 may have involved his "folding" the 1×8 octads constructed
in 1967 by Turyn into 2×4 form.

This results in a way of picturing a well-known correspondence (Conwell, 1910)
between partitions of an 8-set and lines of the projective 3-space PG(3,2).

For some background related to the "ogdoads" of the previous post, see
A Seventh Seal (Sept. 15, 2014).

Thursday, November 19, 2015

Highlights of the Dirac-Mathieu Connection

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

For the connection of the title, see the post of Friday, November 13th, 2015.

For the essentials of this connection, see the following two documents —

Thursday, June 11, 2015

Omega

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

Omega is a Greek letter, Ω , used in mathematics to denote
a set on which a group acts. 

For instance, the affine group AGL(3,2) is a group of 1,344
actions on the eight elements of the vector 3-space over the
two-element Galois field GF(2), or, if you prefer, on the Galois
field  Ω = GF(8).

Related fiction:  The Eight , by Katherine Neville.

Related non-fiction:  A remark by Werner Heisenberg
in this journal on Saturday, June 6, 2015, the eightfold cube ,
and the illustrations below —

Mathematics

http://www.log24.com/log/pix11A/110505-WikipediaFanoPlane.jpg

The Fano plane block design

Magic

http://www.log24.com/log/pix11A/110505-DeathlyHallows.jpg

The Deathly Hallows symbol—
Two blocks short of  a design.

Friday, March 21, 2014

Three Constructions of the Miracle Octad Generator

Filed under: General,Geometry — Tags: , , , , , — m759 @ 12:24 pm

IMAGE- Two constructions, by Turyn/Curtis, and by Conway, of the Miracle Octad Generator

See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.

Related material on the Turyn-Curtis construction
from the University of Cambridge —

— Slide by "Dr. Parker" — Apparently Richard A. Parker —
Lecture 4, "Discovering M24," in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on "Sporadic and Related Groups."
See also the Parker lectures of 2012-2013 on the same topic.

A third construction of Curtis's 35  4×6  1976 MOG arrays would use
Cullinane's analysis of the 4×4 subarrays' affine and projective structure,
and point out the fact that Conwell's 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis's 1976 MOG.

See The Diamond Theorem,  Finite RelativityGalois Space,
Generating the Octad Generator, and The Klein Correspondence.

Update of March 22-March 23 —

Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1's, all other squares as 0's) of the 35  4×6 arrays of the 1976
Curtis MOG would then reveal*  the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35  MOG arrays.  For more
details of this "by-hand" construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction (such as Turyn's), not  by hand, of the
extended binary Golay code. See the Brouwer preprint quoted above.

* "Then a miracle occurs," as in the classic 1977 Sidney Harris cartoon.

Illustration of array addition from March 23 —

IMAGE- Discovery of the S_3 action on bricks in the Conwell-Cullinane 'by-hand' approach to octad-building

Sunday, April 28, 2013

The Octad Generator

Filed under: General,Geometry — Tags: , , , , — m759 @ 11:00 pm

… And the history of geometry  
Desargues, Pascal, Brianchon and Galois
in the light of complete n-points in space.

(Rewritten for clarity at about 10 AM ET April 29, with quote from Dowling added.
Updated with a reference to a Veblen and Young exercise (on p. 53) on April 30.)

Veblen and Young, Projective Geometry, Vol. I ,
Ginn and Company, 1910, page 39:

"The Desargues configuration. A very important configuration
is obtained by taking the plane section of a complete space five-point."

Each of figures 14 and 15 above has 15 points and 20 lines.
The Desargues configuration within each figure is denoted by
10 white points and 10 solid lines, with 3 points on each line and
3 lines on each point. Black  points and dashed  lines indicate the
complete space five-point and lines connecting it to the plane section
containing the Desargues configuration.

In a 1915 University of Chicago doctoral thesis, Archibald Henderson
used a complete space six -point to construct a configuration of
15 points and 20 lines in the context not of Desargues '  theorem, but
rather of Brianchon 's theorem and of the Pascal  hexagram.
Henderson's 1915 configuration is, it turns out, isomorphic to that of
the 15 points and 20 lines in the configuration constructed via a
complete space five -point five years earlier by Veblen and Young.
(See, in Veblen and Young's 1910 Vol. I, exercise 11, page 53:
"A plane section of a 6-point in space can  be considered as
3 triangles perspective in pairs from 3 collinear points with
corresponding sides meeting in 3 collinear points." This is the
large  Desargues configuration. See Classical Geometry in Light of 
Galois Geometry
.)

For this large  Desargues configuration see April 19.
For Henderson's complete six –point, see The Six-Set (April 23).
That post ends with figures relating the large  Desargues configuration
to the Galois  geometry PG(3,2) that underlies the Curtis
Miracle Octad Generator  and the large Mathieu group M24 —

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

See also Note on the MOG Correspondence from April 25, 2013.

That correspondence was also discussed in a note 28 years ago, on this date in 1985.

Nominee

Filed under: General,Geometry — m759 @ 6:40 pm

IMAGE- Obama to nominate Foxx

Related mathematics and narrative —

Talkin' 'bout my generation.

Wednesday, October 26, 2011

Erlanger and Galois

Filed under: General,Geometry — Tags: , , , — m759 @ 8:00 pm

Peter J. Cameron yesterday on Galois—

"He was killed in a duel at the age of 20…. His work languished for another 14 years until Liouville published it in his Journal; soon it was recognised as the foundation stone of modern algebra, a position it has never lost."

Here Cameron is discussing Galois theory, a part of algebra. Galois is known also as the founder* of group theory, a more general subject.

Group theory is an essential part of modern geometry as well as of modern algebra—

"In der Galois'schen Theorie, wie hier, concentrirt sich das Interesse auf Gruppen von Änderungen. Die Objecte, auf welche sich die Änderungen beziehen, sind allerdings verschieden; man hat es dort mit einer endlichen Zahl discreter Elemente, hier mit der unendlichen Zahl von Elementen einer stetigen Mannigfaltigkeit zu thun."

— Felix Christian Klein, Erlanger Programm , 1872

("In the Galois theory, as in ours, the interest centres on groups of transformations. The objects to which the transformations are applied are indeed different; there we have to do with a finite number of discrete elements, here with the infinite number of elements in a continuous manifoldness." (Translated by M.W. Haskell, published in Bull. New York Math. Soc. 2, (1892-1893), 215-249))

Related material from Hermann Weyl, Symmetry , Princeton University Press, 1952 (paperback reprint of 1982, pp. 143-144)—

"A field is perhaps the simplest algebraic structure we can invent. Its elements are numbers…. Space is another example of an entity endowed with a structure. Here the elements are points…. What we learn from our whole discussion and what has indeed become a guiding principle in modern mathematics is this lesson: Whenever you have to do with a structure-endowed entity  Σ try to determine is group of automorphisms , the group of those element-wise transformations which leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution of Σ in this way."

For a simple example of a group acting on a field (of 8 elements) that is also a space (of 8 points), see Generating the Octad Generator and Knight Moves.

* Joseph J. Rotman, An Introduction to the Theory of Groups , 4th ed., Springer, 1994, page 2

Saturday, September 3, 2011

The Galois Tesseract (continued)

A post of September 1, The Galois Tesseract, noted that the interplay
of algebraic and geometric properties within the 4×4 array that forms
two-thirds of the Curtis Miracle Octad Generator (MOG) may first have
been described by Cullinane (AMS abstract 79T-A37, Notices , Feb. 1979).

Here is some supporting material—

http://www.log24.com/log/pix11B/110903-Carmichael-Conway-Curtis.jpg

The passage from Carmichael above emphasizes the importance of
the 4×4 square within the MOG.

The passage from Conway and Sloane, in a book whose first edition
was published in 1988, makes explicit the structure of the MOG's
4×4 square as the affine 4-space over the 2-element Galois field.

The passage from Curtis (1974, published in 1976) describes 35 sets
of four "special tetrads" within the 4×4 square of the MOG. These
correspond to the 35 sets of four parallel 4-point affine planes within
the square. Curtis, however, in 1976 makes no mention of the affine
structure, characterizing his 140 "special tetrads" rather by the parity
of their intersections with the square's rows and columns.

The affine structure appears in the 1979 abstract mentioned above—

IMAGE- An AMS abstract from 1979 showing how the affine group AGL(4,2) of 322,560 transformations acts on a 4x4 square

The "35 structures" of the abstract were listed, with an application to
Latin-square orthogonality, in a note from December 1978

IMAGE- Projective-space structure and Latin-square orthogonality in a set of 35 square arrays

See also a 1987 article by R. T. Curtis—

Further elementary techniques using the miracle octad generator, by R. T. Curtis. Abstract:

“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”

(Received July 20 1987)

Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353

* For instance:

Algebraic structure in the 4x4 square, by Cullinane (1985) and Curtis (1987)

Update of Sept. 4— This post is now a page at finitegeometry.org.

Sunday, August 14, 2011

Sunday Review

Filed under: General,Geometry — Tags: , , — m759 @ 3:33 pm

The Sunday New York Times  today—

http://www.log24.com/log/pix11B/110814-GablerNYT500w.jpg

This suggests…

The Elusive Small Idea—

Part I:

McLuhan and the Seven Snow Whites

http://www.log24.com/log/pix11B/110814-GablerNYT500w7white.jpg

Part II (from "Marshall, Meet Bagger," July 29):

"Time for you to see the field."

http://www.log24.com/log/pix11B/110814-TheFieldGF8.jpg

For further details, see the 1985 note
"Generating the Octad Generator."

McLuhan was a Toronto Catholic philosopher.
For related views of a Montreal Catholic philosopher,
see the Saturday evening post.

Saturday, August 6, 2011

Correspondences

Filed under: General,Geometry — Tags: , , , , , , — m759 @ 2:00 pm

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité….

— Baudelaire, “Correspondances

From “A Four-Color Theorem”

http://www.log24.com/log/pix11B/110806-Four_Color_Correspondence.gif

Figure 1

Note that this illustrates a natural correspondence
between

(A) the seven highly symmetrical four-colorings
of the 4×2 array at the left of Fig. 1, and

(B) the seven points of the smallest
projective plane at the right of Fig. 1.

To see the correspondence, add, in binary
fashion, the pairs of projective points from the
“points” section that correspond to like-colored
squares in a four-coloring from the left of Fig. 1.
(The correspondence can, of course, be described
in terms of cosets rather than of colorings.)

A different correspondence between these 7 four-coloring
structures and these 7 projective-line structures appears in
a structural analysis of the Miracle Octad Generator
(MOG) of R.T. Curtis—

http://www.log24.com/log/pix11B/110806-Analysis_of_Structure.gif

Figure 2

Here the correspondence between the 7 four-coloring structures (left section) and the 7 projective-line structures (center section) is less obvious, but more fruitful.  It yields, as shown, all of the 35 partitions of an 8-element set  (an 8-set ) into two 4-sets. The 7 four-colorings in Fig. 2 also appear in the 35 4×4 parts of the MOG that correspond, in a way indicated by Fig. 2, to the 35 8-set paritions. This larger correspondence— of 35 4×2 arrays with 35 4×4 arrays— is  the MOG, at least as it was originally defined. See The MOG, Generating the Octad Generator, and Eightfold Geometry

For some applications of the Curtis MOG, see
(for instance) Griess’s Twelve Sporadic Groups .

Thursday, April 28, 2011

26 Today

Filed under: General,Geometry — Tags: , — m759 @ 9:29 pm

Click to enlarge

http://www.log24.com/log/pix11A/110428-GenTheOG.jpg

For some background, see a search here for Octad Generator.

Sunday, January 2, 2011

Horseness

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 am

"Art has to reveal to us ideas, formless spiritual essences."

— A character clearly talking nonsense, from the National Library section of James Joyce's Ulysses

"Unsheathe your dagger definitions. Horseness is the whatness of allhorse."

— A thought of Stephen Dedalus in the same Ulysses  section

For a representation of horseness related to Singer's dagger definitions in Saturday evening's post, see Generating the Octad Generator and Art Wars: Geometry as Conceptual Art.

More seriously, Joyce's "horseness" is related to the problem of universals. For an illuminating approach to universals from a psychological point of view, see James Hillman's Re-Visioning Psychology  (Harper Collins, 1977). (See particularly pages 154-157.)

Friday, August 20, 2010

The Moore Correspondence

Filed under: General,Geometry — m759 @ 5:01 pm

There is a remarkable correspondence between the 35 partitions of an eight-element set H into two four-element sets and the 35 partitions of the affine 4-space L over GF(2) into four parallel four-point planes. Under this correspondence, two of the H-partitions have a common refinement into 2-sets if and only if the same is true of the corresponding L-partitions (Peter J. Cameron, Parallelisms of Complete Designs, Cambridge U. Press, 1976, p. 60). The correspondence underlies the isomorphism* of the group A8 with the projective general linear group PGL(4,2) and plays an important role in the structure of the large Mathieu group M24.

A 1954 paper by W.L. Edge suggests the correspondence should be named after E.H. Moore. Hence the title of this note.

Edge says that

It is natural to ask what, if any, are the 8 objects which undergo
permutation. This question was discussed at length by Moore…**.
But, while there is no thought either of controverting Moore's claim to
have answered it or of disputing his priority, the question is primarily
a geometrical one….

Excerpts from the Edge paper—

http://www.log24.com/log/pix10B/100820-Edge-Geometry-1col.gif

Excerpts from the Moore paper—

Pages 432, 433, 434, and 435, as well as the section mentioned above by Edge— pp. 438 and 439

* J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford U. Press, 1985, p. 72

** Edge cited "E.H. Moore, Math. Annalen, 51 (1899), 417-44." A more complete citation from "The Scientific Work of Eliakim Hastings Moore," by G.A. Bliss,  Bull. Amer. Math. Soc. Volume 40, Number 7 (1934), 501-514— E.H. Moore, "Concerning the General Equations of the Seventh and Eighth Degrees," Annalen, vol. 51 (1899), pp. 417-444.

Wednesday, April 28, 2010

Eightfold Geometry

Filed under: General,Geometry — Tags: , , , , , — m759 @ 11:07 am

Image-- The 35 partitions of an 8-set into two 4-sets

Image-- Analysis of structure of the 35 partitions of an 8-set into two 4-sets

Image-- Miracle Octad Generator of R.T. Curtis

Related web pages:

Miracle Octad Generator,
Generating the Octad Generator,
Geometry of the 4×4 Square

Related folklore:

"It is commonly known that there is a bijection between the 35 unordered triples of a 7-set [i.e., the 35 partitions of an 8-set into two 4-sets] and the 35 lines of PG(3,2) such that lines intersect if and only if the corresponding triples have exactly one element in common." –"Generalized Polygons and Semipartial Geometries," by F. De Clerck, J. A. Thas, and H. Van Maldeghem, April 1996 minicourse, example 5 on page 6

The Miracle Octad Generator may be regarded as illustrating the folklore.

Update of August 20, 2010–

For facts rather than folklore about the above bijection, see The Moore Correspondence.

Sunday, January 24, 2010

Today’s Sermon

Filed under: General,Geometry — Tags: , — m759 @ 11:00 am

More Than Matter

Wheel in Webster’s Revised Unabridged Dictionary, 1913

(f) Poetry

The burden or refrain of a song.

⇒ “This meaning has a low degree of authority, but is supposed from the context in the few cases where the word is found.” Nares.

You must sing a-down a-down, An you call him a-down-a. O, how the wheel becomes it! Shak.

“In one or other of G. F. H. Shadbold’s two published notebooks, Beyond Narcissus and Reticences of Thersites, a short entry appears as to the likelihood of Ophelia’s enigmatic cry: ‘Oh, how the wheel becomes it!’ referring to the chorus or burden ‘a-down, a-down’ in the ballad quoted by her a moment before, the aptness she sees in the refrain.”

— First words of Anthony Powell’s novel “O, How the Wheel Becomes It!” (See Library Thing.)

Anthony Powell's 'O, How the Wheel Becomes It!' along with Laertes' comment 'This nothing's more than matter.'

Related material:

Photo uploaded on January 14, 2009
with caption “This nothing’s more than matter”

and the following nothings from this journal
on the same date– Jan. 14, 2009

The Fritz Leiber 'Spider' symbol in a square

A Singer 7-cycle in the Galois field with eight elements

The Eightfold (2x2x2) Cube

The Jewel in Venn's Lotus (photo by Gerry Gantt)

Wednesday, October 14, 2009

Wednesday October 14, 2009

Filed under: General,Geometry — Tags: , — m759 @ 9:29 am

Singer 7-Cycles

Seven-cycles by R.T. Curtis, 1987

Singer 7-cycles by Cullinane, 1985

Click on images for details.

The 1985 Cullinane version gives some algebraic background for the 1987 Curtis version.

The Singer referred to above is James Singer. See his "A Theorem in Finite Projective Geometry and Some Applications to Number Theory," Transactions of the American Mathematical Society 43 (1938), 377-385.For other singers, see Art Wars and today's obituaries.

Some background: the Log24 entry of this date seven years ago, and the entries preceding it on Las Vegas and painted ponies.

Wednesday, May 20, 2009

Wednesday May 20, 2009

Filed under: General,Geometry — Tags: , , — m759 @ 4:00 pm
From Quilt Blocks to the
Mathieu Group
M24

Diamonds

(a traditional
quilt block):

Illustration of a diamond-theorem pattern

Octads:

Octads formed by a 23-cycle in the MOG of R.T. Curtis

 

Click on illustrations for details.

The connection:

The four-diamond figure is related to the finite geometry PG(3,2). (See "Symmetry Invariance in a Diamond Ring," AMS Notices, February 1979, A193-194.) PG(3,2) is in turn related to the 759 octads of the Steiner system S(5,8,24). (See "Generating the Octad Generator," expository note, 1985.)

The relationship of S(5,8,24) to the finite geometry PG(3,2) has also been discussed in–
  • "A Geometric Construction of the Steiner System S(4,7,23)," by Alphonse Baartmans, Walter Wallis, and Joseph Yucas, Discrete Mathematics 102 (1992) 177-186.

Abstract: "The Steiner system S(4,7,23) is constructed from the geometry of PG(3,2)."

  • "A Geometric Construction of the Steiner System S(5,8,24)," by R. Mandrell and J. Yucas, Journal of Statistical Planning and Inference 56 (1996), 223-228.

Abstract: "The Steiner system S(5,8,24) is constructed from the geometry of PG(3,2)."

For the connection of S(5,8,24) with the Mathieu group M24, see the references in The Miracle Octad Generator.

Saturday, April 4, 2009

Saturday April 4, 2009

Filed under: General,Geometry — Tags: , — m759 @ 8:00 am
Annual Tribute to
The Eight

Katherine Neville's 'The Eight,' edition with knight on cover, on her April 4 birthday

Other knight figures:

Knight figures in finite geometry (Singer 7-cycles in the 3-space over GF(2) by Cullinane, 1985, and Curtis, 1987)

The knight logo at the SpringerLink site

Click on the SpringerLink
knight for a free copy
(pdf, 1.2 mb) of
the following paper
dealing with the geometry
underlying the R.T. Curtis
knight figures above:

Springer description of 1970 paper on Mathieu-group geometry by Wilbur Jonsson of McGill U.

Context:

Literature and Chess and
Sporadic Group References

Details:

 

Adapted (for HTML) from the opening paragraphs of the above paper, W. Jonsson's 1970 "On the Mathieu Groups M22, M23, M24…"–

"[A]… uniqueness proof is offered here based upon a detailed knowledge of the geometric aspects of the elementary abelian group of order 16 together with a knowledge of the geometries associated with certain subgroups of its automorphism group. This construction was motivated by a question posed by D.R. Hughes and by the discussion Edge [5] (see also Conwell [4]) gives of certain isomorphisms between classical groups, namely

PGL(4,2)~PSL(4,2)~SL(4,2)~A8,
PSp(4,2)~Sp(4,2)~S6,

where A8 is the alternating group on eight symbols, S6 the symmetric group on six symbols, Sp(4,2) and PSp(4,2) the symplectic and projective symplectic groups in four variables over the field GF(2) of two elements, [and] PGL, PSL and SL are the projective linear, projective special linear and special linear groups (see for example [7], Kapitel II).

The symplectic group PSp(4,2) is the group of collineations of the three dimensional projective space PG(3,2) over GF(2) which commute with a fixed null polarity tau…."

References

4. Conwell, George M.: The three space PG(3,2) and its group. Ann. of Math. (2) 11, 60-76 (1910).

5. Edge, W.L.: The geometry of the linear fractional group LF(4,2). Proc. London Math. Soc. (3) 4, 317-342 (1954).

7. Huppert, B.: Endliche Gruppen I. Berlin-Heidelberg-New York: Springer 1967.

Tuesday, February 24, 2009

Tuesday February 24, 2009

 
Hollywood Nihilism
Meets
Pantheistic Solipsism

Tina Fey to Steve Martin
at the Oscars:
"Oh, Steve, no one wants
 to hear about our religion
… that we made up."

Tina Fey and Steve Martin at the 2009 Oscars

From Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, p. 117:

… in 'The Pediment of Appearance,' a slight narrative poem in Transport to Summer

 A group of young men enter some woods 'Hunting for the great ornament, The pediment of appearance.' Though moving through the natural world, the young men seek the artificial, or pure form, believing that in discovering this pediment, this distillation of the real, they will also discover the 'savage transparence,' the rude source of human life. In Stevens's world, such a search is futile, since it is only through observing nature that one reaches beyond it to pure form. As if to demonstrate the degree to which the young men's search is misaligned, Stevens says of them that 'they go crying/The world is myself, life is myself,' believing that what surrounds them is immaterial. Such a proclamation is a cardinal violation of Stevens's principles of the imagination.


Superficially the young men's philosophy seems to resemble what Wikipedia calls "pantheistic solipsism"– noting, however, that "This article has multiple issues."

As, indeed, does pantheistic solipsism– a philosophy (properly called "eschatological pantheistic multiple-ego solipsism") devised, with tongue in cheek, by science-fiction writer Robert A. Heinlein.

Despite their preoccupation with solipsism, Heinlein and Stevens point, each in his own poetic way, to a highly non-solipsistic topic from pure mathematics that is, unlike the religion of Martin and Fey, not made up– namely, the properties of space.

Heinlein:

"Sharpie, we have condensed six dimensions into four, then we either work by analogy into six, or we have to use math that apparently nobody but Jake and my cousin Ed understands. Unless you can think of some way to project six dimensions into three– you seem to be smart at such projections."
    I closed my eyes and thought hard. "Zebbie, I don't think it can be done. Maybe Escher could have done it."

Stevens:

A discussion of Stevens's late poem "The Rock" (1954) in Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, p. 120:

For Stevens, the poem "makes meanings of the rock." In the mind, "its barrenness becomes a thousand things/And so exists no more." In fact, in a peculiar irony that only a poet with Stevens's particular notion of the imagination's function could develop, the rock becomes the mind itself, shattered into such diamond-faceted brilliance that it encompasses all possibilities for human thought:

The rock is the gray particular of man's life,
The stone from which he rises, up—and—ho,
The step to the bleaker depths of his descents ...

The rock is the stern particular of the air,
The mirror of the planets, one by one,
But through man's eye, their silent rhapsodist,

Turquoise the rock, at odious evening bright
With redness that sticks fast to evil dreams;
The difficult rightness of half-risen day.

The rock is the habitation of the whole,
Its strength and measure, that which is near,
     point A
In a perspective that begins again

At B: the origin of the mango's rind.

                    (Collected Poems, 528)

Stevens's rock is associated with empty space, a concept that suggests "nothingness" to one literary critic:

B. J. Leggett, "Stevens's Late Poetry" in The Cambridge Companion to Wallace Stevens— On the poem "The Rock":

 

"… the barren rock of the title is Stevens's symbol for the nothingness that underlies all existence, 'That in which space itself is contained'….  Its subject is its speaker's sense of nothingness and his need to be cured of it."

 

This interpretation might appeal to Joan Didion, who, as author of the classic novel Play It As It Lays, is perhaps the world's leading expert on Hollywood nihilism.

More positively…

Space is, of course, also a topic
in pure mathematics…
For instance, the 6-dimensional
affine space
(or the corresponding
5-dimensional projective space)

The 4x4x4 cube

over the two-element Galois field
can be viewed as an illustration of
Stevens's metaphor in "The Rock."

Heinlein should perhaps have had in mind the Klein correspondence when he discussed "some way to project six dimensions into three." While such a projection is of course trivial for anyone who has taken an undergraduate course in linear algebra, the following remarks by Philippe Cara present a much more meaningful mapping, using the Klein correspondence, of structures in six (affine) dimensions to structures in three.

Cara:

Philippe Cara on the Klein correspondence
Here the 6-dimensional affine
space contains the 63 points
of PG(5, 2), plus the origin, and
the 3-dimensional affine
space contains as its 8 points
Conwell's eight "heptads," as in
Generating the Octad Generator.

Wednesday, January 14, 2009

Wednesday January 14, 2009

Filed under: General,Geometry — Tags: , — m759 @ 2:45 am

Eight is a Gate

'The Eight,' by Katherine Neville

Customer reviews of Neville's 'The Eight'

From the most highly
rated negative review:

“I never did figure out
what ‘The Eight’ was.”

Various approaches
to this concept
(click images for details):

The Fritz Leiber 'Spider' symbol in a square

A Singer 7-cycle in the Galois field with eight elements

The Eightfold (2x2x2) Cube

The Jewel in Venn's Lotus (photo by Gerry Gantt)

Tom O'Horgan in his loft. O'Horgan died Sunday, Jan. 11, 2009.

Bach, Canon 14, BWV 1087

Monday, January 5, 2009

Monday January 5, 2009

Filed under: General,Geometry — Tags: , , , , — m759 @ 9:00 pm

A Wealth of
Algebraic Structure

A 4x4 array (part of chessboard)

A 1987 article by R. T. Curtis on the geometry of his Miracle Octad Generator (MOG) as it relates to the geometry of the 4×4 square is now available online ($20):

Further elementary techniques using the miracle octad generator
, by R. T. Curtis. Abstract:

“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”

 

(Received July 20 1987)

Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353, doi:10.1017/S0013091500004600.

(Published online by Cambridge University Press 19 Dec 2008.)

In the above article, Curtis explains how two-thirds of his 4×6 MOG array may be viewed as the 4×4 model of the four-dimensional affine space over GF(2).  (His earlier 1974 paper (below) defining the MOG discussed the 4×4 structure in a purely combinatorial, not geometric, way.)

For further details, see The Miracle Octad Generator as well as Geometry of the 4×4 Square and Curtis’s original 1974 article, which is now also available online ($20):

A new combinatorial approach to M24, by R. T. Curtis. Abstract:

“In this paper, we define M24 from scratch as the subgroup of S24 preserving a Steiner system S(5, 8, 24). The Steiner system is produced and proved to be unique and the group emerges naturally with many of its properties apparent.”

 

(Received June 15 1974)

Mathematical Proceedings of the Cambridge Philosophical Society (1976), 79: 25-42, doi:10.1017/S0305004100052075.

(Published online by Cambridge University Press 24 Oct 2008.)

* For instance:

Algebraic structure in the 4x4 square, by Cullinane (1985) and Curtis (1987)

Click for details.

Monday, April 28, 2008

Monday April 28, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 7:00 am
Religious Art

The black monolith of
Kubrick's 2001 is, in
its way, an example
of religious art.

Black monolith, proportions 4x9

One artistic shortcoming
(or strength– it is, after
all, monolithic) of
that artifact is its
resistance to being
analyzed as a whole
consisting of parts, as
in a Joycean epiphany.

The following
figure does
allow such
  an epiphany.

A 2x4 array of squares

One approach to
 the epiphany:

"Transformations play
  a major role in
  modern mathematics."
– A biography of
Felix Christian Klein

The above 2×4 array
(2 columns, 4 rows)
 furnishes an example of
a transformation acting
on the parts of
an organized whole:

The 35 partitions of an 8-set into two 4-sets

For other transformations
acting on the eight parts,
hence on the 35 partitions, see
"Geometry of the 4×4 Square,"
as well as Peter J. Cameron's
"The Klein Quadric
and Triality" (pdf),
and (for added context)
"The Klein Correspondence,
Penrose Space-Time, and
a Finite Model
."

For a related structure–
  not rectangle but cube– 
see Epiphany 2008.

Monday, October 1, 2007

Monday October 1, 2007

Filed under: General,Geometry — Tags: , , — m759 @ 7:20 am
Bright as Magnesium

"Definitive"

— The New York Times,  
Sept. 30, 2007, on
Blade Runner:
The Final Cut

Institute for Advanced Study, Princeton, N.J.

"The art historian Kirk Varnedoe died on August 14, 2003, after a long and valiant battle with cancer. He was 57. He was a faculty member in the Institute for Advanced Study’s School of Historical Studies, where he was the fourth art historian to hold this prestigious position, first held by the German Renaissance scholar Erwin Panofsky in the 1930s."

Hal Crowther

"His final lecture was an eloquent, prophetic flight of free association….

Varnedoe chose to introduce his final lecture with the less-quoted last words of the android Roy Batty (Rutger Hauer) in Ridley Scott's film Blade Runner: 'I've seen things you people wouldn't believe– attack ships on fire off the shoulder of Orion, bright as magnesium; I rode on the back decks of a blinker and watched C-beams glitter in the dark near the Tannhauser Gate. All those moments will be lost in time, like tears in the rain. Time to die.'"


Related material: 
tears in the rain–

Game Over
(Nov. 5, 2003):
 

The film "The Matrix," illustrated

Coordinates for generating the Miracle Octad Generator

Thursday, September 28, 2006

Thursday September 28, 2006

Filed under: General,Geometry — Tags: , — m759 @ 9:15 am
A Table

From the diary
of John Baez:

September 22, 2006

… Meanwhile, the mystics beckon:

Out beyond ideas of wrongdoing and rightdoing, there is a field. I’ll meet you there. – Rumi

September 23, 2006

I’m going up to San Rafael (near the Bay in Northern California) to visit my college pal Bruce Smith and his family. I’ll be back on Wednesday the 27th, just in time to start teaching the next day.

A check on the Rumi quote yields
this, on a culinary organization:

“Out beyond rightdoing and wrongdoing there is a field.  I’ll meet you there.”

This is the starting place of good spirit for relationship healing and building prescribed centuries ago in the Middle East by Muslim Sufi teacher and mystic, Jelaluddin Rumi (1207-1273).

Even earlier, the Psalmists knew such a meeting place of adversaries was needed, sacred and blessed:

“Thou preparest a table before me in the presence of mine enemies….” (23rd Psalm)

A Field and a Table:

The image “http://www.log24.com/theory/GF8-Table.gif” cannot be displayed, because it contains errors.

From “Communications Toolbox”
at MathWorks.com

For more on this field
in a different context, see
Generating the Octad Generator
and
“Putting Descartes Before Dehors”
in my own diary for December 2003.

The image “http://www.log24.com/log/pix06A/060928-Descartes.jpg” cannot be displayed, because it contains errors.
Descartes



Après l’Office à l’Église
de la Sainte-Trinité, Noël 1890

(After the Service at Holy Trinity Church,
Christmas 1890), Jean Béraud

Let us pray to the Holy Trinity that
San Rafael guides the teaching of John Baez
this year.  For related material on theology
and the presence of enemies, see Log24 on
  the (former) Feast of San Rafael, 2003.

Friday, April 28, 2006

Friday April 28, 2006

Filed under: General,Geometry — Tags: , , — m759 @ 12:00 pm

Exercise

Review the concepts of integritas, consonantia,  and claritas in Aquinas:

"For in respect to beauty three things are essential: first of all, integrity or completeness, since beings deprived of wholeness are on this score ugly; and [secondly] a certain required design, or patterned structure; and finally a certain splendor, inasmuch as things are called beautiful which have a certain 'blaze of being' about them…."

Summa Theologiae Sancti Thomae Aquinatis, I, q. 39, a. 8, as translated by William T. Noon, S.J., in Joyce and Aquinas, Yale University Press, 1957

Review the following three publications cited in a note of April 28, 1985 (21 years ago today):

(1) Cameron, P. J.,
     Parallelisms of Complete Designs,
     Cambridge University Press, 1976.

(2) Conwell, G. M.,
     The 3-space PG(3,2) and its group,
     Ann. of Math. 11 (1910) 60-76.

(3) Curtis, R. T.,
     A new combinatorial approach to M24,
     Math. Proc. Camb. Phil. Soc.
    
79 (1976) 25-42.

Discuss how the sextet parallelism in (1) illustrates integritas, how the Conwell correspondence in (2) illustrates consonantia, and how the Miracle Octad Generator in (3) illustrates claritas.
 

Sunday, November 20, 2005

Sunday November 20, 2005

Filed under: General,Geometry — Tags: , — m759 @ 4:04 pm

An Exercise
of Power

Johnny Cash:
“And behold,
a white horse.”

The image “http://www.log24.com/log/pix05B/051120-SpringerLogo9.gif” cannot be displayed, because it contains errors.
Adapted from
illustration below:

The image “http://www.log24.com/log/pix05B/051120-NonEuclideanRev.jpg” cannot be displayed, because it contains errors.

“There is a pleasantly discursive treatment of Pontius Pilate’s unanswered question ‘What is truth?'”

H. S. M. Coxeter, 1987, introduction to Richard J. Trudeau’s remarks on the “Story Theory” of truth as opposed to  the “Diamond Theory” of truth in The Non-Euclidean Revolution

“A new epistemology is emerging to replace the Diamond Theory of truth. I will call it the ‘Story Theory’ of truth: There are no diamonds. People make up stories about what they experience. Stories that catch on are called ‘true.’ The Story Theory of truth is itself a story that is catching on. It is being told and retold, with increasing frequency, by thinkers of many stripes*….”

Richard J. Trudeau in
The Non-Euclidean Revolution

“‘Deniers’ of truth… insist that each of us is trapped in his own point of view; we make up stories about the world and, in an exercise of power, try to impose them on others.”

— Jim Holt in The New Yorker.

(Click on the box below.)

The image “http://www.log24.com/log/pix05B/050819-Critic4.jpg” cannot be displayed, because it contains errors.

Exercise of Power:

Show that a white horse–

A Singer 7-Cycle

a figure not unlike the
symbol of the mathematics
publisher Springer–
is traced, within a naturally
arranged rectangular array of
polynomials, by the powers of x
modulo a polynomial
irreducible over a Galois field.

This horse, or chess knight–
“Springer,” in German–
plays a role in “Diamond Theory”
(a phrase used in finite geometry
in 1976, some years before its use
by Trudeau in the above book).

Related material

On this date:

 In 1490, The White Knight
 (Tirant lo Blanc The image “http://www.log24.com/images/asterisk8.gif” cannot be displayed, because it contains errors. )–
a major influence on Cervantes–
was published, and in 1910

The image “http://www.log24.com/log/pix05B/051120-Caballo1.jpg” cannot be displayed, because it contains errors.

the Mexican Revolution began.

Illustration:
Zapata by Diego Rivera,
Museum of Modern Art,
New York

The image “http://www.log24.com/images/asterisk8.gif” cannot be displayed, because it contains errors. Description from Amazon.com

“First published in the Catalan language in Valencia in 1490…. Reviewing the first modern Spanish translation in 1969 (Franco had ruthlessly suppressed the Catalan language and literature), Mario Vargas Llosa hailed the epic’s author as ‘the first of that lineage of God-supplanters– Fielding, Balzac, Dickens, Flaubert, Tolstoy, Joyce, Faulkner– who try to create in their novels an all-encompassing reality.'”

Tuesday, December 9, 2003

Tuesday December 9, 2003

Filed under: General,Geometry — m759 @ 11:11 am

Street of the Fathers

From Bruce Wagner’s Wild Palms —

Robert Morse sings in Kyoto
as negotiators discuss
the Go chip
:

In My Room

Coordinates for a 4×4 space:

A Small Go Board Study:


A 4×4
Go Board

From
Université René Descartes,
45 rue des Saints Pères,
Paris

Today’s birthdays:

Kirk Douglas
Buck Henry
John Malkovich

Wednesday, November 5, 2003

Wednesday November 5, 2003

Filed under: General — Tags: , — m759 @ 2:23 pm

Game Over

 "Everything that has a beginning
     has an end."

— The Matrix Revolutions

Matrix, by Knots, Inc., 1979.

"Easy to master — A lifetime to enjoy!"

The object for 2 players (8-adult)
is to be the first to form a line
consisting of 4 different
colored chips.

Imagist Poem

Digital 'tears in the rain'

Image suggesting the 'Go chip' in 'Wild Palms'

(Recall the Go-chip
in Wild Palms.)

Monday, April 28, 2003

Monday April 28, 2003

Filed under: General,Geometry — Tags: , , — m759 @ 12:07 am

ART WARS:

Toward Eternity

April is Poetry Month, according to the Academy of American Poets.  It is also Mathematics Awareness Month, funded by the National Security Agency; this year's theme is "Mathematics and Art."

Some previous journal entries for this month seem to be summarized by Emily Dickinson's remarks:

"Because I could not stop for Death–
He kindly stopped for me–
The Carriage held but just Ourselves–
And Immortality.

………………………
Since then–'tis Centuries–and yet
Feels shorter than the Day
I first surmised the Horses' Heads
Were toward Eternity– "

 

Consider the following journal entries from April 7, 2003:
 

Math Awareness Month

April is Math Awareness Month.
This year's theme is "mathematics and art."


 

An Offer He Couldn't Refuse

Today's birthday:  Francis Ford Coppola is 64.

"There is a pleasantly discursive treatment
of Pontius Pilate's unanswered question
'What is truth?'."


H. S. M. Coxeter, 1987, introduction to Richard J. Trudeau's remarks on the "Story Theory" of truth as opposed to the "Diamond Theory" of truth in The Non-Euclidean Revolution

 

From a website titled simply Sinatra:

"Then came From Here to Eternity. Sinatra lobbied hard for the role, practically getting on his knees to secure the role of the street smart punk G.I. Maggio. He sensed this was a role that could revive his career, and his instincts were right. There are lots of stories about how Columbia Studio head Harry Cohn was convinced to give the role to Sinatra, the most famous of which is expanded upon in the horse's head sequence in The Godfather. Maybe no one will know the truth about that. The one truth we do know is that the feisty New Jersey actor won the Academy Award as Best Supporting Actor for his work in From Here to Eternity. It was no looking back from then on."

