Log24

Monday, July 1, 2019

Inside the Exploded Cube

Filed under: General — Tags: , — m759 @ 10:15 pm
 

Metaphysical conceit | literature | Britannica.com

https://www.britannica.com/art/metaphysical-conceit

The metaphysical conceit, associated with the Metaphysical poets of the 17th century, is a more intricate and intellectual device. It usually sets up an analogy between one entity's spiritual qualities and an object in the physical world and sometimes controls the whole structure of the poem.…

This post's title refers to a metaphysical conceit 
in the previous post, Desperately Seeking Clarity.

Related material —

The source of the above mystical octahedron —

'Becoming Whole,' by Leslie Stein

      See also Jung's Imago Dei  in this journal.

Thursday, June 23, 2016

Raiders of the Lost Code

Filed under: General — Tags: — m759 @ 11:00 am

From a web page

Breaking the Code of the Archetypal Self:
An Introductory Overview of the Research Discoveries
Leading to Neo-Jungian Structural Psychoanalysis

Dr. Moore will introduce his research and discoveries
with regard to the deep structures of the Self.
Tracing the foundations in the tradition of Jung’s
affirmation of the collective unconscious, Moore
will present his “decoding of the Diamond Body,”
a mapping of the deep structures of the Great Code
of the psyche. . . .

From the same web site

Googling "Jung" + "Diamond Body" shows that
Moore's terminology differs from Jung's.
The octahedron that Moore apparently associates
with his "diamond body" was discussed by Jung
in a different context. See selections from Ch. 14
of Jung's Aion
 "The Structure and Dynamics of the Self."

Dr. Moore appears as well in the murder-suicide story 
of last night's 11:18 PM ET post.

For the relevance of Aion  to "deep structures,"
see Jung + Diamond + Structure in this  journal
and, more specifically, "Deep  Structure."

Thursday, May 19, 2016

Kulturkampf

Filed under: General,Geometry — Tags: — m759 @ 2:27 am

From a check tonight of The New York Review of Books

These NYRB  stories from May 15 and May 13 suggest a
review of images on Ratner's Star  and on the Eye of God.

IMAGE- 'Ratner's Star,' by Don DeLillo (1976)

Above image reposted from Jan. 10, 2014

I. The structures in the Diamond Puzzle

Adam and God (Sistine Chapel), with Jungian Self-Symbol and Ojo de Dios (The Diamond Puzzle)

Click on image for Jungian background.

II: The structure on a recent cover of Semiotica

'Semiotica' cover and article by Solomon Marcus on Levi-Strauss's 'canonic formula' of myth

Above images reposted from May 5, 2016

Related material:  The previous post, Dueling Formulas.

Thursday, May 5, 2016

Solomon’s Seal

Filed under: General,Geometry — Tags: — m759 @ 11:00 pm

Excerpt from a post of November 4, 2009

I. The structures in the Diamond Puzzle

Adam and God (Sistine Chapel), with Jungian Self-Symbol and Ojo de Dios (The Diamond Puzzle)

Click on image for Jungian background.

II: The structure on a recent cover of Semiotica

'Semiotica' cover and article by Solomon Marcus on Levi-Strauss's 'canonic formula' of myth

For some related material, see a search 
for Solomon Marcus in this  journal.

Wednesday, November 4, 2009

Sinner or Saint?

Filed under: General,Geometry — Tags: , — m759 @ 10:31 am

As noted here yesterday, Claude Levi-Strauss may have died on Devil's Night, on Halloween, or on All Saints' Day. He was apparently a myth-transformer to the end.

The Independent says today he died on Sunday, All Saints' Day. Its eulogy, by Adam Kuper, is well-written, noting that linguist Roman Jakobson was a source of Levi-Strauss's theory of oppositions in myth, and observing that

"… binary oppositions tend to accumulate to form structures…."

Yes, they do. Examples:

I. The structures in the Diamond Puzzle

Adam and God (Sistine Chapel), with Jungian Self-Symbol and Ojo de Dios (The Diamond Puzzle)

Click on image for Jungian background.

II: The structure on a recent cover of Semiotica

http://www.log24.com/log/pix09A/091103-SemioticaSm.jpg

Click to enlarge.

The Semiotica article by mathematical linguist Solomon Marcus is a defense of the Levi-Strauss canonic formula mentioned here yesterday.

It is available online for $40.

A less expensive, and possibly more informative, look at oppositions in linguistics is available for free online in a 1984 master's thesis (pdf, 8+ mb)–

"Language, Linguistics, and Philosophy: A Comparison of the Work of Roman Jakobson and the Later Wittgenstein, with Some Attention to the Philosophy of Charles Saunders Peirce," by Miles Spencer Kimball.

Wednesday, July 29, 2009

Wednesday July 29, 2009

Filed under: General,Geometry — m759 @ 12:21 pm
Kaleideion

Adam and God (Sistine Chapel), with Jungian Self-Symbol and Ojo de Dios (The Diamond Puzzle)

Related material:

“A great deal has been made of the fact that Forbidden Planet is essentially William Shakespeare’s The Tempest (1611) in an science-fiction setting. It is this that transforms Forbidden Planet into far more than a mere pulp science-fiction story” — Richard Scheib

Dialogue from Forbidden Planet


“… Which makes it a gilt-edged priority that one of us gets into that Krell lab and takes that brain boost.”

Dialogue from another story —

“They thought they were doing a linear magnification, sort of putting me through a  magnifying glass.”

“Sizewise?”

“Brainwise, but what they did was multiply me by myself into a quadratic.”

Psychoshop, by Bester and Zelazny, 1998 paperback, p. 7

“… which would produce a special being– by means of that ‘cloned quadratic crap.’ [P. 75] The proper term sounds something like ‘Kaleideion‘….”

“So Adam is a Kaleideion?”

She shook her head.

“Not a Kaleideion. The Kaleideion….”

Psychoshop, 1998 paperback, p. 85


See also

Changing Woman:

“Kaleidoscope turning…

Juliette Binoche in 'Blue'  The 24 2x2 Cullinane Kaleidoscope animated images

Shifting pattern within   
unalterable structure…”
— Roger Zelazny, Eye of Cat  

“When life itself seems lunatic,
who knows where madness lies?”

— For the source, see 
Joyce’s Nightmare Continues.

Tuesday, January 6, 2009

Tuesday January 6, 2009

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 am
Archetypes, Synchronicity,
and Dyson on Jung

The current (Feb. 2009) Notices of the American Mathematical Society has a written version of Freeman Dyson's 2008 Einstein Lecture, which was to have been given in October but had to be canceled. Dyson paraphrases a mathematician on Carl Jung's theory of archetypes:

"… we do not need to accept Jung’s theory as true in order to find it illuminating."

The same is true of Jung's remarks on synchronicity.

For example —

Yesterday's entry, "A Wealth of Algebraic Structure," lists two articles– each, as it happens, related to Jung's four-diamond figure from Aion as well as to my own Notes on Finite Geometry. The articles were placed online recently by Cambridge University Press on the following dates:

R. T. Curtis's 1974 article defining his Miracle Octad Generator (MOG) was published online on Oct. 24, 2008.

Curtis's 1987 article on geometry and algebraic structure in the MOG was published online on Dec. 19, 2008.

On these dates, the entries in this journal discussed…

Oct. 24:
Cube Space, 1984-2003

Material related to that entry:

Dec. 19:
Art and Religion: Inside the White Cube

That entry discusses a book by Mark C. Taylor:

The Picture in Question: Mark Tansey and the Ends of Representation (U. of Chicago Press, 1999).

In Chapter 3, "Sutures of Structures," Taylor asks —

 

"What, then, is a frame, and what is frame work?"

One possible answer —

Hermann Weyl on the relativity problem in the context of the 4×4 "frame of reference" found in the above Cambridge University Press articles.

"Examples are the stained-glass
windows of knowledge."
— Vladimir Nabokov 

 

Wednesday, June 25, 2008

Wednesday June 25, 2008

Filed under: General,Geometry — Tags: , , — m759 @ 7:20 pm
The Cycle of
the Elements

John Baez, Week 266
(June 20, 2008):

"The Renaissance thinkers liked to
organize the four elements using
a chain of analogies running
from light to heavy:

fire : air :: air : water :: water : earth

They also organized them
in a diamond, like this:"

Diamond of the four ancient elements, figure by John Baez

This figure of Baez
is related to a saying
attributed to Heraclitus:

Diamond  showing transformation of the four ancient elements

For related thoughts by Jung,
see Aion, which contains the
following diagram:

Jung's four-diamond figure showing transformations of the self as Imago Dei

"The formula reproduces exactly the essential features of the symbolic process of transformation. It shows the rotation of the mandala, the antithetical play of complementary (or compensatory) processes, then the apocatastasis, i.e., the restoration of an original state of wholeness, which the alchemists expressed through the symbol of the uroboros, and finally the formula repeats the ancient alchemical tetrameria, which is implicit in the fourfold structure of unity."

— Carl Gustav Jung

That the words Maximus of Tyre (second century A.D.) attributed to Heraclitus imply a cycle of the elements (analogous to the rotation in Jung's diagram) is not a new concept. For further details, see "The Rotation of the Elements," a 1995 webpage by one  "John Opsopaus."

Related material:

Log24 entries of June 9, 2008, and

"Quintessence: A Glass Bead Game,"
by Charles Cameron.

Sunday, October 14, 2007

Sunday October 14, 2007

Filed under: General — Tags: , — m759 @ 11:00 am
The Dipolar God

Steven H. Cullinane, 'The Line'

"Logos and logic, crystal hypothesis,
Incipit and a form to speak the word
And every latent double in the word…."

— Wallace Stevens,
   "Notes Toward a Supreme Fiction"

Yesterday's meditation ("Simon's Shema") on the interpenetration of opposites continues:

Part I: The Jewel in the Lotus

"The fundamental conception of Tantric Buddhist metaphysics, namely, yuganaddha, signifies the coincidence of opposites.  It is symbolized by the conjugal embrace (maithuna or kama-kala) of a god and goddess or a Buddha and his consort (signifying karuna and sunyata or upaya and prajna, respectively), also commonly depicted in Tantric Buddhist iconography as the union of vajra (diamond sceptre) and padme (lotus flower).  Thus, yuganaddha essentially means the interpenetration of opposites or dipolar fusion, and is a fundamental restatement of Hua-yen theoretic structures."

— p. 148 in "Part II: A Whiteheadian Process Critique of Hua-yen Buddhism," in Process Metaphysics and Hua-Yen Buddhism: A Critical Study of Cumulative Penetration vs. Interpenetration (SUNY Series in Systematic Philosophy), by Steve Odin, State University of New York Press, 1982

Part II: The Dipolar God

And on p. 163 of Odin, op. cit., in "Part III: Theology of the Deep Unconscious: A Reconstruction of Process Theology," in the section titled "Whitehead's Dipolar God as the Collective Unconscious"–

"An effort is made to transpose Whitehead's theory of the dipolar God into the terms of the collective unconscious, so that now the dipolar God is to be comprehended not as a transcendent deity, but the deepest dimension and highest potentiality of one's own psyche."

Part III: Piled High and Deep

Odin obtained his Ph.D. degree from the Department of Philosophy at the State University of New York (SUNY) at Stony Brook in 1980. (See curriculum vitae (pdf).)

For an academic review of Odin's book, see David Applebaum, Philosophy East and West, Vol. 34 (1984), pp. 107-108.

It is perhaps worth noting, in light of the final footnote of Mark D. Brimblecombe's Ph.D. thesis "Dipolarity and God" quoted yesterday, that "tantra" is said to mean "loom." For some less-academic background on the Tantric iconography Odin describes, see the webpage "Love and Passion in Tantric Buddhist Art." For a fiction combining love and passion with the word "loom" in a religious context, see Clive Barker's Weaveworld.  This fiction– which is, if not "supreme" in the Wallace Stevens sense, at least entertaining– may correspond to some aspects of the deep Jungian psychological reality discussed by Odin.

Happy Birthday,
Hannah Arendt

(Oct. 14, 1906-
Dec. 4, 1975)

OPPOSITES:

Hannah (Arendt) and Martin (Heidegger) as portrayed in a play of that name

Actors portraying
Arendt and Heidegger

Click on image for details.

Thursday, December 8, 2005

Thursday December 8, 2005

Filed under: General,Geometry — Tags: , — m759 @ 2:56 pm
Aion Flux
 
That Nature is a Heraclitean Fire…
— Poem title, Gerard Manley Hopkins  

From Jung's Map of the Soul, by Murray Stein:

"… Jung thinks of the self as undergoing continual transformation during the course of a lifetime…. At the end of his late work Aion, Jung presents a diagram to illustrate the dynamic movements of the self…."

The image “http://www.log24.com/theory/images/JungDiamonds.gif” cannot be displayed, because it contains errors.

"The formula presents a symbol of the self, for the self is not just a stable quantity or constant form, but is also a dynamic process.  In the same way, the ancients saw the imago Dei in man not as a mere imprint, as a sort of lifeless, stereotyped impression, but as an active force…. The four transformations represent a process of restoration or rejuvenation taking place, as it were, inside the self…."

"The formula reproduces exactly the essential features of the symbolic process of transformation. It shows the rotation of the mandala, the antithetical play of complementary (or compensatory) processes, then the apocatastasis, i.e., the restoration of an original state of wholeness, which the alchemists expressed through the symbol of the uroboros, and finally the formula repeats the ancient alchemical tetrameria, which is implicit in the fourfold structure of unity. 

What the formula can only hint at, however, is the higher plane that is reached through the process of transformation and integration. The 'sublimation' or progress or qualitative change consists in an unfolding of totality into four parts four times, which means nothing less than its becoming conscious. When psychic contents are split up into four aspects, it means that they have been subjected to discrimination by the four orienting functions of consciousness. Only the production of these four aspects makes a total description possible. The process depicted by our formula changes the originally unconscious totality into a conscious one." 

— Jung, Collected Works, Vol. 9, Part 2, Aion: Researches into the Phenomenology of the Self (1951) 

Related material: 

  The diamond theorem

"Although 'wholeness' seems at first sight to be nothing but an abstract idea (like anima and animus), it is nevertheless empirical in so far as it is anticipated by the psyche in the form of  spontaneous or autonomous symbols. These are the quaternity or mandala symbols, which occur not only in the dreams of modern people who have never heard of them, but are widely disseminated in the historical recods of many peoples and many epochs. Their significance as symbols of unity and totality is amply confirmed by history as well as by empirical psychology.  What at first looks like an abstract idea stands in reality for something that exists and can be experienced, that demonstrates its a priori presence spontaneously. Wholeness is thus an objective factor that confronts the subject independently of him… Unity and totality stand at the highest point on the scale of objective values because their symbols can no longer be distinguished from the imago Dei. Hence all statements about the God-image apply also to the empirical symbols of totality."

— Jung, Aion, as quoted in
Carl Jung and Thomas Merton

Friday, July 25, 2003

Friday July 25, 2003

Filed under: General — Tags: , , — m759 @ 5:24 pm

For Jung’s 7/26 Birthday:
A Logocentric Meditation

Leftist academics are trying to pull a fast one again.  An essay in the most prominent American mathematical publication tries to disguise a leftist attack on Christian theology as harmless philosophical woolgathering.

In a review of Vladimir Tasic’s Mathematics and the Roots of Postmodern Thought, the reviewer, Michael Harris, is being less than candid when he discusses Derrida’s use of “logocentrism”:

“Derrida uses the term ‘logocentrism’… as ‘the metaphysics of phonetic writing’….”

Notices of the American Mathematical Society, August 2003, page 792

We find a rather different version of logocentrism in Tasic’s own Sept. 24, 2001, lecture “Poststructuralism and Deconstruction: A Mathematical History,” which is “an abridged version of some arguments” in Tasic’s book on mathematics and postmodernism:

“Derrida apparently also employs certain ideas of formalist mathematics in his critique of idealist metaphysics: for example, he is on record saying that ‘the effective progress of mathematical notation goes along with the deconstruction of metaphysics.’

Derrida’s position is rather subtle. I think it can be interpreted as a valiant sublation of two completely opposed schools in mathematical philosophy. For this reason it is not possible to reduce it to a readily available philosophy of mathematics. One could perhaps say that Derrida continues and critically reworks Heidegger’s attempt to ‘deconstruct’ traditional metaphysics, and that his method is more ‘mathematical’ than Heidegger’s because he has at his disposal the entire pseudo-mathematical tradition of structuralist thought. He has himself implied in an interview given to Julia Kristeva that mathematics could be used to challenge ‘logocentric theology,’ and hence it does not seem unreasonable to try looking for the mathematical roots of his philosophy.”

The unsuspecting reader would not know from Harris’s review that Derrida’s main concern is not mathematics, but theology.  His ‘deconstruction of metaphysics’ is actually an attack on Christian theology.

From “Derrida and Deconstruction,” by David Arneson, a University of Manitoba professor and writer on literary theory:

Logocentrism: ‘In the beginning was the word.’ Logocentrism is the belief that knowledge is rooted in a primeval language (now lost) given by God to humans. God (or some other transcendental signifier: the Idea, the Great Spirit, the Self, etc.) acts a foundation for all our thought, language and action. He is the truth whose manifestation is the world.”

Some further background, putting my July 23 entry on Lévi-Strauss and structuralism in the proper context:

Part I.  The Roots of Structuralism

“Literary science had to have a firm theoretical basis…”

Part II.  Structuralism/Poststructuralism

“Most [structuralists] insist, as Levi-Strauss does, that structures are universal, therefore timeless.”

Part III.  Structuralism and
Jung’s Archetypes

Jung’s “theories, like those of Cassirer and Lévi-Strauss, command for myth a central cultural position, unassailable by reductive intellectual methods or procedures.”

And so we are back to logocentrism, with the Logos — God in the form of story, myth, or archetype — in the “central cultural position.”

What does all this have to do with mathematics?  See

Plato’s Diamond,

Rosalind Krauss on Art –

“the Klein group (much beloved of Structuralists)”

Another Michael Harris Essay, Note 47 –

“From Krauss’s article I learned that the Klein group is also called the Piaget group.”

and Jung on Quaternity:
Beyond the Fringe –

“…there is no denying the fact that [analytical] psychology, like an illegitimate child of the spirit, leads an esoteric, special existence beyond the fringe of what is generally acknowledged to be the academic world.”

What attitude should mathematicians have towards all this?

Towards postmodern French
atheist literary/art theorists –

Mathematicians should adopt the attitude toward “the demimonde of chic academic theorizing” expressed in Roger Kimball’s essay, Feeling Sorry for Rosalind Krauss.

Towards logocentric German
Christian literary/art theorists –

Mathematicians should, of course, adopt a posture of humble respect, tugging their forelocks and admitting their ignorance of Christian theology.  They should then, if sincere in their desire to honestly learn something about logocentric philosophy, begin by consulting the website

The Quest for the Fiction of an Absolute.

For a better known, if similarly disrespected, “illegitimate child of the spirit,” see my July 22 entry.

Wednesday, November 27, 2002

Wednesday November 27, 2002

Filed under: General,Geometry — Tags: , — m759 @ 11:30 pm

Waiting for Logos

Searching for background on the phrase "logos and logic" in yesterday's "Notes toward a Supreme Fact," I found this passage:

"…a theory of psychology based on the idea of the soul as the dialectical, self-contradictory syzygy of a) soul as anima and b) soul as animus. Jungian and archetypal psychology appear to have taken heed more or less of only one half of the whole syzygy, predominantly serving an anima cut loose from her own Other, the animus as logos and logic (whose first and most extreme phenomenological image is the killer of the anima, Bluebeard). Thus psychology tends to defend the virginal innocence of the anima and her imagination…"

— Wolfgang Giegerich, "Once More the Reality/Irreality Issue: A Reply to Hillman's Reply," website 

The anima and other Jungian concepts are used to analyze Wallace Stevens in an excellent essay by Michael Bryson, "The Quest for the Fiction of an Absolute." Part of Bryson's motivation in this essay is the conflict between the trendy leftist nominalism of postmodern critics and the conservative realism of more traditional critics:

"David Jarraway, in his Stevens and the Question of Belief, writes about a Stevens figured as a proto-deconstructionist, insisting on 'Steven's insistence on dismantling the logocentric models of belief' (311) in 'An Ordinary Evening in New Haven.' In opposition to these readings comes a work like Janet McCann's Wallace Stevens Revisited: 'The Celestial Possible', in which the claim is made (speaking of the post-1940 period of Stevens' life) that 'God preoccupied him for the rest of his career.'"

Here "logocentric" is a buzz word for "Christian." Stevens, unlike the postmodernists, was not anti-Christian. He did, however, see that the old structures of belief could not be maintained indefinitely, and pondered what could be found to replace them. "Notes toward a Supreme Fiction" deals with this problem. In his essay on Stevens' "Notes," Bryson emphasizes the "negative capability" of Keats as a contemplative technique:

"The willingness to exist in a state of negative capability, to accept that sometimes what we are seeking is not that which reason can impose…."

For some related material, see Simone Weil's remarks on Electra waiting for her brother Orestes. Simone Weil's brother was one of the greatest mathematicians of the past century, André Weil.

"Electra did not seek Orestes, she waited for him…"

— Simone Weil

"…at the end, she pulls it all together brilliantly in the story of Electra and Orestes, where the importance of waiting on God rather than seeking is brought home forcefully."

— Tom Hinkle, review of Waiting for God

Compare her remarks on waiting for Orestes with the following passage from Waiting for God:

"We do not obtain the most precious gifts by going in search of them but by waiting for them. Man cannot discover them by his own powers, and if he sets out to seek for them he will find in their place counterfeits of which he will be unable to discern falsity.

The solution of a geometry problem does not in itself constitute a precious gift, but the same law applies to it because it is the image of something precious. Being a little fragment of particular truth, it is a pure image of the unique, eternal, and living Truth, the very Truth that once in a human voice declared: "I am the Truth."

Every school exercise, thought of in this way, is like a sacrament.

In every school exercise there is a special way of waiting upon truth, setting our hearts upon it, yet not allowing ourselves to go out in search of it. There is a way of giving our attention to the data of a problem in geometry without trying to find the solution…."

— Simone Weil, "Reflections on the Right Use of School Studies with a View to the Love of  God"

Weil concludes the preceding essay with the following passage:

"Academic work is one of those fields containing a pearl so precious that it is worth while to sell all of our possessions, keeping nothing for ourselves, in order to be able to acquire it."

This biblical metaphor is also echoed in the work of Pascal, who combined in one person the theological talent of Simone Weil and the mathematical talent of her brother. After discussing how proofs should be written, Pascal says

"The method of not erring is sought by all the world. The logicians profess to guide to it, the geometricians alone attain it, and apart from their science, and the imitations of it, there are no true demonstrations. The whole art is included in the simple precepts that we have given; they alone are sufficient, they alone afford proofs; all other rules are useless or injurious. This I know by long experience of all kinds of books and persons.

And on this point I pass the same judgment as those who say that geometricians give them nothing new by these rules, because they possessed them in reality, but confounded with a multitude of others, either useless or false, from which they could not discriminate them, as those who, seeking a diamond of great price amidst a number of false ones, but from which they know not how to distinguish it, should boast, in holding them all together, of possessing the true one equally with him who without pausing at this mass of rubbish lays his hand upon the costly stone which they are seeking and for which they do not throw away the rest."

— Blaise Pascal, The Art of Persuasion

 

For more diamond metaphors and Jungian analysis, see

The Diamond Archetype.

Saturday, July 20, 2002

Saturday July 20, 2002

 

ABSTRACT: Finite projective geometry explains the surprising symmetry properties of some simple graphic designs– found, for instance, in quilts. Links are provided for applications to sporadic simple groups (via the "Miracle Octad Generator" of R. T. Curtis), to the connection between orthogonal Latin squares and projective spreads, and to symmetry of Walsh functions.

We regard the four-diamond figure D above as a 4×4 array of two-color diagonally-divided square tiles.

Let G be the group of 322,560 permutations of these 16 tiles generated by arbitrarily mixing random permutations of rows and of columns with random permutations of the four 2×2 quadrants.

THEOREM: Every G-image of D (as at right, below) has some ordinary or color-interchange symmetry.

Example:


For an animated version, click here.

Remarks:

Some of the patterns resulting from the action of G on D have been known for thousands of years. (See Jablan, Symmetry and Ornament, Ch. 2.6.) It is perhaps surprising that the patterns' interrelationships and symmetries can be explained fully only by using mathematics discovered just recently (relative to the patterns' age)– in particular, the theory of automorphism groups of finite geometries.

Using this theory, we can summarize the patterns' properties by saying that G is isomorphic to the affine group A on the linear 4-space over GF(2) and that the 35 structures of the 840 = 35 x 24 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2).

This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets, and indicating the locations of these two-sets of tiles within the 4×4 patterns. The lines of the line diagrams may be added in a binary fashion (i.e., 1+1=0). Each three-set of line diagrams sums to zero– i.e., each diagram in a three-set is the binary sum of the other two diagrams in the set. Thus, the 35 three-sets of line diagrams correspond to the 35 three-point lines of the finite projective 3-space PG(3,2).

For example, here are the line diagrams for the figures above:

 
Shown below are the 15 possible line diagrams resulting from row/column/quadrant permutations. These 15 diagrams may, as noted above, be regarded as the 15 points of the projective 3-space PG(3,2).


The symmetry of the line diagrams accounts for the symmetry of the two-color patterns. (A proof shows that a 2nx2n two-color triangular half-squares pattern with such line diagrams must have a 2×2 center with a symmetry, and that this symmetry must be shared by the entire pattern.)

Among the 35 structures of the 840 4×4 arrays of tiles, orthogonality (in the sense of Latin-square orthogonality) corresponds to skewness of lines in the finite projective space PG(3,2). This was stated by the author in a 1978 note. (The note apparently had little effect. A quarter-century later, P. Govaerts, D. Jungnickel, L. Storme, and J. A. Thas wrote that skew (i.e., nonintersecting) lines in a projective space seem "at first sight not at all related" to orthogonal Latin squares.)

We can define sums and products so that the G-images of D generate an ideal (1024 patterns characterized by all horizontal or vertical "cuts" being uninterrupted) of a ring of 4096 symmetric patterns. There is an infinite family of such "diamond" rings, isomorphic to rings of matrices over GF(4).

The proof uses a decomposition technique for functions into a finite field that might be of more general use.

The underlying geometry of the 4×4 patterns is closely related to the Miracle Octad Generator of R. T. Curtis– used in the construction of the Steiner system S(5,8,24)– and hence is also related to the Leech lattice, which, as Walter Feit has remarked, "is a blown up version of S(5,8,24)."

For a movable JavaScript version of these 4×4 patterns, see The Diamond 16 Puzzle.

The above is an expanded version of Abstract 79T-A37, "Symmetry invariance in a diamond ring," by Steven H. Cullinane, Notices of the American Mathematical Society, February 1979, pages A-193, 194.

For a discussion of other cases of the theorem, click here.

Related pages:

The Diamond 16 Puzzle

Diamond Theory in 1937:
A Brief Historical Note

Notes on Finite Geometry

Geometry of the 4×4 Square

Binary Coordinate Systems

The 35 Lines of PG(3,2)

Map Systems:
Function Decomposition over a Finite Field

The Diamond Theorem–
The 2×2, the 2x2x2, the 4×4, and the 4x4x4 Cases

Diamond Theory

Latin-Square Geometry

Walsh Functions

Inscapes

The Diamond Theory of Truth

Geometry of the I Ching

Solomon's Cube and The Eightfold Way

Crystal and Dragon in Diamond Theory

The Form, the Pattern

The Grid of Time

Block Designs

Finite Relativity

Theme and Variations

Models of Finite Geometries

Quilt Geometry

Pattern Groups

The Fano Plane Revisualized,
or the Eightfold Cube

The Miracle Octad Generator

Kaleidoscope

Visualizing GL(2,p)

Jung's Imago

Author's home page

AMS Mathematics Subject Classification:

20B25 (Group theory and generalizations :: Permutation groups :: Finite automorphism groups of algebraic, geometric, or combinatorial structures)

05B25 (Combinatorics :: Designs and configurations :: Finite geometries)

51E20 (Geometry :: Finite geometry and special incidence structures :: Combinatorial structures in finite projective spaces)



Creative Commons License
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
.

Page created Jan. 6, 2006, by Steven H. Cullinane      diamondtheorem.com

 

Initial Xanga entry.  Updated Nov. 18, 2006.

Powered by WordPress