Log24

Thursday, September 12, 2019

Tetrahedral Structures

Filed under: General — Tags: — m759 @ 8:11 pm

In memory of a Church emissary who reportedly died on September 4,
here is a Log24 flashback reposted on that date —

Related poetry —

"To every man upon this earth,
Death cometh soon or late.
And how can man die better
Than facing fearful odds,
For the ashes of his fathers,
and the temples of his gods…?"

— Macaulay, quoted in the April 2013 film "Oblivion"

Related fiction —

Monday, December 19, 2016

Tetrahedral Cayley-Salmon Model

Filed under: General,Geometry — Tags: , — m759 @ 9:38 am

The figure below is one approach to the exercise
posted here on December 10, 2016.

Tetrahedral model (minus six lines) of the large Desargues configuration

Some background from earlier posts —


IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

Click the image below to enlarge it.

Polster's tetrahedral model of the small Desargues configuration

Saturday, December 17, 2016

Tetrahedral Death Star

Filed under: General,Geometry — Tags: , — m759 @ 10:00 pm

Continuing the "Memory, History, Geometry" theme
from yesterday

See Tetrahedral,  Oblivion,  and Tetrahedral Oblivion.

IMAGE- From 'Oblivion' (2013), the Mother Ship

"Welcome home, Jack."

Wednesday, November 26, 2014

A Tetrahedral Fano-Plane Model

Filed under: General,Geometry — Tags: , — m759 @ 5:30 pm

Update of Nov. 30, 2014 —

It turns out that the following construction appears on
pages 16-17 of A Geometrical Picture Book , by 
Burkard Polster (Springer, 1998).

"Experienced mathematicians know that often the hardest
part of researching a problem is understanding precisely
what that problem says. They often follow Polya's wise
advice: 'If you can't solve a problem, then there is an
easier problem you can't solve: find it.'"

—John H. Conway, foreword to the 2004 Princeton
Science Library edition of How to Solve It , by G. Polya

For a similar but more difficult problem involving the
31-point projective plane, see yesterday's post
"Euclidean-Galois Interplay."

The above new [see update above] Fano-plane model was
suggested by some 1998 remarks of the late Stephen Eberhart.
See this morning's followup to "Euclidean-Galois Interplay" 
quoting Eberhart on the topic of how some of the smallest finite
projective planes relate to the symmetries of the five Platonic solids.

Update of Nov. 27, 2014: The seventh "line" of the tetrahedral
Fano model was redefined for greater symmetry.

Wednesday, May 21, 2014

The Tetrahedral Model of PG(3,2)

Filed under: General,Geometry — Tags: , — m759 @ 10:15 pm

The page of Whitehead linked to this morning
suggests a review of Polster's tetrahedral model
of the finite projective 3-space PG(3,2) over the
two-element Galois field GF(2).

The above passage from Whitehead's 1906 book suggests
that the tetrahedral model may be older than Polster thinks.

Shown at right below is a correspondence between Whitehead's
version of the tetrahedral model and my own square  model,
based on the 4×4 array I call the Galois tesseract  (at left below).

(Click to enlarge.)

Wednesday, April 14, 2021

Raiders of the Lost Coordinates . . .

Filed under: General — m759 @ 3:10 pm

Continues.

A pyramid scheme in memory of the late Bernie Madoff —

The above passage from Whitehead’s 1906 book suggests
that the tetrahedral model may be older than Polster thinks.*

This is shown by . . .

See also “Profzi Scheme.”

* For some related work of the above “D. Mesner,” see
Mesner, D. (1967). “Sets of Disjoint Lines in PG(3, q),”
Canadian Journal of Mathematics, 19, 273-280.

Wednesday, February 17, 2021

Raiders of the Lost Coordinates . . .

Continues.

From other posts tagged Tetrahedron vs. Square —

"There is  such a thing as a 4-set."
— Saying adapted from a 1962 young-adult novel.

Illustration (central detail  a  from the above tetrahedral figure) —

A Harvard Variation
from Timothy Leary —

The topics of Harvard and Leary suggest some other cultural
history, from The Coasters"Poison Ivy" and "Yakety Yak."

Tuesday, December 29, 2020

Raiders of the Lost Coordinates

Filed under: General — Tags: , — m759 @ 2:06 pm

Variations on the title theme —

Novus Ordo Seclorum — Harold Bloom and the Tetrahedral Model of PG(3,2)

Wednesday, September 9, 2020

Portrait with Holocron

Filed under: General — Tags: , , — m759 @ 11:08 pm

Novus Ordo Seclorum — Harold Bloom and the Tetrahedral Model of PG(3,2)

Sith Holocron in 'Star Wars Rebels'

For a Jedi  holocron of sorts, see this  journal on the above YouTube date

Tuesday, October 15, 2019

Inside the Fire Temple

Filed under: General — Tags: , — m759 @ 8:00 pm

(The title refers to Log24 posts now tagged Fire Temple.)

In memory of a  New Yorker  cartoonist who
reportedly died at 97 on October 3, 2019  …

"Read something that means something." 
New Yorker  advertising slogan

From posts tagged Tetrahedron vs. Square

This  journal on October 3

"There is  such a thing as a 4-set."
— Saying adapted from a 1962 young-adult novel.

Illustration (central detail   from the above tetrahedral figure) —

Friday, September 27, 2019

Algebra for Schoolgirls

Filed under: General — Tags: , , — m759 @ 8:37 am

The 15 points of the finite projective 3-space PG(3,2)
arranged in tetrahedral form:

The letter labels, but not the tetrahedral form,
are from The Axioms of Projective Geometry , by
Alfred North Whitehead (Cambridge U. Press, 1906).

The above space PG(3,2), because of its close association with
Kirkman's schoolgirl problem, might be called "schoolgirl space."

Screen Rant  on July 31, 2019:

A Google Search sidebar this morning:

Apocalypse Soon!

Tuesday, September 24, 2019

Emissary

Filed under: General — Tags: , , — m759 @ 8:04 pm
 

Thursday, September 12, 2019

Tetrahedral Structures

Filed under: General — Tags:  —
m759 @ 8:11 PM 

In memory of a Church emissary  who reportedly died on  September 4 . . . .

Playing with shapes related to some 1906 work of Whitehead:

Sunday, September 22, 2019

Simplex Sigillum Veri

Filed under: General — m759 @ 5:21 am

(Continued from November 27, 2010.)

The previous post suggests a review of a Tilman Piesk
illustration, with the general form of a 4-simplex, from
the Wikipedia article titled Simplex .  As the article 
notes, the lines shown connecting points are those of a
tesseract.

Tetrahedral tesseract adapted from Piesk illustration in Wikipedia 'Simplex' article

Saturday, September 21, 2019

Annals of Random Fandom

Filed under: General — Tags: , , , — m759 @ 5:46 pm

For Dan Brown fans …

… and, for fans of The Matrix, another tale
from the above death date: May 16, 2019 —

An illustration from the above
Miracle Octad Generator post:

Related mathematics — Tetrahedron vs. Square.

Wednesday, September 4, 2019

The Importance of Responding Earnestly

Filed under: General — m759 @ 6:39 am

"Letting someone speak does not mean we condone
what they are saying, and it does not absolve that person
or group from consequences. And when we disagree,
we have an obligation to respond earnestly."

— Harvard College dean Rakesh Khurana in an undated
"Welcome Home" message to returning students (Fall, 2019)

An earnest response from this journal —

Wednesday, July 17, 2019

The Artsy Quantum Realm

Filed under: General — Tags: , — m759 @ 6:38 pm
 

arXiv.org > quant-ph > arXiv:1905.06914 

Quantum Physics

Placing Kirkman's Schoolgirls and Quantum Spin Pairs on the Fano Plane: A Rainbow of Four Primary Colors, A Harmony of Fifteen Tones

J. P. Marceaux, A. R. P. Rau

(Submitted on 14 May 2019)

A recreational problem from nearly two centuries ago has featured prominently in recent times in the mathematics of designs, codes, and signal processing. The number 15 that is central to the problem coincidentally features in areas of physics, especially in today's field of quantum information, as the number of basic operators of two quantum spins ("qubits"). This affords a 1:1 correspondence that we exploit to use the well-known Pauli spin or Lie-Clifford algebra of those fifteen operators to provide specific constructions as posed in the recreational problem. An algorithm is set up that, working with four basic objects, generates alternative solutions or designs. The choice of four base colors or four basic chords can thus lead to color diagrams or acoustic patterns that correspond to realizations of each design. The Fano Plane of finite projective geometry involving seven points and lines and the tetrahedral three-dimensional simplex of 15 points are key objects that feature in this study.

Comments:16 pages, 10 figures

Subjects:Quantum Physics (quant-ph)

Cite as:arXiv:1905.06914 [quant-ph]

 (or arXiv:1905.06914v1 [quant-ph] for this version)

Submission history

From: A. R. P. Rau [view email] 
[v1] Tue, 14 May 2019 19:11:49 UTC (263 KB)

See also other posts tagged Tetrahedron vs. Square.

Tuesday, July 9, 2019

Perception of Space

Filed under: General — Tags: , , , — m759 @ 10:45 am

(Continued)

The three previous posts have now been tagged . . .

Tetrahedron vs. Square  and  Triangle vs. Cube.

Related material —

Tetrahedron vs. Square:

Labeling the Tetrahedral Model  (Click to enlarge) —

Triangle vs. Cube:

and, from the date of the above John Baez remark —

Sunday, July 7, 2019

Schoolgirl Problem

Filed under: General — Tags: , , , — m759 @ 11:18 pm

Anonymous remarks on the schoolgirl problem at Wikipedia —

"This solution has a geometric interpretation in connection with 
Galois geometry and PG(3,2). Take a tetrahedron and label its
vertices as 0001, 0010, 0100 and 1000. Label its six edge centers
as the XOR of the vertices of that edge. Label the four face centers
as the XOR of the three vertices of that face, and the body center
gets the label 1111. Then the 35 triads of the XOR solution correspond
exactly to the 35 lines of PG(3,2). Each day corresponds to a spread
and each week to a packing
."

See also Polster + Tetrahedron in this  journal.

There is a different "geometric interpretation in connection with
Galois geometry and PG(3,2)" that uses a square  model rather
than a tetrahedral  model. The square  model of PG(3,2) last
appeared in the schoolgirl-problem article on Feb. 11, 2017, just
before a revision that removed it.

Wednesday, March 6, 2019

The Relativity Problem and Burkard Polster

Filed under: General,Geometry — Tags: — m759 @ 11:28 am
 

From some 1949 remarks of Weyl—

"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."

— Hermann Weyl, "Relativity Theory as a Stimulus in Mathematical Research," Proceedings of the American Philosophical Society , Vol. 93, No. 7, Theory of Relativity in Contemporary Science: Papers Read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949  (Dec. 30, 1949), pp. 535-541

Weyl in 1946—:

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

For some context, see Relativity Problem  in this journal.

In the case of PG(3,2), there is a choice of geometric models 
to be coordinatized: two such models are the traditional
tetrahedral model long promoted by Burkard Polster, and
the square model of Steven H. Cullinane.

The above Wikipedia section tacitly (and unfairly) assumes that
the model being coordinatized is the tetrahedral model. For
coordinatization of the square model, see (for instance) the webpage
Finite Relativity.

For comparison of the two models, see a figure posted here on
May 21, 2014 —

Labeling the Tetrahedral Model  (Click to enlarge) —

"Citation needed" —

The anonymous characters who often update the PG(3,2) Wikipedia article
probably would not consider my post of 2014, titled "The Tetrahedral
Model of PG(3,2)
," a "reliable source."

Sunday, July 1, 2018

Deutsche Ordnung

The title is from a phrase spoken, notably, by Yul Brynner
to Christopher Plummer in the 1966 film “Triple Cross.”

Related structures —

Greg Egan’s animated image of the Klein quartic —

For a smaller tetrahedral arrangement, within the Steiner quadruple
system of order 8 modeled by the eightfold cube, see a book chapter
by Michael Huber of Tübingen

Steiner quadruple system in eightfold cube

For further details, see the June 29 post Triangles in the Eightfold Cube.

See also, from an April 2013 philosophical conference:

Abstract for a talk at the City University of New York:

The Experience of Meaning
Jan Zwicky, University of Victoria
09:00-09:40 Friday, April 5, 2013

Once the question of truth is settled, and often prior to it, what we value in a mathematical proof or conjecture is what we value in a work of lyric art: potency of meaning. An absence of clutter is a feature of such artifacts: they possess a resonant clarity that allows their meaning to break on our inner eye like light. But this absence of clutter is not tantamount to ‘being simple’: consider Eliot’s Four Quartets  or Mozart’s late symphonies. Some truths are complex, and they are simplified  at the cost of distortion, at the cost of ceasing to be  truths. Nonetheless, it’s often possible to express a complex truth in a way that precipitates a powerful experience of meaning. It is that experience we seek — not simplicity per se , but the flash of insight, the sense we’ve seen into the heart of things. I’ll first try to say something about what is involved in such recognitions; and then something about why an absence of clutter matters to them.

For the talk itself, see a YouTube video.

The conference talks also appear in a book.

The book begins with an epigraph by Hilbert

Tuesday, December 26, 2017

Raiders of the Lost Stone

Filed under: General,Geometry — Tags: , , — m759 @ 8:48 pm

(Continued

 

Two Students of Structure

A comment on Sean Kelly's Christmas Morning column on "aliveness"
in the New York Times  philosophy series The Stone  —

Diana Senechal's 1999 doctoral thesis at Yale was titled
"Diabolical Structures in the Poetics of Nikolai Gogol."

Her mother, Marjorie Senechal, has written extensively on symmetry
and served as editor-in-chief of The Mathematical Intelligencer .
From a 2013 memoir by Marjorie Senechal —

"While I was in Holland my enterprising student assistant at Smith had found, in Soviet Physics – Crystallography, an article by N. N. Sheftal' on tetrahedral penetration twins. She gave it to me on my return. It was just what I was looking for. The twins Sheftal' described had evidently begun as (111) contact twins, with the two crystallites rotated 60o with respect to one another. As they grew, he suggested, each crystal overgrew the edges of the other and proceeded to spread across the adjacent facet.  When all was said and done, they looked like they'd grown through each other, but the reality was over-and-around. Brilliant! I thought. Could I apply this to cubes? No, evidently not. Cube facets are all (100) planes. But . . . these crystals might not have been cubes in their earliest stages, when twinning occurred! I wrote a paper on "The mechanism of certain growth twins of the penetration type" and sent it to Martin Buerger, editor of Neues Jarbuch für Mineralogie. This was before the Wrinch symposium; I had never met him. Buerger rejected it by return mail, mostly on the grounds that I hadn't quoted any of Buerger's many papers on twinning. And so I learned about turf wars in twin domains. In fact I hadn't read his papers but I quickly did. I added a reference to one of them, the paper was published, and we became friends.[5]

After reading Professor Sheftal's paper I wrote to him in Moscow; a warm and encouraging correspondence ensued, and we wrote a paper together long distance.[6] Then I heard about the scientific exchanges between the Academies of Science of the USSR and USA. I applied to spend a year at the Shubnikov Institute for Crystallography, where Sheftal' worked. I would, I proposed, study crystal growth with him, and color symmetry with Koptsik. To my delight, I was accepted for an 11-month stay. Of course the children, now 11 and 14, would come too and attend Russian schools and learn Russian; they'd managed in Holland, hadn't they? Diana, my older daughter, was as delighted as I was. We had gone to Holland on a Russian boat, and she had fallen in love with the language. (Today she holds a Ph.D. in Slavic Languages and Literature from Yale.) . . . . 
. . .
 we spent the academic year 1978-79 in Moscow.

Philosophy professors and those whose only interest in mathematics
is as a path to the occult may consult the Log24 posts tagged Tsimtsum.

Tuesday, May 2, 2017

Image Albums

Filed under: General,Geometry — Tags: , , , , , — m759 @ 1:05 pm

Pinterest boards uploaded to the new m759.net/piwigo

Diamond Theorem 

Diamond Theorem Correlation

Miracle Octad Generator

The Eightfold Cube

Six-Set Geometry

Diamond Theory Cover

Update of May 2 —

Four-Color Decomposition

Binary Galois Spaces

The Galois Tesseract

Update of May 3 —

Desargues via Galois

The Tetrahedral Model

Solomon's Cube

Update of May 8 —

Art Space board created at Pinterest

Sunday, December 18, 2016

Two Models of the Small Desargues Configuration

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

Click image to enlarge.

Polster's tetrahedral model of the small Desargues configuration

See also the large  Desargues configuration in this journal.

Saturday, December 10, 2016

Folk Etymology

Images from Burkard Polster's Geometrical Picture Book

See as well in this journal the large  Desargues configuration, with
15 points and 20 lines instead of 10 points and 10 lines as above.

Exercise:  Can the large Desargues configuration be formed
by adding 5 points and 10 lines to the above Polster model
of the small configuration in such a way as to preserve
the small-configuration model's striking symmetry?  
(Note: The related figure below from May 21, 2014, is not
necessarily very helpful. Try the Wolfram Demonstrations
model
, which requires a free player download.)

Labeling the Tetrahedral Model (Click to enlarge) —

Related folk etymology (see point a  above) —

Related literature —

The concept  of "fire in the center" at The New Yorker , 
issue dated December 12, 2016, on pages 38-39 in the
poem by Marsha de la O titled "A Natural History of Light."

Cézanne's Greetings.

Thursday, September 15, 2016

The Smallest Perfect Number/Universe

Filed under: General,Geometry — Tags: , , — m759 @ 6:29 am

The smallest perfect number,* six, meets
"the smallest perfect universe,"** PG(3,2).

IMAGE- Geometry of the Six-Set, Steven H. Cullinane, April 23, 2013

  * For the definition of "perfect number," see any introductory
    number-theory text that deals with the history of the subject.
** The phrase "smallest perfect universe" as a name for PG(3,2),
     the projective 3-space over the 2-element Galois field GF(2),
     was coined by math writer Burkard Polster. Cullinane's square
     model of PG(3,2) differs from the earlier tetrahedral model
     discussed by Polster.

Monday, May 30, 2016

Perfect Universe

Filed under: General,Geometry — Tags: — m759 @ 7:00 pm

(A sequel to the previous post, Perfect Number)

Since antiquity,  six has been known as
"the smallest perfect number." The word "perfect"
here means that a number is the sum of its 
proper divisors — in the case of six: 1, 2, and 3.

The properties of a six-element set (a "6-set") 
divided into three 2-sets and divided into two 3-sets
are those of what Burkard Polster, using the same 
adjective in a different sense, has called 
"the smallest perfect universe" — PG(3,2), the projective
3-dimensional space over the 2-element Galois field.

A Google search for the phrase "smallest perfect universe"
suggests a turnaround in meaning , if not in finance, 
that might please Yahoo CEO Marissa Mayer on her birthday —

The semantic  turnaround here in the meaning  of "perfect"
is accompanied by a model  turnaround in the picture  of PG(3,2) as
Polster's tetrahedral  model is replaced by Cullinane's square  model.

Further background from the previous post —

See also Kirkman's Schoolgirl Problem.

Thursday, January 21, 2016

Dividing the Indivisible

Filed under: General,Geometry — Tags: — m759 @ 11:00 am

My statement yesterday morning that the 15 points
of the finite projective space PG(3,2) are indivisible 
was wrong.  I was misled by quoting the powerful
rhetoric of Lincoln Barnett (LIFE magazine, 1949).

Points of Euclidean  space are of course indivisible
"A point is that which has no parts" (in some translations).

And the 15 points of PG(3,2) may be pictured as 15
Euclidean  points in a square array (with one point removed)
or tetrahedral array (with 11 points added).

The geometry of  PG(3,2) becomes more interesting,
however, when the 15 points are each divided  into
several parts. For one approach to such a division,
see Mere Geometry. For another approach, click on the
image below.

IMAGE- 'Nocciolo': A 'kernel' for Pascal's Hexagrammum Mysticum: The 15 2-subsets of a 6-set as points in a Galois geometry.

Wednesday, December 3, 2014

Pyramid Dance

Filed under: General,Geometry — Tags: , — m759 @ 10:00 am

Oslo artist Josefine Lyche has a new Instagram post,
this time on pyramids (the monumental kind).

My response —

Wikipedia's definition of a tetrahedron as a
"triangle-based pyramid"

and remarks from a Log24 post of August 14, 2013 :

Norway dance (as interpreted by an American)

IMAGE- 'The geometry of the dance' is that of a tetrahedron, according to Peter Pesic

I prefer a different, Norwegian, interpretation of "the dance of four."

Related material:
The clash between square and tetrahedral versions of PG(3,2).

See also some of Burkard Polster's triangle-based pyramids
and a 1983 triangle-based pyramid in a paper that Polster cites —

(Click image below to enlarge.)

Some other illustrations that are particularly relevant
for Lyche, an enthusiast of magic :

From On Art and Magic (May 5, 2011) —

http://www.log24.com/log/pix11A/110505-ThemeAndVariations-Hofstadter.jpg

http://www.log24.com/log/pix11A/110505-BlockDesignTheory.jpg

Mathematics

http://www.log24.com/log/pix11A/110505-WikipediaFanoPlane.jpg

The Fano plane block design

Magic

http://www.log24.com/log/pix11A/110505-DeathlyHallows.jpg

The Deathly Hallows  symbol—
Two blocks short of  a design.

 

(Updated at about 7 PM ET on Dec. 3.)

Tuesday, October 14, 2014

The Judas Seat

Filed under: General,Geometry — m759 @ 6:30 pm

My own contribution to an event of the Mathematical Association of America:

Rick’s Tricky Six  and  The Judas Seat.

The Polster tetrahedral model of a finite geometry appears, notably,
in a Mathematics Magazine  article from April 2009—

IMAGE- Figure from article by Alex Fink and Richard Guy on how the symmetric group of degree 5 'sits specially' in the symmetric group of degree 6

Wednesday, August 14, 2013

ART WARS

Filed under: General,Geometry — m759 @ 11:00 am

(Continued from 24 hours ago and from May 9, 2012)

Quoted 24 hours ago in this journal—

Remark by Aldous Huxley on an artist's work:

"All the turmoil, all the emotions of the scenes
have been digested by the mind into a
grave intellectual whole."

