Log24

Sunday, August 6, 2017

Dark Tower Theology

Filed under: Uncategorized — m759 @ 9:00 PM

In memory of a TV gunslinger who reportedly died Thursday, August 3, 2017 . . .

From this journal on that day (posts now tagged Dark Tower Theology) —

"The concept under review is that of the Holy Trinity.
  See also, in this  journal, Cube Trinity.
  For a simpler Trinity model, see the three-point line  "

"Would that it were so simple."

Thursday, August 3, 2017

Poetic Theology at the New York Times

Filed under: Uncategorized — Tags: — m759 @ 12:19 PM

Or:  Trinity Test Site

From the New York Times Book Review  of
next Sunday, August 6, 2017 —

"In a more conventional narrative sequence,
even a sequence of poems,
this interpenetration would acquire
sequence and evolution." [Link added.]

The concept under review is that of the Holy Trinity.

See also, in this  journal, Cube Trinity.

For a simpler Trinity model, see the three-point line  

Monday, March 28, 2016

De Trinitate

Filed under: Uncategorized — m759 @ 12:00 AM

Friday, March 11, 2016

Spacey

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

"You know that in space you can move in three ways…."

See also Cube Trinity and Many Dimensions.

Tuesday, October 20, 2015

Verhexung

Filed under: Uncategorized — m759 @ 5:04 AM

"Die Philosophie ist ein Kampf gegen die Verhexung
unsres Verstandes durch die Mittel unserer Sprache."

— Philosophical Investigations  (1953),  Section 109

An example of Verhexung  from the René Guitart article in the previous post

See also Ein Kampf .

Thursday, January 8, 2015

ABC Verlag, Zurich

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM

IMAGE- Dust jacket, 'Conceptions of International Exhibitions,' by Hans Neuburg, ABC Verlag, Zurich, 1969

"The motive for metaphor, shrinking from
The weight of primary noon,
The A B C of being…." — Wallace Stevens

See also Cube Trinity in this journal.

Monday, September 1, 2014

Mathematics, Not Theology

Filed under: Uncategorized — m759 @ 5:00 PM

(Continued)

“A set having three members is a single thing
wholly constituted by its members but distinct from them.
After this, the theological doctrine of the Trinity as
‘three in one’ should be child’s play.”

— Max Black, Caveats and Critiques: Philosophical Essays
in Language, Logic, and Art
 , Cornell U. Press, 1975

IMAGE- The Trinity of Max Black (a 3-set, with its eight subsets arranged in a Hasse diagram that is also a cube)

“There is  such a thing as a three-set.”
— Saying adapted from a novel by Madeleine L’Engle

Thursday, January 24, 2013

Cube Space

Filed under: Uncategorized — Tags: — m759 @ 12:24 PM

For the late Cardinal Glemp of Poland,
who died yesterday, some links:

Tuesday, June 26, 2012

Looking Deeply

Filed under: Uncategorized — Tags: , — m759 @ 3:48 PM

Last night's post on The Trinity of Max Black  and the use of
the term "eightfold" by the Mathematical Sciences Research Institute
at Berkeley suggest a review of an image from Sept. 22, 2011

IMAGE- Eightfold cube with detail of triskelion structure

The triskele  detail above echoes a Buddhist symbol found,
for instance, on the Internet in an ad for meditation supplies—

Related remarks

http://www.spencerart.ku.edu/about/dialogue/fdpt.shtml

Mary Dusenbury (Radcliffe '64)—

"… I think a textile, like any work of art, holds a tremendous amount of information— technical, material, historical, social, philosophical— but beyond that, many works of art are very beautiful and they speak to us on many layers— our intellect, our heart, our emotions. I've been going to museums since I was a very small child, thinking about what I saw, and going back to discover new things, to see pieces that spoke very deeply to me, to look at them again, and to find more and more meaning relevant to me in different ways and at different times of my life. …

… I think I would suggest to people that first of all they just look. Linger by pieces they find intriguing and beautiful, and look deeply. Then, if something interests them, we have tried to put a little information around the galleries to give a bit of history, a bit of context, for each piece. But the most important is just to look very deeply."

http://en.wikipedia.org/wiki/Nikaya_Buddhism

According to Robert Thurman, the term "Nikāya Buddhism" was coined by Professor Masatoshi Nagatomi of Harvard University, as a way to avoid the usage of the term Hinayana.[12] "Nikaya Buddhism" is thus an attempt to find a more neutral way of referring to Buddhists who follow one of the early Buddhist schools, and their practice.

12. The Emptiness That is Compassion:
An Essay on Buddhist Ethics, Robert A. F. Thurman, 1980
[Religious Traditions , Vol. 4 No. 2, Oct.-Nov. 1981, pp. 11-34]

http://dsal.uchicago.edu/cgi-bin/philologic/getobject.pl?c.2:1:6.pali

Nikāya [Sk. nikāya, ni+kāya]
collection ("body") assemblage, class, group

http://en.wiktionary.org/wiki/नि

Sanskrit etymology for नि (ni)

From Proto-Indo-European *ni …

Prefix

नि (ni)

  • down
  • back
  • in, into

http://www.rigpawiki.org/index.php?title=Kaya

Kaya (Skt. kāya སྐུ་, Tib. ku Wyl. sku ) —
the Sanskrit word kaya literally means ‘body’
but can also signify dimension, field or basis.

སྐུ། (Wyl. sku ) n. Pron.: ku

structure, existentiality, founding stratum ▷HVG KBEU

gestalt ▷HVG LD

Note that The Trinity of Max Black  is a picture of  a set
i.e., of an "assemblage, class, group."

Note also the reference above to the word "gestalt."

"Was ist Raum, wie können wir ihn
erfassen und gestalten?"

Walter Gropius

Bright Black

Filed under: Uncategorized — Tags: — m759 @ 12:12 AM

“‘In the dictionary next to [the] word “bright,” you should see Paula’s picture,’ he said. ‘She was super smart, with a sparkling wit. … She had a beautiful sense of style and color.'”

— Elinor J. Brecher in The Miami Herald  on June 8, quoting Palm Beach Post writer John Lantigua on the late art historian Paula Hays Harper

This  journal on the date of her death—

IMAGE- The Trinity of Max Black (a 3-set, with its eight subsets arranged in a Hasse diagram that is also a cube)

For some simpleminded commentary, see László Lovász on the cube space.

Some less simpleminded commentary—

Was ist Raum, wie können wir ihn
erfassen und gestalten?”

Walter Gropius,

The Theory and
Organization of the
Bauhaus
  (1923)

Sunday, June 3, 2012

Child’s Play

Filed under: Uncategorized — Tags: — m759 @ 2:56 PM

(Continued)

“A set having three members is a single thing
wholly constituted by its members but distinct from them.
After this, the theological doctrine of the Trinity as
‘three in one’ should be child’s play.”

– Max Black, Caveats and Critiques: Philosophical Essays
in Language, Logic, and Art
, Cornell U. Press, 1975

IMAGE- The Trinity of Max Black (a 3-set, with its eight subsets arranged in a Hasse diagram that is also a cube)

Related material—

The Trinity Cube

IMAGE- The Trinity Cube (three interpenetrating planes that split the eightfold cube into its eight subcubes)

Saturday, February 25, 2012

The Rock

Filed under: Uncategorized — m759 @ 9:26 PM

(Continued. See previous post and Red and Gray in this journal.)

"Give faith a fighting chance." —Country song

From a post of June 3, 2007—

Related illustration relevant to theology—

http://www.log24.com/log/pix11A/110625-CubeHypostases.gif

For some background, see Cube Trinity in this journal.

For greater depth, see Levering's Scripture and Metaphysics:
Aquinas and the Renewal of Trinitarian Theology 
,
Blackwell, 2004, page 150.

Tuesday, January 10, 2012

Defining Form

Filed under: Uncategorized — Tags: , — m759 @ 9:00 AM

(Continued from Epiphany and from yesterday.)

Detail from the current American Mathematical Society homepage

http://www.log24.com/log/pix12/120110-AMS_page-Detail.jpg

Further detail, with a comparison to Dürer's magic square—

http://www.log24.com/log/pix12/120110-Donmoyer-Still-Life-Detail.jpg http://www.log24.com/log/pix12/120110-DurerSquare.jpg

The three interpenetrating planes in the foreground of Donmoyer's picture
provide a clue to the structure of the the magic square array behind them.

Group the 16 elements of Donmoyer's array into four 4-sets corresponding to the
four rows of Dürer's square, and apply the 4-color decomposition theorem.
Note the symmetry of the set of 3 line diagrams that result.

Now consider the 4-sets 1-4, 5-8, 9-12, and 13-16, and note that these
occupy the same positions in the Donmoyer square that 4-sets of
like elements occupy in the diamond-puzzle figure below—

http://www.log24.com/log/pix12/120110-DiamondPuzzleFigure.jpg

Thus the Donmoyer array also enjoys the structural  symmetry,
invariant under 322,560 transformations, of the diamond-puzzle figure.

Just as the decomposition theorem's interpenetrating lines  explain the structure
of a 4×4 square , the foreground's interpenetrating planes  explain the structure
of a 2x2x2 cube .

For an application to theology, recall that interpenetration  is a technical term
in that field, and see the following post from last year—

Saturday, June 25, 2011

 

Theology for Antichristmas

— m759 @ 12:00 PM

Hypostasis (philosophy)

"… the formula 'Three Hypostases  in one Ousia '
came to be everywhere accepted as an epitome
of the orthodox doctrine of the Holy Trinity.
This consensus, however, was not achieved
without some confusion…." —Wikipedia

http://www.log24.com/log/pix11A/110625-CubeHypostases.gif

Ousia

Click for further details:

http://www.log24.com/log/pix11A/110625-ProjectiveTrinitySm.jpg

 

Sunday, August 28, 2011

The Cosmic Part

Filed under: Uncategorized — Tags: — m759 @ 6:29 PM

Yesterday's midday post, borrowing a phrase from the theology of Marvel Comics,
offered Rubik's mechanical contrivance as a rather absurd "Cosmic Cube."

A simpler candidate for the "Cube" part of that phrase:

http://www.log24.com/log/pix10/100214-Cube2x2x2.gif

The Eightfold Cube

As noted elsewhere, a simple reflection group* of order 168 acts naturally on this structure.

"Because of their truly fundamental role in mathematics,
even the simplest diagrams concerning finite reflection groups
(or finite mirror systems, or root systems—
the languages are equivalent) have interpretations
of cosmological proportions."

Alexandre V. Borovik in "Coxeter Theory: The Cognitive Aspects"

Borovik has a such a diagram—

http://www.log24.com/log/pix11B/110828-BorovikM.jpg

The planes in Borovik's figure are those separating the parts of the eightfold cube above.

In Coxeter theory, these are Euclidean hyperplanes. In the eightfold cube, they represent three of seven projective points that are permuted by the above group of order 168.

In light of Borovik's remarks, the eightfold cube might serve to illustrate the "Cosmic" part of the Marvel Comics phrase.

For some related theological remarks, see Cube Trinity in this journal.

Happy St. Augustine's Day.

* I.e., one generated by reflections : group actions that fix a hyperplane pointwise. In the eightfold cube, viewed as a vector space of 3 dimensions over the 2-element Galois field, these hyperplanes are certain sets of four subcubes.

Monday, July 11, 2011

Accentuate the Positive

Filed under: Uncategorized — Tags: — m759 @ 2:02 PM

An image that may be viewed as
a cube with a "+" on each face—

http://www.log24.com/log/pix11B/110711-EightfoldCube.gif

The eightfold cube

http://www.log24.com/log/pix11B/110711-CubeHypostases.gif

Underlying structure

For the Pope and others on St. Benedict's Day
who prefer narrative to mathematics—

Saturday, June 25, 2011

Theology for Antichristmas

Filed under: Uncategorized — m759 @ 12:00 PM

Hypostasis (philosophy)

"… the formula 'Three Hypostases  in one Ousia '
came to be everywhere accepted as an epitome
of the orthodox doctrine of the Holy Trinity.
This consensus, however, was not achieved
without some confusion…." —Wikipedia

http://www.log24.com/log/pix11A/110625-CubeHypostases.gif

Ousia

Click for further details:

http://www.log24.com/log/pix11A/110625-ProjectiveTrinitySm.jpg

Tuesday, March 30, 2010

Eightfold Symmetries

Filed under: Uncategorized — Tags: — m759 @ 9:48 PM

Harvard Crimson headline today–
"Deconstructing Design"

Reconstructing Design

The phrase "eightfold way" in today's
previous entry has a certain
  graphic resonance…

For instance, an illustration from the
Wikipedia article "Noble Eightfold Path" —

Dharma Wheel from Wikipedia

Adapted detail–

Adapted Dharma Wheel detail

See also, from
St. Joseph's Day

Weyl's 'Symmetry,' the triquetrum, and the eightfold cube

Harvard students who view Christian symbols
with fear and loathing may meditate
on the above as a representation of
the Gankyil rather than of the Trinity.

Sunday, March 1, 2009

Sunday March 1, 2009

Filed under: Uncategorized — Tags: , — m759 @ 11:00 AM

Solomon's Cube
continued

"There is a book… called A Fellow of Trinity, one of series dealing with what is supposed to be Cambridge college life…. There are two heroes, a primary hero called Flowers, who is almost wholly good, and a secondary hero, a much weaker vessel, called Brown. Flowers and Brown find many dangers in university life, but the worst is a gambling saloon in Chesterton run by the Misses Bellenden, two fascinating but extremely wicked young ladies. Flowers survives all these troubles, is Second Wrangler and Senior Classic, and succeeds automatically to a Fellowship (as I suppose he would have done then). Brown succumbs, ruins his parents, takes to drink, is saved from delirium tremens during a thunderstorm only by the prayers of the Junior Dean, has much difficulty in obtaining even an Ordinary Degree, and ultimately becomes a missionary. The friendship is not shattered by these unhappy events, and Flowers's thoughts stray to Brown, with affectionate pity, as he drinks port and eats walnuts for the first time in Senior Combination Room."

— G. H. Hardy, A Mathematician's Apology

"The Solomon Key is the working title of an unreleased novel in progress by American author Dan Brown. The Solomon Key will be the third book involving the character of the Harvard professor Robert Langdon, of which the first two were Angels & Demons (2000) and The Da Vinci Code (2003)." —Wikipedia

"One has O+(6) ≅ S8, the symmetric group of order 8! …."

 — "Siegel Modular Forms and Finite Symplectic Groups," by Francesco Dalla Piazza and Bert van Geemen, May 5, 2008, preprint.

"The complete projective group of collineations and dualities of the [projective] 3-space is shown to be of order [in modern notation] 8! …. To every transformation of the 3-space there corresponds a transformation of the [projective] 5-space. In the 5-space, there are determined 8 sets of 7 points each, 'heptads' …."

— George M. Conwell, "The 3-space PG(3, 2) and Its Group," The Annals of Mathematics, Second Series, Vol. 11, No. 2 (Jan., 1910), pp. 60-76

"It must be remarked that these 8 heptads are the key to an elegant proof…."

— Philippe Cara, "RWPRI Geometries for the Alternating Group A8," in Finite Geometries: Proceedings of the Fourth Isle of Thorns Conference (July 16-21, 2000), Kluwer Academic Publishers, 2001, ed. Aart Blokhuis, James W. P. Hirschfeld, Dieter Jungnickel, and Joseph A. Thas, pp. 61-97
 

Saturday, December 6, 2008

Saturday December 6, 2008

Filed under: Uncategorized — m759 @ 2:01 PM
Another Opening,
Another Show

“While feasts of Saint Nicholas are not observed nationally, cities with strong German influences like Milwaukee, Cincinnati, and St. Louis celebrate St. Nick’s Day on a scale similar to the German custom.” —Wikipedia

A footprint from Germany:

Germany
Python-urllib
/504856559/item.html 12/6/2008
1:21 PM

The link in the above footprint leads
to an entry of July 5, 2006.

The access method:

The urllib Module

“The Python urllib module implements a fairly high-level abstraction for making any web object with a URL act like a Python file: i.e., you open it, and get back an object….”

For more pictures and discussion
of the object fetched by Python,
see Anti-Christmas 2007.

For a larger and more sophisticated
relative of that object,
 see Solomon’s Cube and
the related three presents
from the German link’s target:

Spellbound: A trinity of Christmas presents

1. Many Dimensions
2. Boggle
3. My Space

Sunday, August 3, 2008

Sunday August 3, 2008

Filed under: Uncategorized — Tags: — m759 @ 3:00 PM
Kindergarten
Geometry

Preview of a Tom Stoppard play presented at Town Hall in Manhattan on March 14, 2008 (Pi Day and Einstein's birthday):

The play's title, "Every Good Boy Deserves Favour," is a mnemonic for the notes of the treble clef EGBDF.

The place, Town Hall, West 43rd Street. The time, 8 p.m., Friday, March 14. One single performance only, to the tinkle– or the clang?– of a triangle. Echoing perhaps the clang-clack of Warsaw Pact tanks muscling into Prague in August 1968.

The “u” in favour is the British way, the Stoppard way, "EGBDF" being "a Play for Actors and Orchestra" by Tom Stoppard (words) and André Previn (music).

And what a play!– as luminescent as always where Stoppard is concerned. The music component of the one-nighter at Town Hall– a showcase for the Boston University College of Fine Arts– is by a 47-piece live orchestra, the significant instrument being, well, a triangle.

When, in 1974, André Previn, then principal conductor of the London Symphony, invited Stoppard "to write something which had the need of a live full-time orchestra onstage," the 36-year-old playwright jumped at the chance.

One hitch: Stoppard at the time knew "very little about 'serious' music… My qualifications for writing about an orchestra," he says in his introduction to the 1978 Grove Press edition of "EGBDF," "amounted to a spell as a triangle player in a kindergarten percussion band."

Jerry Tallmer in The Villager, March 12-18, 2008

Review of the same play as presented at Chautauqua Institution on July 24, 2008:

"Stoppard's modus operandi– to teasingly introduce numerous clever tidbits designed to challenge the audience."

Jane Vranish, Pittsburgh Post-Gazette, Saturday, August 2, 2008

"The leader of the band is tired
And his eyes are growing old
But his blood runs through
My instrument
And his song is in my soul."

— Dan Fogelberg

"He's watching us all the time."

Lucia Joyce

 

Finnegans Wake,
Book II, Episode 2, pp. 296-297:

I'll make you to see figuratleavely the whome of your eternal geomater. And if you flung her headdress on her from under her highlows you'd wheeze whyse Salmonson set his seel on a hexengown.1 Hissss!, Arrah, go on! Fin for fun!

1 The chape of Doña Speranza of the Nacion.

 

Log 24, Sept. 3, 2003:
 
Reciprocity

From my entry of Sept. 1, 2003:

"…the principle of taking and giving, of learning and teaching, of listening and storytelling, in a word: of reciprocity….

… E. M. Forster famously advised his readers, 'Only connect.' 'Reciprocity' would be Michael Kruger's succinct philosophy, with all that the word implies."

— William Boyd, review of Himmelfarb, a novel by Michael Kruger, in The New York Times Book Review, October 30, 1994

Last year's entry on this date: 

 

Today's birthday:
James Joseph Sylvester

"Mathematics is the music of reason."
— J. J. Sylvester

Sylvester, a nineteenth-century mathematician, coined the phrase "synthematic totals" to describe some structures based on 6-element sets that R. T. Curtis has called "rather unwieldy objects." See Curtis's abstract, Symmetric Generation of Finite Groups, John Baez's essay, Some Thoughts on the Number 6, and my website, Diamond Theory.

 

The picture above is of the complete graph K6  Six points with an edge connecting every pair of points… Fifteen edges in all.

Diamond theory describes how the 15 two-element subsets of a six-element set (represented by edges in the picture above) may be arranged as 15 of the 16 parts of a 4×4 array, and how such an array relates to group-theoretic concepts, including Sylvester's synthematic totals as they relate to constructions of the Mathieu group M24.

If diamond theory illustrates any general philosophical principle, it is probably the interplay of opposites….  "Reciprocity" in the sense of Lao Tzu.  See

Reciprocity and Reversal in Lao Tzu.

For a sense of "reciprocity" more closely related to Michael Kruger's alleged philosophy, see the Confucian concept of Shu (Analects 15:23 or 24) described in

Shu: Reciprocity.

Kruger's novel is in part about a Jew: the quintessential Jewish symbol, the star of David, embedded in the K6 graph above, expresses the reciprocity of male and female, as my May 2003 archives illustrate.  The star of David also appears as part of a graphic design for cubes that illustrate the concepts of diamond theory:

Click on the design for details.

Those who prefer a Jewish approach to physics can find the star of David, in the form of K6, applied to the sixteen 4×4 Dirac matrices, in

A Graphical Representation
of the Dirac Algebra
.

The star of David also appears, if only as a heuristic arrangement, in a note that shows generating partitions of the affine group on 64 points arranged in two opposing triplets.

Having thus, as the New York Times advises, paid tribute to a Jewish symbol, we may note, in closing, a much more sophisticated and subtle concept of reciprocity due to Euler, Legendre, and Gauss.  See

The Jewel of Arithmetic and


FinnegansWiki:

Salmonson set his seel:

"Finn MacCool ate the Salmon of Knowledge."

Wikipedia:

"George Salmon spent his boyhood in Cork City, Ireland. His father was a linen merchant. He graduated from Trinity College Dublin at the age of 19 with exceptionally high honours in mathematics. In 1841 at age 21 he was appointed to a position in the mathematics department at Trinity College Dublin. In 1845 he was appointed concurrently to a position in the theology department at Trinity College Dublin, having been confirmed in that year as an Anglican priest."

Related material:

Kindergarten Theology,

Kindergarten Relativity,

Arrangements for
56 Triangles
.

For more on the
arrangement of
triangles discussed
in Finnegans Wake,
see Log24 on Pi Day,
March 14, 2008.

Happy birthday,
Martin Sheen.
 

Sunday, May 25, 2008

Sunday May 25, 2008

Filed under: Uncategorized — Tags: — m759 @ 9:00 AM
Wechsler Cubes

 "Confusion is nothing new."
— Song lyric, Cyndi Lauper  

Part I:
Magister Ludi

Hermann Hesse's 1943 The Glass Bead Game (Picador paperback, Dec. 6, 2002, pp. 139-140)–

"For the present, the Master showed him a bulky memorandum, a proposal he had received from an organist– one of the innumerable proposals which the directorate of the Game regularly had to examine. Usually these were suggestions for the admission of new material to the Archives. One man, for example, had made a meticulous study of the history of the madrigal and discovered in the development of the style a curved that he had expressed both musically and mathematically, so that it could be included in the vocabulary of the Game. Another had examined the rhythmic structure of Julius Caesar's Latin and discovered the most striking congruences with the results of well-known studies of the intervals in Byzantine hymns. Or again some fanatic had once more unearthed some new cabala hidden in the musical notation of the fifteenth century. Then there were the tempestuous letters from abstruse experimenters who could arrive at the most astounding conclusions from, say, a comparison of the horoscopes of Goethe and Spinoza; such letters often included pretty and seemingly enlightening geometric drawings in several colors."

Part II:
A Bulky Memorandum

From Siri Hustvedt, author of Mysteries of the Rectangle: Essays on Painting (Princeton Architectural Press, 2005)– What I Loved: A Novel (Picador paperback, March 1, 2004, page 168)–

A description of the work of Bill Wechsler, a fictional artist:

"Bill worked long hours on a series of autonomous pieces about numbers. Like O's Journey, the works took place inside glass cubes, but these were twice as large– about two feet square. He drew his inspiration from sources as varied as the Cabbala, physics, baseball box scores, and stock market reports. He painted, cut, sculpted, distorted, and broke the numerical signs in each work until they became unrecognizable. He included figures, objects, books, windows, and always the written word for the number. It was rambunctious art, thick with allusion– to voids, blanks, holes, to monotheism and the individual, the the dialectic and yin-yang, to the Trinity, the three fates, and three wishes, to the golden rectangle, to seven heavens, the seven lower orders of the sephiroth, the nine Muses, the nine circles of Hell, the nine worlds of Norse mythology, but also to popular references like A Better Marriage in Five Easy Lessons and Thinner Thighs in Seven Days. Twelve-step programs were referred to in both cube one and cube two. A miniature copy of a book called The Six Mistakes Parents Make Most Often lay at the bottom of cube six. Puns appeared, usually well disguised– one, won; two, too, and Tuesday; four, for, forth; ate, eight. Bill was partial to rhymes as well, both in images and words. In cube nine, the geometric figure for a line had been painted on one glass wall. In cube three, a tiny man wearing the black-and-white prison garb of cartoons and dragging a leg iron has

— End of page 168 —

opened the door to his cell. The hidden rhyme is "free." Looking closely through the walls of the cube, one can see the parallel rhyme in another language: the German word drei is scratched into one glass wall. Lying at the bottom of the same box is a tiny black-and-white photograph cut from a book that shows the entrance to Auschwitz: ARBEIT MACHT FREI. With every number, the arbitrary dance of associations worked togethere to create a tiny mental landscape that ranged in tone from wish-fulfillment dream to nightmare. Although dense, the effect of the cubes wasn't visually disorienting. Each object, painting, drawing, bit of text, or sculpted figure found its rightful place under the glass according to the necessary, if mad, logic of numerical, pictorial, and verbal connection– and the colors of each were startling. Every number had been given a thematic hue. Bill had been interested in Goethe's color wheel and in Alfred Jensen's use of it in his thick, hallucinatory paintings of numbers. He had assigned each number a color. Like Goethe, he included black and white, although he didn't bother with the poet's meanings. Zero and one were white. Two was blue. Three was red, four was yellow, and he mixed colors: pale blue for five, purples in six, oranges in seven, greens in eight, and blacks and grays in nine. Although other colors and omnipresent newsprint always intruded on the basic scheme, the myriad shades of a single color dominated each cube.

The number pieces were the work of a man at the top of his form. An organic extension of everything Bill had done before, these knots of symbols had an explosive effect. The longer I looked at them, the more the miniature constructions seemed on the brink of bursting from internal pressure. They were tightly orchestrated semantic bombs through which Bill laid bare the arbitrary roots of meaning itself– that peculiar social contract generated by little squiggles, dashes, lines, and loops on a page."

Part III:
Wechsler Cubes

(named not for
Bill Wechsler, the
fictional artist above,
but for the non-fictional
   David Wechsler) —

From 2002:

Above: Dr. Harrison Pope, Harvard professor of psychiatry, demonstrates the use of the Wechsler Adult Intelligence Scale "block design" subtest.


Part IV:
A Magic Gallery
 
Log24, March 4, 2004
 

ZZ
WW

Figures from the
Kaleidoscope Puzzle
of Steven H. Cullinane:


Poem by Eugen Jost:
Zahlen und Zeichen,
Wörter und Worte

Mit Zeichen und Zahlen
vermessen wir Himmel und Erde
schwarz
auf weiss
schaffen wir neue Welten
oder gar Universen


 Numbers and Names,
Wording and Words


With numbers and names
we measure heaven and earth
black
on white
we create new worlds
and universes


English translation
by Catherine Schelbert



A related poem:

Alphabets
by Hermann Hesse

From time to time
we take our pen in hand
and scribble symbols
on a blank white sheet
Their meaning is
at everyone's command;
it is a game whose rules
are nice and neat.

But if a savage
or a moon-man came
and found a page,
a furrowed runic field,
and curiously studied
lines and frame:
How strange would be
the world that they revealed.
a magic gallery of oddities.
He would see A and B
as man and beast,
as moving tongues or
arms or legs or eyes,
now slow, now rushing,
all constraint released,
like prints of ravens'
feet upon the snow.
He'd hop about with them,
fly to and fro,
and see a thousand worlds
of might-have-been
hidden within the black
and frozen symbols,
beneath the ornate strokes,
the thick and thin.
He'd see the way love burns
and anguish trembles,
He'd wonder, laugh,
shake with fear and weep
because beyond this cipher's
cross-barred keep
he'd see the world
in all its aimless passion,
diminished, dwarfed, and
spellbound in the symbols,
and rigorously marching
prisoner-fashion.
He'd think: each sign
all others so resembles
that love of life and death,
or lust and anguish,
are simply twins whom
no one can distinguish…
until at last the savage
with a sound
of mortal terror
lights and stirs a fire,
chants and beats his brow
against the ground
and consecrates the writing
to his pyre.
Perhaps before his
consciousness is drowned
in slumber there will come
to him some sense
of how this world
of magic fraudulence,
this horror utterly
behind endurance,
has vanished as if
it had never been.
He'll sigh, and smile,
and feel all right again.

— Hermann Hesse (1943),
"Buchstaben," from
Das Glasperlenspiel,
translated by
Richard and Clara Winston

Saturday, December 23, 2006

Saturday December 23, 2006

Filed under: Uncategorized — m759 @ 9:00 AM
Black Mark

Bernard Holland in The New York Times on Monday, May 20, 1996:

“Philosophers ponder the idea of identity: what it is to give something a name on Monday and have it respond to that name on Friday….”

Log24 on Monday,
Dec. 18, 2006:

“I did a column in
Scientific American
on minimal art, and
I reproduced one of
Ed Rinehart’s [sic]
black paintings.”

Martin Gardner (pdf)

“… the entire profession
has received a very public
and very bad black mark.”

Joan S. Birman (pdf)

Lottery on Friday,
Dec. 22, 2006:

The image “http://www.log24.com/log/pix06B/061222-PAlottery.jpg” cannot be displayed, because it contains errors.

5/04
, 2005:

Analysis of the structure
of a 2x2x2 cube

The Eightfold Cube

via trinities of
projective points
in a Fano plane.

7/15, 2005:

“Art history was very personal
through the eyes of Ad Reinhardt.”

  — Robert Morris,
Smithsonian Archives
of American Art

Also on 7/15, 2005,
a quotation on Usenet:

“A set having three members is a
single thing wholly constituted by
its members but distinct from them.
After this, the theological doctrine
of the Trinity as ‘three in one’
should be child’s play.”

— Max Black,
Caveats and Critiques:
Philosophical Essays in
Language, Logic, and Art

Powered by WordPress