The post "Triangles, Spreads, Mathieu" of October 29 has been
updated with an illustration from the Curtis Miracle Octad Generator.
Related material — A search in this journal for "56 Triangles."
The post "Triangles, Spreads, Mathieu" of October 29 has been
updated with an illustration from the Curtis Miracle Octad Generator.
Related material — A search in this journal for "56 Triangles."
There are many approaches to constructing the Mathieu
group M_{24}. The exercise below sketches an approach that
may or may not be new.
Exercise:
It is wellknown that …
There are 56 triangles in an 8set.
There are 56 spreads in PG(3,2).
The alternating group A_{n }is generated by 3cycles.
The alternating group A_{8 }is isomorphic to GL(4,2).
Use the above facts, along with the correspondence
described below, to construct M_{24}.
Some background —
A Log24 post of May 19, 2013, cites …
Peter J. Cameron in a 1976 Cambridge U. Press
book — Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pp. 59 and 60.
See also a Google search for "56 triangles" "56 spreads" Mathieu.
Update of October 31, 2019 — A related illustration —
Update of November 2, 2019 —
See also p. 284 of Geometry and Combinatorics:
Selected Works of J. J. Seidel (Academic Press, 1991).
That page is from a paper published in 1970.
This journal ten years ago today —
Surprise Package
From a talk by a Melbourne mathematician on March 9, 2018 —
The source — Talk II below —
Search Results

Related material —
The 56 triangles of the eightfold cube . . .
Image from Christmas Day 2005.
The title is from a phrase spoken, notably, by Yul Brynner
to Christopher Plummer in the 1966 film "Triple Cross."
Related structures —
Greg Egan's animated image of the Klein quartic —
For a tetrahedral key to the arrangement of the 56 triangles within the above
structure, see a book chapter by Michael Huber of Tübingen —
For further details, see the June 29 post Triangles in the Eightfold Cube.
See also, from an April 2013 philosophical conference:
Abstract for a talk at the City University of New York:
The Experience of Meaning Once the question of truth is settled, and often prior to it, what we value in a mathematical proof or conjecture is what we value in a work of lyric art: potency of meaning. An absence of clutter is a feature of such artifacts: they possess a resonant clarity that allows their meaning to break on our inner eye like light. But this absence of clutter is not tantamount to 'being simple': consider Eliot's Four Quartets or Mozart's late symphonies. Some truths are complex, and they are simplified at the cost of distortion, at the cost of ceasing to be truths. Nonetheless, it's often possible to express a complex truth in a way that precipitates a powerful experience of meaning. It is that experience we seek — not simplicity per se , but the flash of insight, the sense we've seen into the heart of things. I'll first try to say something about what is involved in such recognitions; and then something about why an absence of clutter matters to them. 
For the talk itself, see a YouTube video.
The conference talks also appear in a book.
The book begins with an epigraph by Hilbert —
From a post of July 25, 2008, "56 Triangles," on the Klein quartic
and the eightfold cube —
"Baez's discussion says that the Klein quartic's 56 triangles
can be partitioned into 7 eighttriangle Egan 'cubes' that
correspond to the 7 points of the Fano plane in such a way
that automorphisms of the Klein quartic correspond to
automorphisms of the Fano plane. Show that the
56 triangles within the eightfold cube can also be partitioned
into 7 eighttriangle sets that correspond to the 7 points of the
Fano plane in such a way that (affine) transformations of the
eightfold cube induce (projective) automorphisms of the Fano plane."
Related material from 1975 —
More recently …
Preview of a Tom Stoppard play presented at Town Hall in Manhattan on March 14, 2008 (Pi Day and Einstein's birthday):
The play's title, "Every Good Boy Deserves Favour," is a mnemonic for the notes of the treble clef EGBDF.
The place, Town Hall, West 43rd Street. The time, 8 p.m., Friday, March 14. One single performance only, to the tinkle– or the clang?– of a triangle. Echoing perhaps the clangclack of Warsaw Pact tanks muscling into Prague in August 1968.
The “u” in favour is the British way, the Stoppard way, "EGBDF" being "a Play for Actors and Orchestra" by Tom Stoppard (words) and André Previn (music).
And what a play!– as luminescent as always where Stoppard is concerned. The music component of the onenighter at Town Hall– a showcase for the Boston University College of Fine Arts– is by a 47piece live orchestra, the significant instrument being, well, a triangle.
When, in 1974, André Previn, then principal conductor of the London Symphony, invited Stoppard "to write something which had the need of a live fulltime orchestra onstage," the 36yearold playwright jumped at the chance.
One hitch: Stoppard at the time knew "very little about 'serious' music… My qualifications for writing about an orchestra," he says in his introduction to the 1978 Grove Press edition of "EGBDF," "amounted to a spell as a triangle player in a kindergarten percussion band."
Review of the same play as presented at Chautauqua Institution on July 24, 2008:
"Stoppard's modus operandi– to teasingly introduce numerous clever tidbits designed to challenge the audience."
— Jane Vranish, Pittsburgh PostGazette, Saturday, August 2, 2008
— Dan Fogelberg
"He's watching us all the time."
Finnegans Wake, Book II, Episode 2, pp. 296297: I'll make you to see figuratleavely the whome of your eternal geomater. And if you flung her headdress on her from under her highlows you'd wheeze whyse Salmonson set his seel on a hexengown.^{1} Hissss!, Arrah, go on! Fin for fun! ^{1} The chape of Doña Speranza of the Nacion. 
From my entry of Sept. 1, 2003: "…the principle of taking and giving, of learning and teaching, of listening and storytelling, in a word: of reciprocity…. … E. M. Forster famously advised his readers, 'Only connect.' 'Reciprocity' would be Michael Kruger's succinct philosophy, with all that the word implies." — William Boyd, review of Himmelfarb, a novel by Michael Kruger, in The New York Times Book Review, October 30, 1994 Last year's entry on this date:
The picture above is of the complete graph Diamond theory describes how the 15 twoelement subsets of a sixelement set (represented by edges in the picture above) may be arranged as 15 of the 16 parts of a 4×4 array, and how such an array relates to grouptheoretic concepts, including Sylvester's synthematic totals as they relate to constructions of the Mathieu group M_{24}. If diamond theory illustrates any general philosophical principle, it is probably the interplay of opposites…. "Reciprocity" in the sense of Lao Tzu. See Reciprocity and Reversal in Lao Tzu. For a sense of "reciprocity" more closely related to Michael Kruger's alleged philosophy, see the Confucian concept of Shu (Analects 15:23 or 24) described in Kruger's novel is in part about a Jew: the quintessential Jewish symbol, the star of David, embedded in the Click on the design for details. Those who prefer a Jewish approach to physics can find the star of David, in the form of A Graphical Representation The star of David also appears, if only as a heuristic arrangement, in a note that shows generating partitions of the affine group on 64 points arranged in two opposing triplets. Having thus, as the New York Times advises, paid tribute to a Jewish symbol, we may note, in closing, a much more sophisticated and subtle concept of reciprocity due to Euler, Legendre, and Gauss. See 
"Finn MacCool ate the Salmon of Knowledge."
Wikipedia:
"George Salmon spent his boyhood in Cork City, Ireland. His father was a linen merchant. He graduated from Trinity College Dublin at the age of 19 with exceptionally high honours in mathematics. In 1841 at age 21 he was appointed to a position in the mathematics department at Trinity College Dublin. In 1845 he was appointed concurrently to a position in the theology department at Trinity College Dublin, having been confirmed in that year as an Anglican priest."
Arrangements for
56 Triangles.
For more on the
arrangement of
triangles discussed
in Finnegans Wake,
see Log24 on Pi Day,
March 14, 2008.
Happy birthday,
Martin Sheen.
"This wonderful picture was drawn by Greg Egan with the help of ideas from Mike Stay and Gerard Westendorp. It's probably the best way for a nonmathematician to appreciate the symmetry of Klein's quartic. It's a 3holed torus, but drawn in a way that emphasizes the tetrahedral symmetry lurking in this surface! You can see there are 56 triangles: 2 for each of the tetrahedron's 4 corners, and 8 for each of its 6 edges."
Click on image for further details.
Note that if eight points are arranged
in a cube (like the centers of the
eight subcubes in the figure above),
there are 56 triangles formed by
the 8 points taken 3 at a time.
Powered by WordPress