Log24

Saturday, February 5, 2022

Mathieu Cube Labeling

Filed under: General — Tags: , , , , — m759 @ 2:08 pm

Shown below is an illustration from "The Puzzle Layout Problem" —

Exercise:  Using the above numerals 1 through 24
(with 23 as 0 and 24 as ∞) to represent the points 
, 0, 1, 2, 3 … 22  of the projective line over GF(23),
reposition the labels 1 through 24 in the above illustration
so that they appropriately* illustrate the cube-parts discussed
by Iain Aitchison in his March 2018 Hiroshima slides on 
cube-part permutations by the Mathieu group M24

A note for Northrop Frye —

Interpenetration in the eightfold cube — the three midplanes —

IMAGE- The Trinity Cube (three interpenetrating planes that split the eightfold cube into its eight subcubes)

A deeper example of interpenetration:

Aitchison has shown that the Mathieu group M24 has a natural
action on the 24 center points of the subsquares on the eightfold
cube's six faces (four such points on each of the six faces). Thus
the 759 octads of the Steiner system S(5, 8, 24) interpenetrate
on the surface of the cube.

* "Appropriately" — I.e. , so that the Aitchison cube octads correspond
exactly, via the projective-point labels, to the Curtis MOG octads.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress