Bernd Sturmfels to Receive 2018
George David Birkhoff Prize in Applied Mathematics
— American Mathematical Society on
Monday, November 20th, 2017
See also Sturmfels and Birkhoff + Geometry in this journal.
Bernd Sturmfels to Receive 2018
George David Birkhoff Prize in Applied Mathematics
— American Mathematical Society on
Monday, November 20th, 2017
See also Sturmfels and Birkhoff + Geometry in this journal.
In the above view, four of the tesseract's 16
vertices are overlaid by other vertices.
For views that are more complete and
moveable, see Smith's tesseract page.
Four-Part Tesseract Divisions—
The above figure shows how four-part partitions
of the 16 vertices of a tesseract in an infinite
Euclidean space are related to four-part partitions
of the 16 points in a finite Galois space
Euclidean spaces versus Galois spaces in a larger context—
Infinite versus Finite The central aim of Western religion — "Each of us has something to offer the Creator...
the bridging of
masculine and feminine,
life and death.
It's redemption.... nothing else matters."
-- Martha Cooley in The Archivist (1998)
The central aim of Western philosophy — Dualities of Pythagoras
as reconstructed by Aristotle:
Limited Unlimited
Odd Even
Male Female
Light Dark
Straight Curved
... and so on ....
"Of these dualities, the first is the most important; all the others may be seen as different aspects of this fundamental dichotomy. To establish a rational and consistent relationship between the limited [man, etc.] and the unlimited [the cosmos, etc.] is… the central aim of all Western philosophy." |
Another picture related to philosophy and religion—
Jung's Four-Diamond Figure from Aion—
This figure was devised by Jung
to represent the Self. Compare the
remarks of Paul Valéry on the Self—
Flight from Eden: The Origins of Modern Literary Criticism and Theory, by Steven Cassedy, U. of California Press, 1990, pages 156-157—
Valéry saw the mind as essentially a relational system whose operation he attempted to describe in the language of group mathematics. "Every act of understanding is based on a group," he says (C, 1:331). "My specialty— reducing everything to the study of a system closed on itself and finite" (C, 19: 645). The transformation model came into play, too. At each moment of mental life the mind is like a group, or relational system, but since mental life is continuous over time, one "group" undergoes a "transformation" and becomes a different group in the next moment. If the mind is constantly being transformed, how do we account for the continuity of the self? Simple; by invoking the notion of the invariant. And so we find passages like this one: "The S[elf] is invariant, origin, locus or field, it's a functional property of consciousness" (C, 15:170 [2:315]). Just as in transformational geometry, something remains fixed in all the projective transformations of the mind's momentary systems, and that something is the Self (le Moi, or just M, as Valéry notates it so that it will look like an algebraic variable). Transformation theory is all over the place. "Mathematical science… reduced to algebra, that is, to the analysis of the transformations of a purely differential being made up of homogeneous elements, is the most faithful document of the properties of grouping, disjunction, and variation in the mind" (O, 1:36). "Psychology is a theory of transformations, we just need to isolate the invariants and the groups" (C, 1:915). "Man is a system that transforms itself" (C, 2:896). O Paul Valéry, Oeuvres (Paris: Pléiade, 1957-60) C Valéry, Cahiers, 29 vols. (Paris: Centre National de le Recherche Scientifique, 1957-61) |
Note also the remarks of George David Birkhoff at Rice University
in 1940 (pdf) on Galois's theory of groups and the related
"theory of ambiguity" in Galois's testamentary letter—
… metaphysical reasoning always relies on the Principle of Sufficient Reason, and… the true meaning of this Principle is to be found in the “Theory of Ambiguity” and in the associated mathematical “Theory of Groups.” If I were a Leibnizian mystic, believing in his “preestablished harmony,” and the “best possible world” so satirized by Voltaire in “Candide,” I would say that the metaphysical importance of the Principle of Sufficient Reason and the cognate Theory of Groups arises from the fact that God thinks multi-dimensionally^{*} whereas men can only think in linear syllogistic series, and the Theory of Groups is the appropriate instrument of thought to remedy our deficiency in this respect. * That is, uses multi-dimensional symbols beyond our grasp. |
Related material:
A medal designed by Leibniz to show how
binary arithmetic mirrors the creation by God
of something (1) from nothing (0).
Another array of 16 strings of 0's and 1's, this time
regarded as coordinates rather than binary numbers—
Some context by a British mathematician —
Imago by Wallace Stevens Who can pick up the weight of Britain, Who can move the German load Or say to the French here is France again? Imago. Imago. Imago. It is nothing, no great thing, nor man Of ten brilliancies of battered gold And fortunate stone. It moves its parade Of motions in the mind and heart, A gorgeous fortitude. Medium man In February hears the imagination's hymns And sees its images, its motions And multitudes of motions And feels the imagination's mercies, In a season more than sun and south wind, Something returning from a deeper quarter, A glacier running through delirium, Making this heavy rock a place, Which is not of our lives composed . . . Lightly and lightly, O my land, Move lightly through the air again. |
David Levine's portrait of Arthur Koestler (see Dec. 30, 2009) —
See also this morning's post as well as
Monday's post quoting George David Birkhoff —
"If I were a Leibnizian mystic… I would say that…
God thinks multi-dimensionally — that is,
uses multi-dimensional symbols beyond our grasp."
Make a Différance
From Frida Saal's
Lacan_{ }Derrida:
"Différance is that which all signs have, what constitutes them as signs, as signs are not that to which they refer: i) they differ, and hence open a space from that which they represent, and ii) they defer, and hence open up a temporal chain, or, participate in temporality. As well, following de Sassure's famous argument, signs 'mean' by differing from other signs. The coined word 'différance' refers to at once the differing and the deferring of signs. Taken to the ontological level†, the differing and deferring of signs from what they mean, means that every sign repeats the creation of space and time; and ultimately, that différance is the ultimate phenomenon in the universe, an operation that is not an operation, both active and passive, that which enables and results from Being itself."
22. Without using the Pythagorean Theorem prove that the hypotenuse of an isosceles right triangle will have the length if the equal legs have the length 1. Suggestion: Consider the similar triangles in Fig. 39. 23. The ancient Greeks regarded the Pythagorean Theorem as involving areas, and they proved it by means of areas. We cannot do so now because we have not yet considered the idea of area. Assuming for the moment, however, the idea of the area of a square, use this idea instead of similar triangles and proportion in Ex. 22 above to show that x = .
— Page 98 of Basic Geometry, by George David Birkhoff, Professor of Mathematics at Harvard University, and Ralph Beatley, Associate Professor of Education at Harvard University (Scott, Foresman 1941) |
The above is from October 1999.
See also Naturalized Epistemology,
from Women's History Month, 2001.
Powered by WordPress