Tuesday, November 25, 2014

Euclidean-Galois Interplay

Filed under: General,Geometry — Tags: , — m759 @ 11:00 AM

For previous remarks on this topic, as it relates to
symmetry axes of the cube, see previous posts tagged Interplay.

The above posts discuss, among other things, the Galois
projective plane of order 3, with 13 points and 13 lines.

Oxley's 2004 drawing of the 13-point projective plane

These Galois points and lines may be modeled in Euclidean geometry
by the 13 symmetry axes and the 13 rotation planes
of the Euclidean cube. They may also be modeled in Galois geometry
by subsets of the 3x3x3 Galois cube (vector 3-space over GF(3)).


   The 3×3×3 Galois Cube 

Exercise: Is there any such analogy between the 31 points of the
order-5 Galois projective plane and the 31 symmetry axes of the
Euclidean dodecahedron and icosahedron? Also, how may the
31 projective points  be naturally pictured as lines  within the 
5x5x5 Galois cube (vector 3-space over GF(5))?

Update of Nov. 30, 2014 —

For background to the above exercise, see
pp. 16-17 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998), esp.
the citation to a 1983 article by Lemay.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress