Log24

Saturday, October 19, 2024

AI Perceptions of the Cullinane Diamond Theorem . . .
Continue to Evolve.

Filed under: General — Tags: — m759 @ 2:40 am

Update of 12:10 PM EDT October 19 — AI Overview from Google —

The Google AI Overview now includes an illustration and mentions a
new technique ("map systems") which may eventually be generalized.

Monday, April 24, 2023

The HexRoot Curse

Filed under: General — m759 @ 3:02 pm

(Title suggested by recent episodes of "The Blacklist.")

"It's the system  that matters.
How the data arrange
themselves inside it."

— Gravity's Rainbow  

The Pynchon quote is from posts now tagged Map Systems.

Tuesday, February 20, 2018

The System

Filed under: General,Geometry — Tags: — m759 @ 6:00 am

"It's the system  that matters. 
How the data arrange themselves inside it."

— Gravity's Rainbow  

"Examples are the stained-glass windows of knowledge."

— Vladimir Nabokov   

Map Systems (decomposition of functions over a finite field)

Wednesday, November 22, 2017

“Design is how it works” — Steve Jobs

Filed under: General,Geometry — Tags: , — m759 @ 1:00 pm

News item from this afternoon —

Apple AI research on 'mapping systems'

The above phrase "mapping systems" suggests a review
of my own very different  "map systems." From a search
for that phrase in this journal —

Map Systems (decomposition of functions over a finite field)

See also "A Four-Color Theorem: Function Decomposition
Over a Finite Field.
"

Monday, June 9, 2008

Monday June 9, 2008

Filed under: General,Geometry — Tags: — m759 @ 12:00 pm

Interpret This

"With respect, you only interpret."
"Countries have gone to war
after misinterpreting one another."

The Interpreter

"Once upon a time (say, for Dante),
it must have been a revolutionary
and creative move to design works
of art so that they might be
experienced on several levels."

— Susan Sontag,
"Against Interpretation"

 

Edward Rothstein in today's New York Times review of San Francisco's new Contemporary Jewish Museum:

"An introductory wall panel tells us that in the Jewish mystical tradition the four letters [in Hebrew] of pardes each stand for a level of biblical interpretation: very roughly, the literal, the allusive, the allegorical and the hidden. Pardes, we are told, became the museum’s symbol because it reflected the museum’s intention to cultivate different levels of interpretation: 'to create an environment for exploring multiple perspectives, encouraging open-mindedness' and 'acknowledging diverse backgrounds.' Pardes is treated as a form of mystical multiculturalism.

But even the most elaborate interpretations of a text or tradition require more rigor and must begin with the literal. What is being said? What does it mean? Where does it come from and where else is it used? Yet those are the types of questions– fundamental ones– that are not being asked or examined […].

How can multiple perspectives and open-mindedness and diverse backgrounds be celebrated without a grounding in knowledge, without history, detail, object and belief?"

 

"It's the system that matters.
How the data arrange
themselves inside it."

Gravity's Rainbow  

 

"Examples are the stained-
glass windows of knowledge."

Vladimir Nabokov  

 

Map Systems (decomposition of functions over a finite field)

Click on image to enlarge. 

Friday, March 21, 2003

Friday March 21, 2003

Filed under: General — Tags: , , — m759 @ 9:29 am

ART WARS:

Readings for Bach's Birthday

Larry J. Solomon:

Symmetry as a Compositional Determinant,
Chapter VIII: New Transformations

In Solomon's work, a sequence of notes is represented as a set of positions within a Latin square:

Transformations of the Latin square correspond to transformations of the musical notes.  For related material, see The Glass Bead Game, by Hermann Hesse, and Charles Cameron's sites on the Game.

Steven H. Cullinane:

Orthogonal Latin Squares as Skew Lines, and

Map Systems

Dorothy Sayers:

"The function of imaginative speech is not to prove, but to create–to discover new similarities, and to arrange them to form new entities, to build new self-consistent worlds out of the universe of undifferentiated mind-stuff." (Christian Letters to a Post-Christian World, Grand Rapids: Eerdmans, 1969, p. xiii)

— Quoted by Timothy A. Smith, "Intentionality and Meaningfulness in Bach's Cyclical Works"

Edward Sapir:

"…linguistics has also that profoundly serene and satisfying quality which inheres in mathematics and in music and which may be described as the creation out of simple elements of a self-contained universe of forms.  Linguistics has neither the sweep nor the instrumental power of mathematics, nor has it the universal aesthetic appeal of music.  But under its crabbed, technical, appearance there lies hidden the same classical spirit, the same freedom in restraint, which animates mathematics and music at their purest."

 "The Grammarian and his Language,"
American Mercury 1:149-155, 1924

Saturday, July 20, 2002

Saturday July 20, 2002

 

ABSTRACT: Finite projective geometry explains the surprising symmetry properties of some simple graphic designs– found, for instance, in quilts. Links are provided for applications to sporadic simple groups (via the "Miracle Octad Generator" of R. T. Curtis), to the connection between orthogonal Latin squares and projective spreads, and to symmetry of Walsh functions.

We regard the four-diamond figure D above as a 4×4 array of two-color diagonally-divided square tiles.

Let G be the group of 322,560 permutations of these 16 tiles generated by arbitrarily mixing random permutations of rows and of columns with random permutations of the four 2×2 quadrants.

THEOREM: Every G-image of D (as at right, below) has some ordinary or color-interchange symmetry.

Example:


For an animated version, click here.

Remarks:

Some of the patterns resulting from the action of G on D have been known for thousands of years. (See Jablan, Symmetry and Ornament, Ch. 2.6.) It is perhaps surprising that the patterns' interrelationships and symmetries can be explained fully only by using mathematics discovered just recently (relative to the patterns' age)– in particular, the theory of automorphism groups of finite geometries.

Using this theory, we can summarize the patterns' properties by saying that G is isomorphic to the affine group A on the linear 4-space over GF(2) and that the 35 structures of the 840 = 35 x 24 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2).

This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets, and indicating the locations of these two-sets of tiles within the 4×4 patterns. The lines of the line diagrams may be added in a binary fashion (i.e., 1+1=0). Each three-set of line diagrams sums to zero– i.e., each diagram in a three-set is the binary sum of the other two diagrams in the set. Thus, the 35 three-sets of line diagrams correspond to the 35 three-point lines of the finite projective 3-space PG(3,2).

For example, here are the line diagrams for the figures above:

 
Shown below are the 15 possible line diagrams resulting from row/column/quadrant permutations. These 15 diagrams may, as noted above, be regarded as the 15 points of the projective 3-space PG(3,2).


The symmetry of the line diagrams accounts for the symmetry of the two-color patterns. (A proof shows that a 2nx2n two-color triangular half-squares pattern with such line diagrams must have a 2×2 center with a symmetry, and that this symmetry must be shared by the entire pattern.)

Among the 35 structures of the 840 4×4 arrays of tiles, orthogonality (in the sense of Latin-square orthogonality) corresponds to skewness of lines in the finite projective space PG(3,2). This was stated by the author in a 1978 note. (The note apparently had little effect. A quarter-century later, P. Govaerts, D. Jungnickel, L. Storme, and J. A. Thas wrote that skew (i.e., nonintersecting) lines in a projective space seem "at first sight not at all related" to orthogonal Latin squares.)

We can define sums and products so that the G-images of D generate an ideal (1024 patterns characterized by all horizontal or vertical "cuts" being uninterrupted) of a ring of 4096 symmetric patterns. There is an infinite family of such "diamond" rings, isomorphic to rings of matrices over GF(4).

The proof uses a decomposition technique for functions into a finite field that might be of more general use.

The underlying geometry of the 4×4 patterns is closely related to the Miracle Octad Generator of R. T. Curtis– used in the construction of the Steiner system S(5,8,24)– and hence is also related to the Leech lattice, which, as Walter Feit has remarked, "is a blown up version of S(5,8,24)."

For a movable JavaScript version of these 4×4 patterns, see The Diamond 16 Puzzle.

The above is an expanded version of Abstract 79T-A37, "Symmetry invariance in a diamond ring," by Steven H. Cullinane, Notices of the American Mathematical Society, February 1979, pages A-193, 194.

For a discussion of other cases of the theorem, click here.

Related pages:

The Diamond 16 Puzzle

Diamond Theory in 1937:
A Brief Historical Note

Notes on Finite Geometry

Geometry of the 4×4 Square

Binary Coordinate Systems

The 35 Lines of PG(3,2)

Map Systems:
Function Decomposition over a Finite Field

The Diamond Theorem–
The 2×2, the 2x2x2, the 4×4, and the 4x4x4 Cases

Diamond Theory

Latin-Square Geometry

Walsh Functions

Inscapes

The Diamond Theory of Truth

Geometry of the I Ching

Solomon's Cube and The Eightfold Way

Crystal and Dragon in Diamond Theory

The Form, the Pattern

The Grid of Time

Block Designs

Finite Relativity

Theme and Variations

Models of Finite Geometries

Quilt Geometry

Pattern Groups

The Fano Plane Revisualized,
or the Eightfold Cube

The Miracle Octad Generator

Kaleidoscope

Visualizing GL(2,p)

Jung's Imago

Author's home page

AMS Mathematics Subject Classification:

20B25 (Group theory and generalizations :: Permutation groups :: Finite automorphism groups of algebraic, geometric, or combinatorial structures)

05B25 (Combinatorics :: Designs and configurations :: Finite geometries)

51E20 (Geometry :: Finite geometry and special incidence structures :: Combinatorial structures in finite projective spaces)



Creative Commons License
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
.

Page created Jan. 6, 2006, by Steven H. Cullinane      diamondtheorem.com

 

Initial Xanga entry.  Updated Nov. 18, 2006.

Powered by WordPress