From a note on geometry of April 28, 1985:

 
The "horse's head" figure above is from a note I wrote on this date 18 years ago.  The following journal entry from April 4, 2003, gives some details:
 

The Eight

Today, the fourth day of the fourth month, plays an important part in Katherine Neville's The Eight.  Let us honor this work, perhaps the greatest bad novel of the twentieth century, by reflecting on some properties of the number eight.  Consider eight rectangular cells arranged in an array of four rows and two columns.  Let us label these cells with coordinates, then apply a permutation.

 


 Decimal 
labeling

 
Binary
labeling


Algebraic
labeling


Permutation
labeling

 

The resulting set of arrows that indicate the movement of cells in a permutation (known as a Singer 7-cycle) outlines rather neatly, in view of the chess theme of The Eight, a knight.  This makes as much sense as anything in Neville's fiction, and has the merit of being based on fact.  It also, albeit rather crudely, illustrates the "Mathematics and Art" theme of this year's Mathematics Awareness Month.

The visual appearance of the "knight" permutation is less important than the fact that it leads to a construction (due to R. T. Curtis) of the Mathieu group M24 (via the Curtis Miracle Octad Generator), which in turn leads logically to the Monster group and to related "moonshine" investigations in the theory of modular functions.   See also "Pieces of Eight," by Robert L. Griess.

Monday, April 7, 2003

Monday April 7, 2003

Filed under: General,Geometry — Tags: , — m759 @ 1:17 pm

An Offer He Couldn't Refuse

Today's birthday:  Francis Ford Coppola is 64.

"There is a pleasantly discursive treatment
of Pontius Pilate's unanswered question
'What is truth?'."


— H. S. M. Coxeter, 1987, introduction to Richard J. Trudeau's remarks on the "Story Theory" of truth as opposed to the "Diamond Theory" of truth in The Non-Euclidean Revolution

 

From a website titled simply Sinatra:

"Then came From Here to Eternity. Sinatra lobbied hard for the role, practically getting on his knees to secure the role of the street smart punk G.I. Maggio. He sensed this was a role that could revive his career, and his instincts were right. There are lots of stories about how Columbia Studio head Harry Cohn was convinced to give the role to Sinatra, the most famous of which is expanded upon in the horse's head sequence in The Godfather. Maybe no one will know the truth about that. The one truth we do know is that the feisty New Jersey actor won the Academy Award as Best Supporting Actor for his work in From Here to Eternity. It was no looking back from then on."

From a note on geometry of April 28, 1985:


 

Friday, April 4, 2003

Friday April 4, 2003

Filed under: General,Geometry — Tags: , , — m759 @ 3:33 pm

The Eight

Today, the fourth day of the fourth month, plays an important part in Katherine Neville's The Eight.  Let us honor this work, perhaps the greatest bad novel of the twentieth century, by reflecting on some properties of the number eight.  Consider eight rectangular cells arranged in an array of four rows and two columns.  Let us label these cells with coordinates, then apply a permutation.


Decimal 
labeling


Binary
labeling


Algebraic
labeling

IMAGE- Knight figure for April 4
Permutation
labeling

 

The resulting set of arrows that indicate the movement of cells in a permutation (known as a Singer 7-cycle) outlines rather neatly, in view of the chess theme of The Eight, a knight.  This makes as much sense as anything in Neville's fiction, and has the merit of being based on fact.  It also, albeit rather crudely, illustrates the "Mathematics and Art" theme of this year's Mathematics Awareness Month.  (See the 4:36 PM entry.)

 

 

The visual appearance of the "knight" permutation is less important than the fact that it leads to a construction (due to R. T. Curtis) of the Mathieu group M24 (via the Curtis Miracle Octad Generator), which in turn leads logically to the Monster group and to related "moonshine" investigations in the theory of modular functions.   See also "Pieces of Eight," by Robert L. Griess.
 

Sunday, February 23, 2003

Sunday February 23, 2003

Filed under: General — Tags: — m759 @ 5:24 pm

Grammy Night

Today's musical birthday: bassist Steven Priest of Sweet. 

Today's back-to-the-future trip:  See the article "Sweet Tunes…." on Chuck Berry at the top of today's New York Times website.

"Her wall is filled with pictures,
She gets 'em one by one."

— "Sweet Little Sixteen," by Chuck Berry
(Chess Records, January 1958)

Click on the above for the context.

"Are you ready, Steve? Aha….

And the girl in the corner is ev'ryone's mourner.
She could kill you with a wink of her eye."

— "Ballroom Blitz," by Sweet

Thursday, December 19, 2002

Thursday December 19, 2002

Filed under: General — Tags: — m759 @ 5:30 pm

Winter’s Tale

The title is that of a novel by Mark Helprin.

On this date in 1903, the Williamsburg Bridge between Brooklyn and Manhattan was opened to traffic.

From the opening of Helprin’s 1983 novel:

“The horse…. trotted alone over the carriage road of the Williamsburg Bridge, before the light, while the toll keeper was sleeping by his stove and many stars were still blazing above the city.”

A memorable
 rhyme
:

Seven is
  heaven,
Eight is
  a gate. 

A 1985 illustration

See also Plato, Pegasus, and the Evening Star.

“The Forms are abstract but real.”

Rebecca Goldstein on Plato

Saturday, December 14, 2002

Saturday December 14, 2002

Filed under: General — Tags: , — m759 @ 1:44 am

Back to Bach

Our site music now moves from the romantic longing of “Skylark” to a classical theme: what might be called “the spirit of eight,” by Bach:

Canon 14

Fourteen Canons on the First Eight Notes
of the Goldberg Ground – BWV 1087
.

For more details, click here.

For a different set of variations on the theme
of “eightness,” see my note

Generating the Octad Generator.

For more details, click here.

Powered by WordPress