The Slow Children Meet Aitchison .
Tuesday, March 21, 2023
The Long March
Wednesday, February 19, 2020
Aitchison’s Octads
The 759 octads of the Steiner system S(5,8,24) are displayed
rather neatly in the Miracle Octad Generator of R. T. Curtis.
A March 9, 2018, construction by Iain Aitchison* pictures the
759 octads on the faces of a cube , with octad elements the
24 edges of a cuboctahedron :
The Curtis octads are related to symmetries of the square.
See my webpage "Geometry of the 4×4 square" from March 2004.
Aitchison's p. 42 slide includes an illustration from that page —
Aitchison's octads are instead related to symmetries of the cube.
Note that essentially the same model as Aitchison's can be pictured
by using, instead of the 24 edges of a cuboctahedron, the 24 outer
faces of subcubes in the eightfold cube .
Image from Christmas Day 2005.
* http://www.math.sci.hiroshima-u.ac.jp/branched/files/2018/
presentations/Aitchison-Hiroshima-2-2018.pdf.
See also Aitchison in this journal.
Friday, November 29, 2019
Verifying Aitchison’s Cuboctahedral Generation of M24
Shown below are Aitchison's March 2018 M24 permutations
and their relabeling, with digits only, for MAGMA checking.
In the versions below, r g b stand for red, green, blue.
Infinity has been replaced by 7 (because a digit was needed,
and the position of the infinity symbol in the Aitchison cube
was suited to the digit 7).
(r7,r1)(b2,g4)(r3,r5)(r6,g0)
mu0= (g7,g2)(r4,b1)(g6,g3)(g5,b0)
(b7,b4)(g1,r2)(b5,b6)(b3,r0)
mu1 = (r7,r2,)(b3,g5)(r4,r6)(r0,g1)
(g7,g3)(r5,b2)(g0,g4)(g6,b1)
(b7,b5)(g2,r3)(b6,b0)(b4,r1)
mu2 = (r7,r3)(b4,g6)(r5,r0)(r1,g2)
(g7,g4)(r6,b3)(g1,g5)(g0,b2)
(b7,b6)(g3,r4)(b0,b1)(b5,r2)
mu3 = (r7,r4)(b5,g0)(r6,r1)(r2,g3)
(g7,g5)(r0,b4)(g2,g6)(g1,b3)
(b7,b0)(g4,r5)(b1,b2)(b6,r3)
mu4 = (r7,r5)(b6,g1)(r0,r2)(r3,g4)
(g7,g6)(r1,b5)(g3,g0)(g2,b4)
(b7,b1)(g5,r6)(b2,b3)(b0,r4)
mu5 = (r7,r6)(b0,g2)(r1,r3)(r4,g5)
(g7,g0)(r2,b6)(g4,g1)(g3,b5)
(b7,b2)(g6,r0)(b3,b4)(b1,r5)
mu6 = (r7,r0)(b1,g3)(r2,r4)(r5,g6)
(g7,g1)(r3,b0)(g5,g2)(g4,b6)
(b7,b3)(g0,r1)(b4,b5)(b2,r6)
Table 1 —
0 1 2 3 4 5 6 7
r 1 2 3 4 5 6 7 8
g 9 10 11 12 13 14 15 16
b 17 18 19 20 21 22 23 24
The wReplace program was used with Table 1 above
to rewrite mu0-mu6 for MAGMA.
The resulting code for MAGMA —
G := sub< Sym(24) |
(8,3)(20,14)(5,7)(1,10)
(8,4)(21,15)(6,1)(2,11)
(8,5)(22,9)(7,2)(3,12)
(8,6)(23,10)(1,3)(4,13)
(8,7)(17,11)(2,4)(5,14)
(8,1)(18,12)(3,5)(6,15)
G; |
The Aitchison generators passed the MAGMA test.
Thursday, December 6, 2018
The Mathieu Cube of Iain Aitchison
This journal ten years ago today —
Surprise Package
From a talk by a Melbourne mathematician on March 9, 2018 —
The source — Talk II below —
Search Results
|
Related material —
The 56 triangles of the eightfold cube . . .
- in Aitchison's March 9, 2018, talk (slides 32-34), and
- in this journal on July 25, 2008, and later.
Image from Christmas Day 2005.
Wednesday, May 29, 2024
The Strong Law of Small Shapes*
Two examples:
The above note led to a letter from John H. Conway, which in turn
led to the following . . .
* The title refers to a well-known 1988 article by Richard K. Guy.
A shape from the date of Guy's reported death —
Tuesday, September 6, 2022
Gell-Mann Meets Bosch* at Hiroshima
Gell-Mann Meets Bosch . . .
At Hiroshima . . .
* The Bosch cuboctahedron is from an exhibition at Napoli in 2021.
See also, from that exhibition's starting date,
the Log24 post Desperately Seeking Symmetry.
Sunday, September 4, 2022
Dice and the Eightfold Cube
At Hiroshima on March 9, 2018, Aitchison discussed another
"hexagonal array" with two added points… not at the center, but
rather at the ends of a cube's diagonal axis of symmetry.
See some related illustrations below.
Fans of the fictional "Transfiguration College" in the play
"Heroes of the Fourth Turning" may recall that August 6,
another Hiroshima date, was the Feast of the Transfiguration.
The exceptional role of 0 and ∞ in Aitchison's diagram is echoed
by the occurence of these symbols in the "knight" labeling of a
Miracle Octad Generator octad —
Transposition of 0 and ∞ in the knight coordinatization
induces the symplectic polarity of PG(3,2) discussed by
(for instance) Anne Duncan in 1968.
Saturday, February 5, 2022
Mathieu Cube Labeling
Shown below is an illustration from "The Puzzle Layout Problem" —
- September 2003
-
Lecture Notes in Computer Science 2912:500-501
DOI:10.1007/978-3-540-24595-7_50 - Source: DBLP
-
Conference: Graph Drawing, 11th International Symposium,
GD 2003, Perugia, Italy, September 21-24, 2003, Revised Papers - Authors: Kozo Sugiyama, Seok-Hee Hong, Atsuhiko Maeda
Exercise: Using the above numerals 1 through 24
(with 23 as 0 and 24 as ∞) to represent the points
∞, 0, 1, 2, 3 … 22 of the projective line over GF(23),
reposition the labels 1 through 24 in the above illustration
so that they appropriately* illustrate the cube-parts discussed
by Iain Aitchison in his March 2018 Hiroshima slides on
cube-part permutations by the Mathieu group M24.
A note for Northrop Frye —
Interpenetration in the eightfold cube — the three midplanes —
A deeper example of interpenetration:
Aitchison has shown that the Mathieu group M24 has a natural
action on the 24 center points of the subsquares on the eightfold
cube's six faces (four such points on each of the six faces). Thus
the 759 octads of the Steiner system S(5, 8, 24) interpenetrate
on the surface of the cube.
* "Appropriately" — I.e. , so that the Aitchison cube octads correspond
exactly, via the projective-point labels, to the Curtis MOG octads.
Saturday, May 23, 2020
Structure for Linguists
"MIT professor of linguistics Wayne O’Neil died on March 22
at his home in Somerville, Massachusetts."
— MIT Linguistics, May 1, 2020
The "deep structure" above is the plane cutting the cube in a hexagon
(as in my note Diamonds and Whirls of September 1984).
See also . . .
Sunday, October 27, 2019
Friday Night Lights
Entertainment from NBC on Friday night —
The above question, and Saturday morning's post on a film director
from Melbourne, suggest an image from December's Melbourne Noir —
(March 8, 2018, was the date of death for Melbourne author Peter Temple.)
Friday, December 7, 2018
An Ark for Hanukkah
From religionnews.com —
"The word 'Hanukkah' means dedication.
It commemorates the rededicating of the
ancient Temple in Jerusalem in 165 B.C. . . . ."
From The New York Times this morning —
Related material —
From this journal on Wednesday, December 5, 2018 —
Megan Fox in "Transformers" (2007) —
From a Google image search this morning —
The image search was suggested by recent posts tagged Aitchison
and by this morning's previous post.
Tuesday, December 4, 2018
Melbourne Noir
Monday, December 3, 2018
The Relativity Problem at Hiroshima
“This is the relativity problem: to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”
— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16
See also Relativity Problem and Diamonds and Whirls.
Sunday, December 2, 2018
Symmetry at Hiroshima
A search this morning for articles mentioning the Miracle Octad Generator
of R. T. Curtis within the last year yielded an abstract for two talks given
at Hiroshima on March 8 and 9, 2018 —
http://www.math.sci.hiroshima-u.ac.jp/ branched/files/2018/abstract/Aitchison.txt
Iain AITCHISON Title: Construction of highly symmetric Riemann surfaces, related manifolds, and some exceptional objects, I, II Abstract: Since antiquity, some mathematical objects have played a special role, underpinning new mathematics as understanding deepened. Perhaps archetypal are the Platonic polyhedra, subsequently related to Platonic idealism, and the contentious notion of existence of mathematical reality independent of human consciousness. Exceptional or unique objects are often associated with symmetry – manifest or hidden. In topology and geometry, we have natural base points for the moduli spaces of closed genus 2 and 3 surfaces (arising from the 2-fold branched cover of the sphere over the 6 vertices of the octahedron, and Klein's quartic curve, respectively), and Bring's genus 4 curve arises in Klein's description of the solution of polynomial equations of degree greater than 4, as well as in the construction of the Horrocks-Mumford bundle. Poincare's homology 3-sphere, and Kummer's surface in real dimension 4 also play special roles. In other areas: we have the exceptional Lie algebras such as E8; the sporadic finite simple groups; the division algebras: Golay's binary and ternary codes; the Steiner triple systems S(5,6,12) and S(5,8,24); the Leech lattice; the outer automorphisms of the symmetric group S6; the triality map in dimension 8; and so on. We also note such as: the 27 lines on a cubic, the 28 bitangents of a quartic curve, the 120 tritangents of a sextic curve, and so on, related to Galois' exceptional finite groups PSL2(p) (for p= 5,7,11), and various other so-called `Arnol'd Trinities'. Motivated originally by the `Eightfold Way' sculpture at MSRI in Berkeley, we discuss inter-relationships between a selection of these objects, illustrating connections arising via highly symmetric Riemann surface patterns. These are constructed starting with a labeled polygon and an involution on its label set. Necessarily, in two lectures, we will neither delve deeply into, nor describe in full, contexts within which exceptional objects arise. We will, however, give sufficient definition and detail to illustrate essential inter-connectedness of those exceptional objects considered. Our starting point will be simplistic, arising from ancient Greek ideas underlying atomism, and Plato's concepts of space. There will be some overlap with a previous talk on this material, but we will illustrate with some different examples, and from a different philosophical perspective. Some new results arising from this work will also be given, such as an alternative graphic-illustrated MOG (Miracle Octad Generator) for the Steiner system S(5,8,24), and an alternative to Singerman – Jones' genus 70 Riemann surface previously proposed as a completion of an Arnol'd Trinity. Our alternative candidate also completes a Trinity whose two other elements are Thurston's highly symmetric 6- and 8-component links, the latter related by Thurston to Klein's quartic curve. |
See also yesterday morning's post, "Character."
Update: For a followup, see the next Log24 post.