Log24

Friday, May 21, 2010

The Oslo Version

Filed under: General,Geometry — Tags: — m759 @ 9:29 AM

From an art exhibition in Oslo last year–

Image-- Josefine Lyche's combination of Polster's phrase with Cullinane's images in her gallery show, Oslo, 2009-- 'The Smallest Perfect Universe -- Points and Hyperplanes'

The artist's description above is not in correct left-to-right order.
Actually the hyperplanes above are at left, the points at right.

Compare to "Picturing the Smallest Projective 3-Space,"
a note of mine from April 26, 1986—

Image-- Points and hyperplanes in the finite 3-space PG(3,2), April 1986, by Cullinane

Click for the original full version.

Compare also to Burkard Polster's original use of
the phrase "the smallest perfect universe."

Polster's tetrahedral model of points and hyperplanes
is quite different from my own square version above.

See also Cullinane on Polster.

Here are links to the gallery press release
and the artist's own photos.

Wednesday, April 28, 2010

Eightfold Geometry

Filed under: General,Geometry — Tags: , , , , — m759 @ 11:07 AM

Image-- The 35 partitions of an 8-set into two 4-sets

Image-- Analysis of structure of the 35 partitions of an 8-set into two 4-sets

Image-- Miracle Octad Generator of R.T. Curtis

Related web pages:

Miracle Octad Generator,
Generating the Octad Generator,
Geometry of the 4×4 Square

Related folklore:

"It is commonly known that there is a bijection between the 35 unordered triples of a 7-set [i.e., the 35 partitions of an 8-set into two 4-sets] and the 35 lines of PG(3,2) such that lines intersect if and only if the corresponding triples have exactly one element in common." –"Generalized Polygons and Semipartial Geometries," by F. De Clerck, J. A. Thas, and H. Van Maldeghem, April 1996 minicourse, example 5 on page 6

The Miracle Octad Generator may be regarded as illustrating the folklore.

Update of August 20, 2010–

For facts rather than folklore about the above bijection, see The Moore Correspondence.

Wednesday, May 20, 2009

Wednesday May 20, 2009

Filed under: General,Geometry — Tags: , — m759 @ 4:00 PM
From Quilt Blocks to the
Mathieu Group
M24

Diamonds

(a traditional
quilt block):

Illustration of a diamond-theorem pattern

Octads:

Octads formed by a 23-cycle in the MOG of R.T. Curtis

 

Click on illustrations for details.

The connection:

The four-diamond figure is related to the finite geometry PG(3,2). (See "Symmetry Invariance in a Diamond Ring," AMS Notices, February 1979, A193-194.) PG(3,2) is in turn related to the 759 octads of the Steiner system S(5,8,24). (See "Generating the Octad Generator," expository note, 1985.)

The relationship of S(5,8,24) to the finite geometry PG(3,2) has also been discussed in–
  • "A Geometric Construction of the Steiner System S(4,7,23)," by Alphonse Baartmans, Walter Wallis, and Joseph Yucas, Discrete Mathematics 102 (1992) 177-186.

Abstract: "The Steiner system S(4,7,23) is constructed from the geometry of PG(3,2)."

  • "A Geometric Construction of the Steiner System S(5,8,24)," by R. Mandrell and J. Yucas, Journal of Statistical Planning and Inference 56 (1996), 223-228.

Abstract: "The Steiner system S(5,8,24) is constructed from the geometry of PG(3,2)."

For the connection of S(5,8,24) with the Mathieu group M24, see the references in The Miracle Octad Generator.

Tuesday, October 3, 2006

Tuesday October 3, 2006

Filed under: General,Geometry — Tags: , , — m759 @ 9:26 AM

Serious

"I don't think the 'diamond theorem' is anything serious, so I started with blitzing that."

Charles Matthews at Wikipedia, Oct. 2, 2006

"The 'seriousness' of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is 'significant' if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas."

— G. H. Hardy, A Mathematician's Apology

Matthews yesterday deleted references to the diamond theorem and related material in the following Wikipedia articles:

Affine group‎
Reflection group‎
Symmetry in mathematics‎
Incidence structure‎
Invariant (mathematics)‎
Symmetry‎
Finite geometry‎
Group action‎
History of geometry‎

This would appear to be a fairly large complex of mathematical ideas.

See also the following "large complex" cited, following the above words of Hardy, in Diamond Theory:

Affine geometry, affine planes, affine spaces, automorphisms, binary codes, block designs, classical groups, codes, coding theory, collineations, combinatorial, combinatorics, conjugacy classes, the Conwell correspondence, correlations, design theory, duads, duality, error correcting codes, exceptional groups, finite fields, finite geometry, finite groups, finite rings, Galois fields, generalized quadrangles, generators, geometry, GF(2), GF(4), the (24,12) Golay code, group actions, group theory, Hadamard matrices, hypercube, hyperplanes, hyperspace, incidence structures, invariance, Karnaugh maps, Kirkman's schoolgirl problem, Latin squares, Leech lattice, linear groups, linear spaces, linear transformations, Mathieu groups, matrix theory, Meno, Miracle Octad Generator, MOG, multiply transitive groups, octads, the octahedral group, orthogonal arrays, outer automorphisms, parallelisms, partial geometries, permutation groups, PG(3,2), polarities, Polya-Burnside theorem, projective geometry, projective planes, projective spaces, projectivities, Reed-Muller codes, the relativity problem, Singer cycle, skew lines,  sporadic simple groups, Steiner systems, symmetric, symmetry, symplectic, synthemes, synthematic, tesseract, transvections, Walsh functions, Witt designs.

Monday, September 4, 2006

Monday September 4, 2006

Filed under: General,Geometry — Tags: , — m759 @ 7:20 PM
In a Nutshell:
 
The Seed

"The symmetric group S6 of permutations of 6 objects is the only symmetric group with an outer automorphism….

This outer automorphism can be regarded as the seed from which grow about half of the sporadic simple groups…."

Noam Elkies, February 2006

This "seed" may be pictured as

The outer automorphism of a six-set in action

group actions on a linear complex

within what Burkard Polster has called "the smallest perfect universe"– PG(3,2), the projective 3-space over the 2-element field.

Related material: yesterday's entry for Sylvester's birthday.

Friday, April 28, 2006

Friday April 28, 2006

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Exercise

Review the concepts of integritas, consonantia,  and claritas in Aquinas:

"For in respect to beauty three things are essential: first of all, integrity or completeness, since beings deprived of wholeness are on this score ugly; and [secondly] a certain required design, or patterned structure; and finally a certain splendor, inasmuch as things are called beautiful which have a certain 'blaze of being' about them…."

Summa Theologiae Sancti Thomae Aquinatis, I, q. 39, a. 8, as translated by William T. Noon, S.J., in Joyce and Aquinas, Yale University Press, 1957

Review the following three publications cited in a note of April 28, 1985 (21 years ago today):

(1) Cameron, P. J.,
     Parallelisms of Complete Designs,
     Cambridge University Press, 1976.

(2) Conwell, G. M.,
     The 3-space PG(3,2) and its group,
     Ann. of Math. 11 (1910) 60-76.

(3) Curtis, R. T.,
     A new combinatorial approach to M24,
     Math. Proc. Camb. Phil. Soc.
    
79 (1976) 25-42.

Discuss how the sextet parallelism in (1) illustrates integritas, how the Conwell correspondence in (2) illustrates consonantia, and how the Miracle Octad Generator in (3) illustrates claritas.
 

Sunday, April 25, 2004

Sunday April 25, 2004

Filed under: General,Geometry — m759 @ 3:31 PM

Small World

Added a note to 4×4 Geometry:

The 4×4 square model  lets us visualize the projective space PG(3,2) as well as the affine space AG(4,2).  For tetrahedral and circular models of PG(3,2), see the work of Burkard Polster.  The following is from an advertisement of a talk by Polster on PG(3,2).

The Smallest Perfect Universe

“After a short introduction to finite geometries, I’ll take you on a… guided tour of the smallest perfect universe — a complex universe of breathtaking abstract beauty, consisting of only 15 points, 35 lines and 15 planes — a space whose overall design incorporates and improves many of the standard features of the three-dimensional Euclidean space we live in….

Among mathematicians our perfect universe is known as PG(3,2) — the smallest three-dimensional projective space. It plays an important role in many core mathematical disciplines such as combinatorics, group theory, and geometry.”

— Burkard Polster, May 2001

Monday, August 4, 2003

Monday August 4, 2003

Filed under: General — Tags: — m759 @ 1:00 PM

Venn's Trinity

Today is the birthday of logician John Venn.

From the St. Andrews History of Mathematics site:

"Venn considered three discs R, S, and T as typical subsets of a set U. The intersections of these discs and their complements divide U into 8 non-overlapping regions, the unions of which give 256 different Boolean combinations of the original sets R, S, T." 

Last night's entry, "A Queer Religion," gave a Catholic view of the Trinity.  Here are some less interesting but more fruitful thoughts inspired by Venn's diagram of the Trinity (or, indeed, of any three entities):

"To really know a subject you've got to learn a bit of its history…."
John Baez, August 4, 2002

"We both know what memories can bring;
They bring diamonds and rust."
Joan Baez, April 1975

For the "diamonds" brought by memories of the 28 combinations described above, consider how the symmetric group S8 is related to the symmetries of the finite projective space PG(3,2).  (See Diamond Theory.) 

For the "rust," consider the following:

"Lay not up for yourselves treasures upon earth, where moth and rust doth corrupt…."
— Matthew 6:19

The letters R, U, S, T in the Venn diagram above are perhaps relevant here, symbolizing, if you will, the earthly confusion of language, as opposed to the heavenly clarity of mathematics.

As for MOTH, see the article Hometown Zeroes (which brings us yet again to the Viper Room, scene of River Phoenix's death) and the very skillfully designed website MOTHEMATICS.

Wednesday, April 2, 2003

Wednesday April 2, 2003

Filed under: General,Geometry — Tags: , , , — m759 @ 2:30 PM

Symmetries…. May 15, 1998

The following journal note, from the day after Sinatra died, was written before I heard of his death.  Note particularly the quote from Rilke.  Other material was suggested, in part, by Alasdair Gray's Glasgow novel 1982 Janine.  The "Sein Feld" heading is a reference to the Seinfeld final episode, which aired May 14, 1998.  The first column contains a reference to angels — apparently Hell's Angels — and the second column provides a somewhat more serious look at this theological topic.

Sein Feld

                        

1984 Janine

"But Angels love their own
And they're reaching out
    for you
Janine… Oh Janine
— Kim Wilde lyric,
    Teases & Dares album,
    1984, apparently about
    a British biker girl

 

"Logos means above all relation."
— Simone Weil,
    Gateway to God,
    Glasgow, 1982

"Gesang ist Dasein….
 Ein Hauch um nichts.
 Ein Wehn im Gott.
 Ein Wind
."
— Not Heidegger but Rilke:
Sonnets to Orpheus, I, 3

Geometry and Theology

PA lottery May 14, 1998:
256
   

S8  The group of all projectivities and correlations of PG(3,2).

The above isomorphism implies the geometry of the Mathieu group M24.

"The Leech lattice is a blown-up version of
S(5,8,24)."
— W. Feit

"We have strong evidence that the creator of the universe loves symmetry."
— Freeman Dyson

"Mackey presents eight axioms from which he deduces the [quantum] theory."
— M. Schechter

"Theology is about words; science is about things."
— Freeman Dyson, New York Review of Books, 5/28/98

What is "256" about?



Tape purchased 12/23/97:
 

Django
Reinhardt

      Gypsy Jazz

"In the middle of 1982 Janine there are pages in which Jock McLeish is fighting with drugs and alcohol, attempting to either die or come through and get free of his fantasies. In his delirium, he hears the voice of God, which enters in small print, pushing against the larger type of his ravings.  Something God says is repeated on the first and last pages of Unlikely Stories, Mostly, complete with illustration and the words 'Scotland 1984' beside it. God's statement is 'Work as if you were in the early days of a better nation.'  It is the inherent optimism in that statement that perhaps best captures the strength of Aladair Gray's fiction, its straightforwardness and exuberance."
— Toby Olson, "Eros in Glasgow," in Book World, The Washington Post, December 16, 1984

 For another look at angels, see "Winging It," by Christopher R. Miller, The New York Times Book Review Bookend page for Sunday, May 24, 1998. May 24 is the feast day of Sara (also known by the Hindu name Kali), patron saint of Gypsies.

For another, later (July 16, 1998) reply to Dyson, from a source better known than myself, see Why Religion Matters, by Huston Smith, Harper Collins, 2001, page 66.

Saturday, July 20, 2002

Saturday July 20, 2002

 

ABSTRACT: Finite projective geometry explains the surprising symmetry properties of some simple graphic designs– found, for instance, in quilts. Links are provided for applications to sporadic simple groups (via the "Miracle Octad Generator" of R. T. Curtis), to the connection between orthogonal Latin squares and projective spreads, and to symmetry of Walsh functions.

We regard the four-diamond figure D above as a 4×4 array of two-color diagonally-divided square tiles.

Let G be the group of 322,560 permutations of these 16 tiles generated by arbitrarily mixing random permutations of rows and of columns with random permutations of the four 2×2 quadrants.

THEOREM: Every G-image of D (as at right, below) has some ordinary or color-interchange symmetry.

Example:


For an animated version, click here.

Remarks:

Some of the patterns resulting from the action of G on D have been known for thousands of years. (See Jablan, Symmetry and Ornament, Ch. 2.6.) It is perhaps surprising that the patterns' interrelationships and symmetries can be explained fully only by using mathematics discovered just recently (relative to the patterns' age)– in particular, the theory of automorphism groups of finite geometries.

Using this theory, we can summarize the patterns' properties by saying that G is isomorphic to the affine group A on the linear 4-space over GF(2) and that the 35 structures of the 840 = 35 x 24 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2).

This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets, and indicating the locations of these two-sets of tiles within the 4×4 patterns. The lines of the line diagrams may be added in a binary fashion (i.e., 1+1=0). Each three-set of line diagrams sums to zero– i.e., each diagram in a three-set is the binary sum of the other two diagrams in the set. Thus, the 35 three-sets of line diagrams correspond to the 35 three-point lines of the finite projective 3-space PG(3,2).

For example, here are the line diagrams for the figures above:

 
Shown below are the 15 possible line diagrams resulting from row/column/quadrant permutations. These 15 diagrams may, as noted above, be regarded as the 15 points of the projective 3-space PG(3,2).


The symmetry of the line diagrams accounts for the symmetry of the two-color patterns. (A proof shows that a 2nx2n two-color triangular half-squares pattern with such line diagrams must have a 2×2 center with a symmetry, and that this symmetry must be shared by the entire pattern.)

Among the 35 structures of the 840 4×4 arrays of tiles, orthogonality (in the sense of Latin-square orthogonality) corresponds to skewness of lines in the finite projective space PG(3,2). This was stated by the author in a 1978 note. (The note apparently had little effect. A quarter-century later, P. Govaerts, D. Jungnickel, L. Storme, and J. A. Thas wrote that skew (i.e., nonintersecting) lines in a projective space seem "at first sight not at all related" to orthogonal Latin squares.)

We can define sums and products so that the G-images of D generate an ideal (1024 patterns characterized by all horizontal or vertical "cuts" being uninterrupted) of a ring of 4096 symmetric patterns. There is an infinite family of such "diamond" rings, isomorphic to rings of matrices over GF(4).

The proof uses a decomposition technique for functions into a finite field that might be of more general use.

The underlying geometry of the 4×4 patterns is closely related to the Miracle Octad Generator of R. T. Curtis– used in the construction of the Steiner system S(5,8,24)– and hence is also related to the Leech lattice, which, as Walter Feit has remarked, "is a blown up version of S(5,8,24)."

For a movable JavaScript version of these 4×4 patterns, see The Diamond 16 Puzzle.

The above is an expanded version of Abstract 79T-A37, "Symmetry invariance in a diamond ring," by Steven H. Cullinane, Notices of the American Mathematical Society, February 1979, pages A-193, 194.

For a discussion of other cases of the theorem, click here.

Related pages:

The Diamond 16 Puzzle

Diamond Theory in 1937:
A Brief Historical Note

Notes on Finite Geometry

Geometry of the 4×4 Square

Binary Coordinate Systems

The 35 Lines of PG(3,2)

Map Systems:
Function Decomposition over a Finite Field

The Diamond Theorem–
The 2×2, the 2x2x2, the 4×4, and the 4x4x4 Cases

Diamond Theory

Latin-Square Geometry

Walsh Functions

Inscapes

The Diamond Theory of Truth

Geometry of the I Ching

Solomon's Cube and The Eightfold Way

Crystal and Dragon in Diamond Theory

The Form, the Pattern

The Grid of Time

Block Designs

Finite Relativity

Theme and Variations

Models of Finite Geometries

Quilt Geometry

Pattern Groups

The Fano Plane Revisualized,
or the Eightfold Cube

The Miracle Octad Generator

Kaleidoscope

Visualizing GL(2,p)

Jung's Imago

Author's home page

AMS Mathematics Subject Classification:

20B25 (Group theory and generalizations :: Permutation groups :: Finite automorphism groups of algebraic, geometric, or combinatorial structures)

05B25 (Combinatorics :: Designs and configurations :: Finite geometries)

51E20 (Geometry :: Finite geometry and special incidence structures :: Combinatorial structures in finite projective spaces)



Creative Commons License
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
.

Page created Jan. 6, 2006, by Steven H. Cullinane      diamondtheorem.com

 

Initial Xanga entry.  Updated Nov. 18, 2006.

Tuesday, March 24, 2015

Brouwer on the Galois Tesseract

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Yesterday's post suggests a review of the following —

Andries Brouwer, preprint, 1982:

"The Witt designs, Golay codes and Mathieu groups"
(unpublished as of 2013)

Pages 8-9:

Substructures of S(5, 8, 24)

An octad is a block of S(5, 8, 24).

Theorem 5.1

Let B0 be a fixed octad. The 30 octads disjoint from B0
form a self-complementary 3-(16,8,3) design, namely 

the design of the points and affine hyperplanes in AG(4, 2),
the 4-dimensional affine space over F2.

Proof….

… (iv) We have AG(4, 2).

(Proof: invoke your favorite characterization of AG(4, 2) 
or PG(3, 2), say 
Dembowski-Wagner or Veblen & Young. 

An explicit construction of the vector space is also easy….)

Related material:  Posts tagged Priority.

« Newer Posts

Powered by WordPress