Quoted in a video uploaded on May 9, 2012:

Norway Toilet Scene
IMAGE- Privy scene from 'Headhunters'

Norway dance (as interpreted by an American)

IMAGE- 'The geometry of the dance' is that of a tetrahedron, according to Peter Pesic

I prefer a different, Norwegian, interpretation of "the dance of four."

Related material: The clash between square and tetrahedral versions of PG(3,2).

Sunday, August 11, 2013

Demonstrations

Filed under: General,Geometry — Tags: , — m759 @ 7:00 pm

IMAGE- Wolfram Demonstrations, '15 Point Projective Space'

IMAGE- From 'Oblivion' (2013), the Mother Ship

"Welcome home, Jack."

Monday, November 5, 2012

Sitting Specially

Filed under: General,Geometry — Tags: , — m759 @ 5:01 am

Some webpages at finitegeometry.org discuss
group actions on Sylvester’s duads and synthemes.

Those pages are based on the square model of
PG(3,2) described in the 1980’s by Steven H. Cullinane.

A rival tetrahedral model of PG(3,2) was described
in the 1990’s by Burkard Polster.

Polster’s tetrahedral model appears, notably, in
a Mathematics Magazine  article from April 2009—

IMAGE- Figure from article by Alex Fink and Richard Guy on how the symmetric group of degree 5 'sits specially' in the symmetric group of degree 6

Click for a pdf of the article.

Related material:

The Religion of Cubism” (May 9, 2003) and “Art and Lies
(Nov. 16, 2008).

This  post was suggested by following the link in yesterday’s
Sunday School post  to High White Noon, and the link from
there to A Study in Art Education, which mentions the date of
Rudolf Arnheim‘s death, June 9, 2007. This journal
on that date

Cryptology

IMAGE- The ninefold square

— The Delphic Corporation

The Fink-Guy article was announced in a Mathematical
Association of America newsletter dated April 15, 2009.

Those who prefer narrative to mathematics may consult
a Log24 post from a few days earlier, “Where Entertainment is God”
(April 12, 2009), and, for some backstory, The Judas Seat
(February 16, 2007).

Saturday, June 16, 2012

Chiral Problem

Filed under: General,Geometry — Tags: , , , — m759 @ 1:06 am

In memory of William S. Knowles, chiral chemist, who died last Wednesday (June 13, 2012)—

Detail from the Harvard Divinity School 1910 bookplate in yesterday morning's post

"ANDOVERHARVARD THEOLOGICAL LIBRARY"

Detail from Knowles's obituary in this  morning's New York Times

William Standish Knowles was born in Taunton, Mass., on June 1, 1917. He graduated a year early from the Berkshire School, a boarding school in western Massachusetts, and was admitted to Harvard. But after being strongly advised that he was not socially mature enough for college, he did a second senior year of high school at another boarding school, Phillips Academy in Andover, N.H.

Dr. Knowles graduated from Harvard with a bachelor’s degree in chemistry in 1939….

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

From Pilate Goes to Kindergarten

The six congruent quaternion actions illustrated above are based on the following coordinatization of the eightfold cube

Problem: Is there a different coordinatization
 that yields greater symmetry in the pictures of
quaternion group actions?

A paper written in a somewhat similar spirit—

"Chiral Tetrahedrons as Unitary Quaternions"—

ABSTRACT: Chiral tetrahedral molecules can be dealt [with] under the standard of quaternionic algebra. Specifically, non-commutativity of quaternions is a feature directly related to the chirality of molecules….

Wednesday, October 12, 2011

High White Noon

Filed under: General,Geometry — m759 @ 12:00 pm

Grid from a post linked to in yesterday's 24 Hour DeLillo

The 3x3 square

A Study in Art Education

For an example of this grid as slow art , consider the following—

"One can show that the binary tetrahedral group
is isomorphic to the special linear group SL(2,3)—
the group of all 2×2 matrices over the finite field F3
with unit determinant." —Wikipedia

As John Baez has noted, these two groups have the same structure as the geometric 24-cell.

For the connection of the grid to the groups and the 24-cell, see Visualizing GL(2,p).

Related material—

The 3×3 grid has been called a symbol of Apollo (Greek god of reason and of the sun).

"This is where we sat through his hushed hour,
a torchlit sky, the closeness of hills barely visible
at high white noon." — Don DeLillo, Point Omega

Friday, May 21, 2010

The Oslo Version

Filed under: General,Geometry — Tags: — m759 @ 9:29 am

From an art exhibition in Oslo last year–

Image-- Josefine Lyche's combination of Polster's phrase with Cullinane's images in her gallery show, Oslo, 2009-- 'The Smallest Perfect Universe -- Points and Hyperplanes'

The artist's description above is not in correct left-to-right order.
Actually the hyperplanes above are at left, the points at right.

Compare to "Picturing the Smallest Projective 3-Space,"
a note of mine from April 26, 1986—

Image-- Points and hyperplanes in the finite 3-space PG(3,2), April 1986, by Cullinane

Click for the original full version.

Compare also to Burkard Polster's original use of
the phrase "the smallest perfect universe."

Polster's tetrahedral model of points and hyperplanes
is quite different from my own square version above.

See also Cullinane on Polster.

Here are links to the gallery press release
and the artist's own photos.

Friday, July 25, 2008

Friday July 25, 2008

56 Triangles

Greg Egan's drawing of the 56 triangles on the Klein quartic 3-hole torus

John Baez on
Klein's quartic:

"This wonderful picture was drawn by Greg Egan with the help of ideas from Mike Stay and Gerard Westendorp. It's probably the best way for a nonmathematician to appreciate the symmetry of Klein's quartic. It's a 3-holed torus, but drawn in a way that emphasizes the tetrahedral symmetry lurking in this surface! You can see there are 56 triangles: 2 for each of the tetrahedron's 4 corners, and 8 for each of its 6 edges."

Exercise:

The Eightfold Cube: The Beauty of Klein's Simple Group

Click on image for further details.

Note that if eight points are arranged
in a cube (like the centers of the
eight subcubes in the figure above),
there are 56 triangles formed by
the 8 points taken 3 at a time.

Baez's discussion says that the Klein quartic's 56 triangles can be partitioned into 7 eight-triangle Egan "cubes" that correspond to the 7 points of the Fano plane in such a way that automorphisms of the Klein quartic correspond to automorphisms of the Fano plane. Show that the 56 triangles within the eightfold cube can also be partitioned into 7 eight-triangle sets that correspond to the 7 points of the Fano plane in such a way that (affine) transformations of the eightfold cube induce (projective) automorphisms of the Fano plane.

Thursday, August 25, 2005

Thursday August 25, 2005

Filed under: General,Geometry — m759 @ 3:09 pm
Analogical
Train of Thought

Part I: The 24-Cell

From S. H. Cullinane,
 Visualizing GL(2,p),
 March 26, 1985–

Visualizing the
binary tetrahedral group
(the 24-cell):

The image “http://www.log24.com/theory/images/VisuBinaryTetGrp.jpg” cannot be displayed, because it contains errors.

Another representation of
the 24-cell
:

The image “http://www.log24.com/theory/images/24-cell.jpg” cannot be displayed, because it contains errors.

 From John Baez,
This Week’s Finds in
Mathematical Physics (Week 198)
,”
September 6, 2003: 

Noam Elkies writes to John Baez:

Hello again,

You write:

[…]

“I’d like to wrap up with a few small comments about last Week.  There I said a bit about a 24-element group called the ‘binary tetrahedral group’, a 24-element group called SL(2,Z/3), and the vertices of a regular polytope in 4 dimensions called the ’24-cell’.  The most important fact is that these are all the same thing! And I’ve learned a bit more about this thing from here:”

[…]

Here’s yet another way to see this: the 24-cell is the subgroup of the unit quaternions (a.k.a. SU(2)) consisting of the elements of norm 1 in the Hurwitz quaternions – the ring of quaternions obtained from the Z-span of {1,i,j,k} by plugging up the holes at (1+i+j+k)/2 and its <1,i,j,k> translates. Call this ring A. Then this group maps injectively to A/3A, because for any g,g’ in the group |g-g’| is at most 2 so g-g’ is not in 3A unless g=g’. But for any odd prime p the (Z/pZ)-algebra A/pA is isomorphic with the algebra of 2*2 matrices with entries in Z/pZ, with the quaternion norm identified with the determinant. So our 24-element group injects into SL2(Z/3Z) – which is barely large enough to accommodate it. So the injection must be an isomorphism.

Continuing a bit longer in this vein: this 24-element group then injects into SL2(Z/pZ) for any odd prime p, but this injection is not an isomorphism once p>3. For instance, when p=5 the image has index 5 – which, however, does give us a map from SL2(Z/5Z) to the symmetric group of order 5, using the action of SL2(Z/5Z) by conjugation on the 5 conjugates of the 24-element group. This turns out to be one way to see the isomorphism of PSL2(Z/5Z) with the alternating group A5.

Likewise the octahedral and icosahedral groups S4 and A5 can be found in PSL2(Z/7Z) and PSL2(Z/11Z), which gives the permutation representations of those two groups on 7 and 11 letters respectively; and A5 is also an index-6 subgroup of PSL2(F9), which yields the identification of that group with A6.

NDE


The enrapturing discoveries of our field systematically conceal, like footprints erased in the sand, the analogical train of thought that is the authentic life of mathematics – Gian-Carlo Rota

Like footprints erased in the sand….

Part II: Discrete Space

The James Joyce School
 of Theoretical Physics
:


Log24, May 27, 2004

  “Hello! Kinch here. Put me on to Edenville. Aleph, alpha: nought, nought, one.” 

  “A very short space of time through very short times of space….
   Am I walking into eternity along Sandymount strand?”

   — James Joyce, Ulysses, Proteus chapter

A very short space of time through very short times of space….

   “It is demonstrated that space-time should possess a discrete structure on Planck scales.”

   — Peter Szekeres, abstract of Discrete Space-Time

   “A theory…. predicts that space and time are indeed made of discrete pieces.”

   — Lee Smolin in Atoms of Space and Time (pdf), Scientific American, Jan. 2004

   “… a fundamental discreteness of spacetime seems to be a prediction of the theory….”

   — Thomas Thiemann, abstract of Introduction to Modern Canonical Quantum General Relativity

   “Theories of discrete space-time structure are being studied from a variety of perspectives.”

   — Quantum Gravity and the Foundations of Quantum Mechanics at Imperial College, London

Disclaimer:

The above speculations by physicists
are offered as curiosities.
I have no idea whether
 any of them are correct.

Related material:

Stephen Wolfram offers a brief
History of Discrete Space.

For a discussion of space as discrete
by a non-physicist, see John Bigelow‘s
Space and Timaeus.

Part III: Quaternions
in a Discrete Space

Apart from any considerations of
physics, there are of course many
purely mathematical discrete spaces.
See Visible Mathematics, continued
 (Aug. 4, 2005):

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

Saturday, August 6, 2005

Saturday August 6, 2005

Filed under: General,Geometry — Tags: , — m759 @ 9:00 am
For André Weil on
the seventh anniversary
of his death:

 A Miniature
Rosetta Stone

The image “http://www.log24.com/log/pix05B/grid3x3med.bmp” cannot be displayed, because it contains errors.

In a 1940 letter to his sister Simone,  André Weil discussed a sort of “Rosetta stone,” or trilingual text of three analogous parts: classical analysis on the complex field, algebraic geometry over finite fields, and the theory of number fields.  

John Baez discussed (Sept. 6, 2003) the analogies of Weil, and he himself furnished another such Rosetta stone on a much smaller scale:

“… a 24-element group called the ‘binary tetrahedral group,’ a 24-element group called ‘SL(2,Z/3),’ and the vertices of a regular polytope in 4 dimensions called the ’24-cell.’ The most important fact is that these are all the same thing!”

For further details, see Wikipedia on the 24-cell, on special linear groups, and on Hurwitz quaternions,

The group SL(2,Z/3), also known as “SL(2,3),” is of course derived from the general linear group GL(2,3).  For the relationship of this group to the quaternions, see the Log24 entry for August 4 (the birthdate of the discoverer of quaternions, Sir William Rowan Hamilton).

The 3×3 square shown above may, as my August 4 entry indicates, be used to picture the quaternions and, more generally, the 48-element group GL(2,3).  It may therefore be regarded as the structure underlying the miniature Rosetta stone described by Baez.

“The typical example of a finite group is GL(n,q), the general linear group of n dimensions over the field with q elements. The student who is introduced to the subject with other examples is being completely misled.”

 — J. L. Alperin, book review,
    Bulletin (New Series) of the American
    Mathematical Society 10 (1984), 121

Sunday, April 25, 2004

Sunday April 25, 2004

Filed under: General,Geometry — m759 @ 3:31 pm

Small World

Added a note to 4×4 Geometry:

The 4×4 square model  lets us visualize the projective space PG(3,2) as well as the affine space AG(4,2).  For tetrahedral and circular models of PG(3,2), see the work of Burkard Polster.  The following is from an advertisement of a talk by Polster on PG(3,2).

The Smallest Perfect Universe

“After a short introduction to finite geometries, I’ll take you on a… guided tour of the smallest perfect universe — a complex universe of breathtaking abstract beauty, consisting of only 15 points, 35 lines and 15 planes — a space whose overall design incorporates and improves many of the standard features of the three-dimensional Euclidean space we live in….

Among mathematicians our perfect universe is known as PG(3,2) — the smallest three-dimensional projective space. It plays an important role in many core mathematical disciplines such as combinatorics, group theory, and geometry.”

— Burkard Polster, May 2001

Powered by WordPress