Log24

Friday, November 29, 2019

Verifying Aitchison’s Cuboctahedral Generation of M24

Filed under: General — Tags: — m759 @ 1:06 am

Iain Aitchison on symmetric generation of M24

Shown below are Aitchison's March 2018 M24 permutations
and their relabeling, with digits only, for MAGMA checking.

In the versions below, r g b stand for red, green, blue. 
Infinity has been replaced by 7 (because a digit was needed,
and the position of the infinity symbol in the Aitchison cube
was suited to the digit 7).

             (r7,r1)(b2,g4)(r3,r5)(r6,g0)
 mu0=   (g7,g2)(r4,b1)(g6,g3)(g5,b0)
             (b7,b4)(g1,r2)(b5,b6)(b3,r0)

 mu1 =  (r7,r2,)(b3,g5)(r4,r6)(r0,g1)
             (g7,g3)(r5,b2)(g0,g4)(g6,b1)
             (b7,b5)(g2,r3)(b6,b0)(b4,r1)

 mu2 =  (r7,r3)(b4,g6)(r5,r0)(r1,g2)
             (g7,g4)(r6,b3)(g1,g5)(g0,b2)
             (b7,b6)(g3,r4)(b0,b1)(b5,r2)

 mu3 =  (r7,r4)(b5,g0)(r6,r1)(r2,g3)
             (g7,g5)(r0,b4)(g2,g6)(g1,b3)
             (b7,b0)(g4,r5)(b1,b2)(b6,r3)

 mu4 = (r7,r5)(b6,g1)(r0,r2)(r3,g4)
            (g7,g6)(r1,b5)(g3,g0)(g2,b4)
            (b7,b1)(g5,r6)(b2,b3)(b0,r4)

 mu5 =  (r7,r6)(b0,g2)(r1,r3)(r4,g5)
             (g7,g0)(r2,b6)(g4,g1)(g3,b5)
             (b7,b2)(g6,r0)(b3,b4)(b1,r5)

 mu6 = (r7,r0)(b1,g3)(r2,r4)(r5,g6)
            (g7,g1)(r3,b0)(g5,g2)(g4,b6)
            (b7,b3)(g0,r1)(b4,b5)(b2,r6)

Table 1 —

                0   1   2   3   4   5   6   7       
           r    1   2   3   4   5   6   7   8 
           g   9 10 11 12 13 14 15 16
           b 17 18 19 20 21 22 23 24 

The wReplace program was used with Table 1 above
to rewrite mu0-mu6 for MAGMA. 

The resulting code for MAGMA

G := sub< Sym(24) |
(8,2)(19,13)(4,6)(7,9)
(16,11)(5,18)(15,12)(14,17)
(24,21)(10,3)(22,23)(20,1),

(8,3)(20,14)(5,7)(1,10)
(16,12)(6,19)(9,13)(15,18)
(24,22)(11,4)(23,17)(21,2),

(8,4)(21,15)(6,1)(2,11)
(16,13)(7,20)(10,14)(9,19)
(24,23)(12,5)(17,18)(22,3),

(8,5)(22,9)(7,2)(3,12)
(16,14)(1,21)(11,15)(10,20)
(24,17)(13,6)(18,19)(23,4),

(8,6)(23,10)(1,3)(4,13)
(16,15)(2,22)(12,9)(11,21)
(24,18)(14,7)(19,20)(17,5),

(8,7)(17,11)(2,4)(5,14)
(16,9)(3,23)(13,10)(12,22)
(24,19)(15,1)(20,21)(18,6),

(8,1)(18,12)(3,5)(6,15)
(16,10)(4,17)(14,11)(13,23)
(24,20)(9,2)(21,22)(19,7)>;

G;
Order(G);
CompositionFactors(G);

The Aitchison generators passed the MAGMA test.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress